Publications

Found 14 results
Filters: Author is L.J. Wang  [Clear All Filters]
2013
Y. H. Ling, Ding, J. P., Zhang, X. D., Wang, L. J., Zhang, Y. H., Li, Y. S., Zhang, Z. J., and Zhang, X. R., Characterization of microRNAs from goat (Capra hircus) by Solexa deep-sequencing technology, vol. 12, pp. 1951-1961, 2013.
H. L. Wang, Li, Z. X., Chen, L., Yang, J., Wang, L. J., He, H., Niu, F. B., Liu, Y., Guo, J. Z., and Liu, X. L., Polymorphism in PGLYRP-2 gene by PCR-RFLP and its association with somatic cell score and percentage of fat in Chinese Holstein, vol. 12, pp. 6743-6751, 2013.
Z. J. Zhang, Ling, Y. H., Wang, L. J., Hang, Y. F., Guo, X. F., Zhang, Y. H., Ding, J. P., and Zhang, X. R., Polymorphisms of the myostatin gene (MSTN) and its relationship with growth traits in goat breeds, vol. 12. pp. 965-971, 2013.
Bellinge RH, Liberles DA, Iaschi SP, O'Brien PA, et al. (2005). Myostatin and its implications on animal breeding: a review. Anim. Genet. 36: 1-6. http://dx.doi.org/10.1111/j.1365-2052.2004.01229.x PMid:15670124   Boman IA, Klemetsdal G, Blichfeldt T, Nafstad O, et al. (2009). A frameshift mutation in the coding region of the myostatin gene (MSTN) affects carcass conformation and fatness in Norwegian White Sheep (Ovis aries). Anim. Genet. 40: 418-422. http://dx.doi.org/10.1111/j.1365-2052.2009.01855.x PMid:19392824   Chen HQ, Qin J, Zhu YJ and Pan ZT (2012). The polymorphisms of goat thrsp gene associated with ecological factors in Chinese indigenous goat breeds with different lipogenesis ability. Asian J. Anim. Vet. Adv. 7: 802-811. http://dx.doi.org/10.3923/ajava.2012.802.811   Chen TT (2008). Polymorphisms of MSTN, IGFBP-3 Gene and the Related Research with Growth Performance of Tianfu Goat, Sichuan Agricultural University, Ya'an.   Fan B, Lkhagvadorj S, Cai W, Young J, et al. (2010). Identification of genetic markers associated with residual feed intake and meat quality traits in the pig. Meat Sci. 84: 645-650. http://dx.doi.org/10.1016/j.meatsci.2009.10.025 PMid:20374837   Grisolia AB, D'Angelo GT, Porto Neto LR, Siqueira F, et al. (2009). Myostatin (GDF8) single nucleotide polymorphisms in Nellore cattle. Genet. Mol. Res. 8: 822-830. http://dx.doi.org/10.4238/vol8-3gmr548 PMid:19731204   Hadjipavlou G, Matika O, Clop A and Bishop SC (2008). Two single nucleotide polymorphisms in the myostatin (GDF8) gene have significant association with muscle depth of commercial Charollais sheep. Anim. Genet. 39: 346-353. http://dx.doi.org/10.1111/j.1365-2052.2008.01734.x PMid:18462481   Jin H, Chen HQ, Q J and Zhu YJ (2012). The polymorphism in 5' regulatory region and exon 13 of PRKAG3 gene and its distribution pattern in different goat breeds. Asian J. Anim. Vet. Adv. 7: 568-577. http://dx.doi.org/10.3923/ajava.2012.568.577   Jin XY (2011). Cloning and bioinformatics analysis on Myostatin (MSTN) gene of goat. China Anim. Husbandry Vet. Med. 38: 111-114.   