Publications

Found 9 results
Filters: Author is L.J. Wu  [Clear All Filters]
2016
W. J. Huang, Wu, L. J., Min, Z. C., Xu, L. T., Guo, C. M., Chen, Z. P., Lou, X. J., Xu, B., Lv, B. D., Huang, W. J., Wu, L. J., Min, Z. C., Xu, L. T., Guo, C. M., Chen, Z. P., Lou, X. J., Xu, B., and Lv, B. D., Interleukin-6 -572G/C polymorphism and prostate cancer susceptibility, vol. 15, p. -, 2016.
W. J. Huang, Wu, L. J., Min, Z. C., Xu, L. T., Guo, C. M., Chen, Z. P., Lou, X. J., Xu, B., Lv, B. D., Huang, W. J., Wu, L. J., Min, Z. C., Xu, L. T., Guo, C. M., Chen, Z. P., Lou, X. J., Xu, B., and Lv, B. D., Interleukin-6 -572G/C polymorphism and prostate cancer susceptibility, vol. 15, p. -, 2016.
L. J. Wu, Wu, L. J., and Wu, L. J., Reply to commentary by G. Sikri and S. Dua on the article “Correlation between single nucleotide polymorphisms in hypoxia-related genes and susceptibility to acute high-altitude pulmonary edema” published in Genetics and Molecular Research 14 (3): 11562-11572 to the letter published in Genet. Mol. Res. 14 (4): 15904-15905, vol. 15. p. -, 2016.
L. J. Wu, Wu, L. J., and Wu, L. J., Reply to commentary by G. Sikri and S. Dua on the article “Correlation between single nucleotide polymorphisms in hypoxia-related genes and susceptibility to acute high-altitude pulmonary edema” published in Genetics and Molecular Research 14 (3): 11562-11572 to the letter published in Genet. Mol. Res. 14 (4): 15904-15905, vol. 15. p. -, 2016.
L. J. Wu, Wu, L. J., and Wu, L. J., Reply to commentary by G. Sikri and S. Dua on the article “Correlation between single nucleotide polymorphisms in hypoxia-related genes and susceptibility to acute high-altitude pulmonary edema” published in Genetics and Molecular Research 14 (3): 11562-11572 to the letter published in Genet. Mol. Res. 14 (4): 15904-15905, vol. 15. p. -, 2016.
Y. J. Yang, Li, Z. B., Zhang, G. R., Wu, L. J., Yu, J. Y., Hu, L. J., Zhou, Y. L., Wang, H. D., Liang, D., Yang, Y. J., Li, Z. B., Zhang, G. R., Wu, L. J., Yu, J. Y., Hu, L. J., Zhou, Y. L., Wang, H. D., and Liang, D., Snail-induced epithelial-mesenchymal transition in gastric carcinoma cells and generation of cancer stem cell characteristics, vol. 15, p. -, 2016.
Y. J. Yang, Li, Z. B., Zhang, G. R., Wu, L. J., Yu, J. Y., Hu, L. J., Zhou, Y. L., Wang, H. D., Liang, D., Yang, Y. J., Li, Z. B., Zhang, G. R., Wu, L. J., Yu, J. Y., Hu, L. J., Zhou, Y. L., Wang, H. D., and Liang, D., Snail-induced epithelial-mesenchymal transition in gastric carcinoma cells and generation of cancer stem cell characteristics, vol. 15, p. -, 2016.
2010
F. Deng, Zhu, S. W., Wu, L. J., and Cheng, B. J., Effects of low-energy argon ion implantation on the dynamic organization of the actin cytoskeleton during maize pollen germination, vol. 9, pp. 785-796, 2010.