Li XL, Liu ZZ, Zhou RY and Zheng GR (2008). Deletion of TTTTA in 5'UTR of goat MSTN gene and its distribution in different population groups and genetic effect on bodyweight at different ages. Front. Agric. China 2: 109. http://dx.doi.org/10.1007/s11703-008-0004-8   Li YL, Zhang H, Zhang Q and Wang QL (2009). Research on the efficiency of marker-assisted selection in pig breeding system. China Anim. Husbandry Vet. Med. 36: 67-71.   Liu ZT, Li XL, Gong YF and Jin XM (2006). Relationship between polymorphism of goat MSTN gene intron 2 and body weight. Acta Vet. Zootech. Sin. 37: 745-748.   Thomas M, Langley B, Berry C, Sharma M, et al. (2000). Myostatin, a negative regulator of muscle growth, functions by inhibiting myoblast proliferation. J. Biol. Chem. 275: 40235-40243. http://dx.doi.org/10.1074/jbc.M004356200 PMid:10976104   Walsh FS and Celeste AJ (2005). Myostatin: a modulator of skeletal-muscle stem cells. Biochem. Soc. Trans. 33: 1513- 1517. http://dx.doi.org/10.1042/BST20051513 PMid:16246158   Wiener P, Woolliams JA, Frank-Lawale A, Ryan M, et al. (2009). The effects of a mutation in the myostatin gene on meat and carcass quality. Meat Sci. 83: 127-134. http://dx.doi.org/10.1016/j.meatsci.2009.04.010 PMid:20416780   Zhang C, Liu Y, Xu D, Wen Q, et al. (2012). Polymorphisms of myostatin gene (MSTN) in four goat breeds and their effects on Boer goat growth performance. Mol. Biol. Rep. 39: 3081-3087. http://dx.doi.org/10.1007/s11033-011-1071-0 PMid:21710248
Y. Z. Li, Wang, L. J., Li, X., Li, S. L., Wang, J. L., Wu, Z. H., Gong, L., and Zhang, X. D., Vascular endothelial growth factor gene polymorphisms contribute to the risk of endometriosis: an updated systematic review and meta-analysis of 14 case-control studies, vol. 12, pp. 1035-1044, 2013.
Altinkaya SO, Ugur M, Ceylaner G, Ozat M, et al. (2011). Vascular endothelial growth factor +405 C/G polymorphism is highly associated with an increased risk of endometriosis in Turkish women. Arch. Gynecol. Obstet. 283: 267-272. http://dx.doi.org/10.1007/s00404-009-1344-1 PMid:20041256   Attar R, Agachan B, Kuran SB, Toptas B, et al. (2010). Genetic variants of vascular endothelial growth factor and risk for the development of endometriosis. In Vivo 24: 297-301. PMid:20555002   Bhanoori M, Arvind BK, Pavankumar Reddy NG, Lakshmi RK, et al. (2005). The vascular endothelial growth factor (VEGF) +405G>C 5'-untranslated region polymorphism and increased risk of endometriosis in South Indian women: a case control study. Hum. Reprod. 20: 1844-1849. http://dx.doi.org/10.1093/humrep/deh852 PMid:15746194   Cosin R, Gilabert-Estelles J, Ramon LA, Espana F, et al. (2009). Vascular endothelial growth factor polymorphisms (-460C/T, +405G/C, and 936C/T) and endometriosis: their influence on vascular endothelial growth factor expression. Fertil. Steril. 92: 1214-1220. http://dx.doi.org/10.1016/j.fertnstert.2008.08.079 PMid:18930211   Ferrara N (2004). Vascular endothelial growth factor: basic science and clinical progress. Endocr. Rev. 25: 581-611. http://dx.doi.org/10.1210/er.2003-0027 PMid:15294883   Ferrara N, Gerber HP and LeCouter J (2003). The biology of VEGF and its receptors. Nat. Med. 9: 669-676. http://dx.doi.org/10.1038/nm0603-669 PMid:12778165   Fukumura D, Xavier R, Sugiura T, Chen Y, et al. (1998). Tumor induction of VEGF promoter activity in stromal cells. Cell 94: 715-725. http://dx.doi.org/10.1016/S0092-8674(00)81731-6   Gentilini D, Somigliana E, Vigano P, Vignali M, et al. (2008). The vascular endothelial growth factor +405G>C polymorphism in endometriosis. Hum. Reprod. 23: 211-215. http://dx.doi.org/10.1093/humrep/dem341 PMid:17977866   Girling JE and Rogers PA (2005). Recent advances in endometrial angiogenesis research. Angiogenesis 8: 89-99. http://dx.doi.org/10.1007/s10456-005-9006-9 PMid:16211359   Higgins JP and Thompson SG (2002). Quantifying heterogeneity in a meta-analysis. Stat. Med. 21: 1539-1558. http://dx.doi.org/10.1002/sim.1186 PMid:12111919   Hsieh YY, Chang CC, Tsai FJ, Yeh LS, et al. (2004). T allele for VEGF gene-460 polymorphism at the 5'-untranslated region: association with a higher susceptibility to endometriosis. J. Reprod. Med. 49: 468-472. PMid:15283056   Ikuhashi Y, Yoshida S, Kennedy S, Zondervan K, et al. (2007). Vascular endothelial growth factor +936 C/T polymorphism is associated with an increased risk of endometriosis in a Japanese population. Acta Obstet. Gynecol. Scand. 86: 1352-1358. http://dx.doi.org/10.1080/00016340701644991 PMid:17963063   Kang S, Zhao J, Liu Q, Zhou R, et al. (2009). Vascular endothelial growth factor gene polymorphisms are associated with the risk of developing adenomyosis. Environ. Mol. Mutagen. 50: 361-366. http://dx.doi.org/10.1002/em.20455 PMid:19197986   Kim JG, Kim JY, Jee BC, Suh CS, et al. (2008). Association between endometriosis and polymorphisms in endostatin and vascular endothelial growth factor and their serum levels in Korean women. Fertil. Steril. 89: 243-245. http://dx.doi.org/10.1016/j.fertnstert.2007.02.023 PMid:17482599   Kim SH, Choi YM, Choung SH, Jun JK, et al. (2005). Vascular endothelial growth factor gene +405 C/G polymorphism is associated with susceptibility to advanced stage endometriosis. Hum. Reprod. 20: 2904-2908. http://dx.doi.org/10.1093/humrep/dei146 PMid:15979997   Lamp M, Saare M, Laisk T, Karro H, et al. (2010). Genetic variations in vascular endothelial growth factor but not in angiotensin I-converting enzyme genes are associated with endometriosis in Estonian women. Eur. J. Obstet. Gynecol. Reprod. Biol. 153: 85-89. http://dx.doi.org/10.1016/j.ejogrb.2010.07.021 PMid:20685027   Liu Q, Li Y, Zhao J, Sun DL, et al. (2009a). Association of polymorphisms -1154G/A and -2578C/A in the vascular endothelial growth factor gene with decreased risk of endometriosis in Chinese women. Hum. Reprod. 