Cai G, Moscatelli A and Cresti M (1997). Cytoskeletal organization and pollen tube growth. Trends Plant Sci. 2: 86-91. http://dx.doi.org/10.1016/S1360-1385(96)10057-1   Camacho L and Malho R (2003). Endo/exocytosis in the pollen tube apex is differentially regulated by Ca2+ and GTPases. J. Exp. Bot. 54: 83-92. http://dx.doi.org/10.1093/jxb/erg043 PMid:12456758   Cheung AY (1995). Pollen-pistil interactions in compatible pollination. Proc. Natl. Acad. Sci U. S. A. 92: 3077-3080. http://dx.doi.org/10.1073/pnas.92.8.3077 PMid:7724518 PMCid:42107   Franklin-Tong VE (1999). Signaling and the modulation of pollen tube growth. Plant Cell 11: 727-738. PMid:10213789 PMCid:144203   Franklin-Tong VE, Hackett G and Hepler PK (1997). Ratio-imaging of Ca2+i in the self-incompatibility response in pollen tubes of Papaver rhoeas. Plant J. 12: 1375-1386. http://dx.doi.org/10.1046/j.1365-313x.1997.12061375.x   Gibbon BC, Kovar DR and Staiger CJ (1999). Latrunculin B has different effects on pollen germination and tube growth. Plant Cell 11: 2349-2363. PMid:10590163 PMCid:144132   Heslop-Harrison J, Heslop-Harrison Y, Cresti M, Tiezzi A, et al. (1986). Actin during pollen germination. J. Cell Sci. 86: 1-8.   Huang Z, Yanping J, Guoli Z, Ting L, et al. (2001). Effects of nitrogen ion implantation on Ca2+ concentration and membrane potential of pollen cell. Chin. Sci. Bull. 46: 1692-1694. http://dx.doi.org/10.1007/BF02900653   Ikeda S, Nasrallah JB, Dixit R, Preiss S, et al. (1997). An aquaporin-like gene required for the Brassica self-incompatibility response. Science 276: 1564-1566. http://dx.doi.org/10.1126/science.276.5318.1564 PMid:9171060   Lazzaro MD, Cardenas L, Bhatt AP, Justus CD, et al. (2005). Calcium gradients in conifer pollen tubes; dynamic properties differ from those seen in angiosperms. J. Exp. Bot. 56: 2619-2628. http://dx.doi.org/10.1093/jxb/eri256 PMid:16118258   Li G, Huang Q, Yang L and Qin Q (2008). Ion implantation hampers pollen tube growth and disrupts actin cytoskeleton organization in pollen tubes of Pinus thunbergii. Plasma Sci. Technol. 10: 291-293.   Li Y, Yan LF and Xu SX (1998). Distribution of F-actin and microtubes in pollen and pollen tube of Lilium davidii. Acta Bot. Sin. 40: 890-894.   Li Y, Zee SY, Liu YM, Huang BQ, et al. (2001). Circular F-actin bundles and a G-actin gradient in pollen and pollen tubes of Lilium davidii. Planta 213: 722-730. http://dx.doi.org/10.1007/s004250100543 PMid:11678276   Lu T, Cao HM and Zhang RW (1995). Observing the effect of nitrogen ion implantation in seeds of lima bean on position annihilation. Mater. Sci. Forum 175-178: 447-448. http://dx.doi.org/10.4028/www.scientific.net/MSF.175-178.447   Mascarenhas JP (1993). Molecular mechanisms of pollen tube growth and differentiation. Plant Cell 5: 1303-1314. PMid:12271030 PMCid:160363   Samaj J, Muller J, Beck M, Bohm N, et al. (2006). Vesicular trafficking, cytoskeleton and signalling in root hairs and pollen tubes. Trends Plant Sci. 11: 594-600. http://dx.doi.org/10.1016/j.tplants.2006.10.002 PMid:17092761   Staiger CJ and Franklin-Tong VE (2003). The actin cytoskeleton is a target of the self-incompatibility response in Papaver rhoeas. J. Exp. Bot. 54: 103-113. http://dx.doi.org/10.1093/jxb/erg003 PMid:12456760   Steer MW and Steer JM (1989). Pollen tube tip growth. New Phytol. 111: 323-358. http://dx.doi.org/10.1111/j.1469-8137.1989.tb00697.x   Taylor LP and Hepler PK (1997). Pollen germination and tube growth. Annu. Rev. Plant Physiol. Plant Mol. Biol. 48: 461-491. http://dx.doi.org/10.1146/annurev.arplant.48.1.461 PMid:15012271   Vidali L, McKenna ST and Hepler PK (2001). Actin polymerization is essential for pollen tube growth. Mol. Biol. Cell 12: 2534-2545. PMid:11514633 PMCid:58611   Wang X, Teng Y, Wang Q, Li X, et al. (2006). Imaging of dynamic secretory vesicles in living pollen tubes of Picea meyeri using evanescent wave microscopy. Plant Physiol. 141: 1591-1603. http://dx.doi.org/10.1104/pp.106.080168 PMid:16798949 PMCid:1533916   Wei Z, Han G, Zhou G, Li Q, et al. (1996). An important mechanism of crop breeding with ultralow energy ion injection. Acta Biophys. Sin. 12: 325.   Wheeler JM, Franklin-Tong VE and Franklin FCH (2001). The molecular and genetic basis of pollen-pistil interactions. New Phytol. 151: 565-584. http://dx.doi.org/10.1046/j.0028-646x.2001.00229.x   Wu LF, Li H and Yu ZL (1999). The application of ion beam in life science. Acta Laser Biol. Sin. 4: 299-310.   Yang HY (1999). The role of calcium in the fertilization process in flowering plants. Acta Bot. Sin. 41: 1027-1035.   Yu ZL (1999). Interaction between low energy ion and the complicated organism. Plasma Sci. Technol. 1: 79-85. http://dx.doi.org/10.1088/1009-0630/1/1/012   Yu ZL (2000). Ion beam application in genetic modification. IEEE T Plasma Sci. 28: 128-132. http://dx.doi.org/10.1109/27.842882   Yu ZL and Shao CL (1994). Dose-effect of the tyrosine sample implanted by a low energy N+ ion beam. Radiant. Phys. Chem. 43: 349-351. http://dx.doi.org/10.1016/0969-806X(94)90025-6   Zhu C, Li CG and Hu SY (1991). Visualization of actin filament patterns in pollen tubes of Hosta caerulea Tratt with a non-fixation and TRITC-phalloidin method. Acta Bot. Sin. 33: 1-6.