24: 2660-2666. http://dx.doi.org/10.1093/humrep/dep208 PMid:19531502   Liu Q, Li Y, Zhao J, Zhou RM, et al. (2009b). Association of single nucleotide polymorphisms in VEGF gene with the risk of endometriosis and adenomyosis. Zhonghua Yi Xue Yi Chuan Xue Za Zhi 26: 165-169. PMid:19350508   Matalliotakis IM, Katsikis IK and Panidis DK (2005). Adenomyosis: what is the impact on fertility? Curr. Opin. Obstet. Gynecol. 17: 261-264. http://dx.doi.org/10.1097/01.gco.0000169103.85128.c0 PMid:15870560   Missmer SA and Cramer DW (2003). The epidemiology of endometriosis. Obstet. Gynecol. Clin. North Am. 30: 1-19, vii. http://dx.doi.org/10.1016/S0889-8545(02)00050-5   Peters JL, Sutton AJ, Jones DR, Abrams KR, et al. (2006). Comparison of two methods to detect publication bias in meta-analysis. JAMA 295: 676-680. http://dx.doi.org/10.1001/jama.295.6.676 PMid:16467236   Signorile PG and Baldi A (2010). Endometriosis: new concepts in the pathogenesis. Int. J. Biochem. Cell Biol. 42: 778-780. http://dx.doi.org/10.1016/j.biocel.2010.03.008 PMid:20230903   Varma R, Rollason T, Gupta JK and Maher ER (2004). Endometriosis and the neoplastic process. Reproduction 127: 293-304. http://dx.doi.org/10.1530/rep.1.00020 PMid:15016949   Vigano P, Parazzini F, Somigliana E and Vercellini P (2004). Endometriosis: epidemiology and aetiological factors. Best. Pract. Res. Clin. Obstet. Gynaecol. 18: 177-200. http://dx.doi.org/10.1016/j.bpobgyn.2004.01.007 PMid:15157637   von Elm E, Altman DG, Egger M, Pocock SJ, et al. (2007). The Strengthening the Reporting of Observational Studies in Epidemiology (STROBE) statement: guidelines for reporting observational studies. Lancet 370: 1453-1457. http://dx.doi.org/10.1016/S0140-6736(07)61602-X   Watson CJ, Webb NJ, Bottomley MJ and Brenchley PE (2000). Identification of polymorphisms within the vascular endothelial growth factor (VEGF) gene: correlation with variation in VEGF protein production. Cytokine 12: 1232- 1235. http://dx.doi.org/10.1006/cyto.2000.0692 PMid:10930302   Zhang L, Liu JL, Zhang YJ and Wang H (2011). Association between HLA-B*27 polymorphisms and ankylosing spondylitis in Han populations: a meta-analysis. Clin. Exp. Rheumatol 29: 285-292. PMid:21418777   Zhao ZZ, Nyholt DR, Thomas S, Treloar SA, et al. (2008). Polymorphisms in the vascular endothelial growth factor gene and the risk of familial endometriosis. Mol. Hum. Reprod. 14: 531-538. http://dx.doi.org/10.1093/molehr/gan043 PMid:18650217   Zintzaras E and Ioannidis JP (2005). Heterogeneity testing in meta-analysis of genome searches. Genet. Epidemiol. 28: 123-137. http://dx.doi.org/10.1002/gepi.20048 PMid:15593093
2012
B. C. Jiang, Yu, D. B., Wang, L. J., Dong, F. L., Kaleri, H. A., Wang, X. G., Ally, N., Li, J., and Liu, H. L., Doxycycline-regulated growth hormone gene expression system for swine, vol. 11, pp. 2946-2957, 2012.
Barton JS, Cullen S, Hindmarsh PC, Brook CG, et al. (1992). Growth hormone treatment in idiopathic short stature: a preliminary analysis of cardiovascular effects. Acta Pediatr. Suppl. 383: 35-38.   Bockamp E, Sprengel R, Eshkind L, Lehmann T, et al. (2008). Conditional transgenic mouse models: from the basics to genome-wide sets of knockouts and current studies of tissue regeneration. Regen. Med. 3: 217-235. http://dx.doi.org/10.2217/17460751.3.2.217 PMid:18307405   Dick E, Matsa E, Young L, Darling D, et al. (2011). Accelerating the generation of human induced pluripotent stem cells by coupling high titre lentivirus and column-based positive selection of hiPSCs. Nat. Protoc. 6: 701-714. http://dx.doi.org/10.1038/nprot.2011.320 PMid:21637193   Dull T, Zufferey R, Kelly M, Mandel RJ, et al. (1998). A third-generation lentivirus vector with a conditional packaging system. J. Virol. 72: 8463-8471. PMid:9765382 PMCid:110254   Hens JR, Amstutz MD, Schanbacher FL and Mather IH (2000). Introduction of the human growth hormone gene into the guinea pig mammary gland by in vivo transfection promotes sustained expression of human growth hormone in the milk throughout lactation. Biochim. Biophys. Acta 1523: 161-171. http://dx.doi.org/10.1016/S0304-4165(00)00117-3   Johansen J, Rosenblad C, Andsberg K, Moller A, et al. (2002). Evaluation of Tet-on system to avoid transgene down-regulation in ex vivo gene transfer to the CNS. Gene Ther. 9: 1291-1301. http://dx.doi.org/10.1038/sj.gt.3301778 PMid:12224012   Kolb E (1977). Recent findings relating to the importance of growth hormone to both regulation of metabolism and production performance of ruminants (author's transl). Monatsh. Veterinarmed. 32: 230-235. PMid:327288   Krasnov A, Agren JJ, Pitaknen TI and Molsa H (1999). Transfer of growth hormone (GH) transgenes into Arctic charr. (Salvelinus alpinus L.) II. Nutrient partitioning in rapidly growing fish. Genet. Anal. 15: 99-105. http://dx.doi.org/10.1016/S1050-3862(99)00026-1   Lipinski D, Jura J, Kalak R, Plawski A, et al. (2003). Transgenic rabbit producing human growth hormone in milk. J. Appl. Genet. 44: 165-174. PMid:12773794   Madsen K, Friberg U, Roos P, Eden S, et al. (1983). Growth hormone stimulates the proliferation of cultured chondrocytes from rabbit ear and rat rib growth cartilage. Nature 304: 545-547. http://dx.doi.org/10.1038/304545a0 PMid:6877376   Mayo KE, Vale W, Rivier J, Rosenfeld MG, et al. (1983). Expression-cloning and sequence of a cDNA encoding human growth hormone-releasing factor. Nature 306: 86-88. http://dx.doi.org/10.1038/306086a0 PMid:6415488   Naldini L, Blomer U, Gallay P, Ory D, et al. (1996). In vivo gene delivery and stable transduction of nondividing cells by a lentiviral vector. Science 272: 263-267. http://dx.doi.org/10.1126/science.272.5259.263 PMid:8602510   Orian JM, Lee CS, Weiss LM and Brandon MR (1989). The expression of a metallothionein-ovine growth hormone fusion gene in transgenic mice does not impair fertility but results in pathological lesions in the liver. Endocrinology 124: 455-463. http://dx.doi.org/10.1210/endo-124-1-455 PMid:2642419   Palmiter RD, Brinster RL, Hammer RE, Trumbauer ME, et al. (1982). Dramatic growth of mice that develop from eggs microinjected with metallothionein-growth hormone fusion genes. Nature 300: 611-616. http://dx.doi.org/10.1038/300611a0 PMid:6958982   Takiguchi M, James C, Josefsson EC, Carmichael CL, et al. (2010). Transgenic, inducible RNAi in megakaryocytes and platelets in mice. J. Thromb. Haemost. 8: 2751-2756. http://dx.doi.org/10.1111/j.1538-7836.2010.04077.x PMid:21138522 PMCid:3285240   Wiederschain D, Wee S, Chen L, Loo A, et al. (2009). Single-vector inducible lentiviral RNAi system for oncology target validation. Cell Cycle 8: 498-504. http://dx.doi.org/10.4161/cc.8.3.7701 PMid:19177017
F. L. Dong, Kaleri, H. A., Lu, Y. D., Song, C. L., Jiang, B. C., Zhang, B. L., Wang, L. J., Wang, X. G., Ma, X. S., Wu, B. J., Song, H., Li, J., and Liu, H. L., Generation of induced pluripotent mouse stem cells in an indirect co-culture system, vol. 11, pp. 4179-4186, 2012.
Abraham S, Sheridan SD, Laurent LC, Albert K, et al. (2010). Propagation of human embryonic and induced pluripotent stem cells in an indirect co-culture system. Biochem. Biophys. Res. Commun. 393: 211-216. http://dx.doi.org/10.1016/j.bbrc.2010.01.101 PMid:20117095 PMCid:2834855   Chen J, Liu J, Han Q, Qin D, et al. (2010). Towards an optimized culture medium for the generation of mouse induced pluripotent stem cells. J. Biol. Chem. 285: 31066-31072. http://dx.doi.org/10.1074/jbc.M110.139436 PMid:20595395 PMCid:2945597   Chen M, Sun X, Jiang R, Shen W, et al. (2009). Role of MEF feeder cells in direct reprogramming of mousetail-tip fibroblasts. Cell Biol. Int. 33: 1268-1273. http://dx.doi.org/10.1016/j.cellbi.2009.06.004 PMid:19524692   Eiselleova L, Peterkova I, Neradil J, Slaninova I, et al. (2008). Comparative study of mouse and human feeder cells for human embryonic stem cells. Int. J. Dev. Biol. 52: 353-363. http://dx.doi.org/10.1387/ijdb.082590le PMid:18415935   Esteban MA, Xu J, Yang J, Peng M, et al. (2009). Generation of induced pluripotent stem cell lines from Tibetan miniature pig. J. Biol. Chem. 284: 17634-17640. http://dx.doi.org/10.1074/jbc.M109.008938 PMid:19376775 PMCid:2719402   Esteban MA, Wang T, Qin B, Yang J, et al. (2010). Vitamin C enhances the generation of mouse and human induced pluripotent stem cells. Cell Stem. Cell 6: 71-79. http://dx.doi.org/10.1016/j.stem.2009.12.001 PMid:20036631   Hanna J, Wernig M, Markoulaki S, Sun CW, et al. (2007). Treatment of sickle cell anemia mouse model with iPS cells generated from autologous skin. Science 318: 1920-1923. http://dx.doi.org/10.1126/science.1152092 PMid:18063756   Kim S, Ahn SE, Lee JH, Lim DS, et al. (2007). A novel culture technique for human embryonic stem cells using porous membranes. Stem. Cells 25: 2601-2609. http://dx.doi.org/10.1634/stemcells.2006-0814 PMid:17628020   Lim JW and Bodnar A (2002). Proteome analysis of conditioned medium from mouse embryonic fibroblast feeder layers which support the growth of human embryonic stem cells. Proteomics 2: 1187-1203. http://dx.doi.org/10.1002/1615-9861(200209)2:9<1187::AID-PROT1187>3.0.CO;2-T   Maherali N, Ahfeldt T, Rigamonti A, Utikal J, et al. (2008). A high-efficiency system for the generation and study of human induced pluripotent stem cells. Cell Stem. Cell 3: 340-345. http://dx.doi.org/10.1016/j.stem.2008.08.003 PMid:18786420   Okita K, Ichisaka T and Yamanaka S (2007). Generation of germline-competent induced pluripotent stem cells. Nature 448: 313-317. http://dx.doi.org/10.1038/nature05934 PMid:17554338   Soh BS, Song CM, Vallier L, Li P, et al. (2007). Pleiotrophin enhances clonal growth and long-term expansion of human embryonic stem cells. Stem. Cells 25: 3029-3037. http://dx.doi.org/10.1634/stemcells.2007-0372 PMid:17823238   Sun N, Panetta NJ, Gupta DM, Wilson KD, et al. (2009). Feeder-free derivation of induced pluripotent stem cells from adult human adipose stem cells. Proc. Natl. Acad. Sci. U. S. A. 106: 15720-15725. http://dx.doi.org/10.1073/pnas.0908450106 PMid:19805220 PMCid:2739869   Takahashi K and Yamanaka S (2006). Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 126: 663-676. http://dx.doi.org/10.1016/j.cell.2006.07.024 PMid:16904174   Takahashi K, Okita K, Nakagawa M and Yamanaka S (2007). Induction of pluripotent stem cells from fibroblast cultures. Nat. Protoc. 2: 3081-3089. http://dx.doi.org/10.1038/nprot.2007.418 PMid:18079707
2010
L. Yang, Wang, L. J., Shi, G. L., Ni, L., Song, C. X., Zhang, Z. X., and Xu, S. F., Analysis of HLA-A, HLA-B and HLA-DRB1 alleles in Chinese patients with lung cancer, vol. 9, pp. 750-755, 2010.
Ainsworth PJ, Surh LC and Coulter-Mackie MB (1991). Diagnostic single strand conformational polymorphism (SSCP): a simplified non-radioisotopic method as applied to a Tay-Sachs B1 variant. Nucleic Acids Res. 19: 405-406. http://dx.doi.org/10.1093/nar/19.2.405 PMid:2014179 PMCid:333615   Bidwell JL, Bidwell EA, Savage DA, Middleton D, et al. (1988). A DNA-RFLP typing system that positively identifies serologically well-defined and ill-defined HLA-DR and DQ alleles, including DRw10. Transplantation 45: 640-646. http://dx.doi.org/10.1097/00007890-198803000-00027 PMid:2894727   Bjorkman PJ, Saper MA, Samraoui B, Bennett WS, et al. (1987). The foreign antigen binding site and T cell recognition regions of class I histocompatibility antigens. Nature 329: 512-518. http://dx.doi.org/10.1038/329512a0 PMid:2443855   Cantú de León D, Perez-Montiel D, Villavicencio V, Garcia CA, et al. (2009). High resolution human leukocyte antigen (HLA) class I and class II allele typing in Mexican mestizo women with sporadic breast cancer: case-control study. BMC Cancer 9: 48. http://dx.doi.org/10.1186/1471-2407-9-48 PMid:19196481 PMCid:2653544   Chen WQ, Zhang SW and Kong LS (2008). Cancer mortality report of 34 registries in China, 2004. Bull. Chin. Cancer 17: 913-916.   Dalva K and Beksac M (2007). HLA typing with sequence-specific oligonucleotide primed PCR (PCR-SSO) and use of the Luminex technology. Methods Mol. Med. 134: 61-69. http://dx.doi.org/10.1007/978-1-59745-223-6_5 PMid:17666743   Davis RW, Thomas M, Cameron J, St John TP, et al. (1980). Rapid DNA isolations for enzymatic and hybridization analysis. Methods Enzymol. 65: 404-411. http://dx.doi.org/10.1016/S0076-6879(80)65051-4   Dorak MT, Oguz FS, Yalman N, Diler AS, et al. (2002). A male-specific increase in the HLA-DRB4 (DR53) frequency in high-risk and relapsed childhood ALL. Leuk. Res. 26: 651-656. http://dx.doi.org/10.1016/S0145-2126(01)00189-8   Ferlay J, Autier P, Boniol M, Heanue M, et al. (2007). Estimates of the cancer incidence and mortality in Europe in 2006. Ann. Oncol. 18: 581-592. http://dx.doi.org/10.1093/annonc/mdl498 PMid:17287242   Gresner P, Gromadzinska J and Wasowicz W (2007). Polymorphism of selected enzymes involved in detoxification and biotransformation in relation to lung cancer. Lung Cancer 57: 1-25. http://dx.doi.org/10.1016/j.lungcan.2007.02.002 PMid:17337085   Haghpanah V, Khalooghi K, Adabi K, Amiri P, et al. (2009). Associations between HLA-C alleles and papillary thyroid carcinoma. Cancer Biomark. 5: 19-22. PMid:19242058   Hoppe B and Salama A (2007). Sequencing-based typing of HLA. Methods Mol. Med. 134: 71-80. http://dx.doi.org/10.1007/978-1-59745-223-6_6 PMid:17666744   Jemal A, Siegel R, Ward E, Hao Y, et al. (2009). Cancer statistics, 2009. CA Cancer J. Clin. 59: 225-249. http://dx.doi.org/10.3322/caac.20006 PMid:19474385   Kiyohara C, Takayama K and Nakanishi Y (2006). Association of genetic polymorphisms in the base excision repair pathway with lung cancer risk: a meta-analysis. Lung Cancer 54: 267-283. http://dx.doi.org/10.1016/j.lungcan.2006.08.009 PMid:16982113   Kübler K, Arndt PF, Wardelmann E, Krebs D, et al. (2006). HLA-class II haplotype associations with ovarian cancer. Int. J. Cancer 119: 2980-2985. http://dx.doi.org/10.1002/ijc.22266 PMid:17016821   Madeleine MM, Johnson LG, Smith AG, Hansen JA, et al. (2008). Comprehensive analysis of HLA-A, HLA-B, HLA-C, HLA-DRB1, and HLA-DQB1 loci and squamous cell cervical cancer risk. Cancer Res. 68: 3532-3539. http://dx.doi.org/10.1158/0008-5472.CAN-07-6471 PMid:18451182 PMCid:2662593   Marsh SG (2003). HLA nomenclature and the IMGT/HLA sequence database. Novartis Found. Symp. 254: 165-173. http://dx.doi.org/10.1002/0470090766.ch11 PMid:14712937   Miller SA, Dykes DD and Polesky HF (1988). A simple salting out procedure for extracting DNA from human nucleated cells. Nucleic Acids Res. 16: 1215. http://dx.doi.org/10.1093/nar/16.3.1215 PMid:3344216 PMCid:334765   Mundhada S, Luthra R and Cano P (2004). Association of HLA Class I and Class II genes with bcr-abl transcripts in leukemia patients with t(9;22) (q34;q11). BMC Cancer 4: 25. http://dx.doi.org/10.1186/1471-2407-4-25 PMid:15202948 PMCid:441382   Olerup O and Zetterquist H (1992). HLA-DR typing by PCR amplification with sequence-specific primers (PCR-SSP) in 2 hours: an alternative to serological DR typing in clinical practice including donor-recipient matching in cadaveric transplantation. Tissue Antigens 39: 225-235. http://dx.doi.org/10.1111/j.1399-0039.1992.tb01940.x PMid:1357775   Parkin DM, Bray F, Ferlay J and Pisani P (2005). Global cancer statistics, 2002. CA Cancer J. Clin. 55: 74-108. http://dx.doi.org/10.3322/canjclin.55.2.74 PMid:15761078   Quintero E, Pizarro MA, Rodrigo L, Pique JM, et al. (2005). Association of Helicobacter pylori-related distal gastric cancer with the HLA class II gene DQB10602 and cagA strains in a southern European population. Helicobacter 10: 12-21. http://dx.doi.org/10.1111/j.1523-5378.2005.00287.x PMid:15691311   Schiff MA, Apple RJ, Lin P, Nelson JL, et al. (2005). HLA alleles and risk of cervical intraepithelial neoplasia among southwestern American Indian women. Hum. Immunol. 66: 1050-1056. http://dx.doi.org/10.1016/j.humimm.2005.09.002 PMid:16386646   Terasaki PI and McClelland JD (1964). Microdroplet assay of human serum cytotoxins. Nature 204: 998-1000. http://dx.doi.org/10.1038/204998b0 PMid:14248725   Tokumoto H (1998). Analysis of HLA-DRB1-related alleles in Japanese patients with lung cancer - relationship to genetic susceptibility and resistance to lung cancer. J. Cancer Res. Clin. Oncol. 124: 511-516. http://dx.doi.org/10.1007/s004320050207 PMid:9808426   Wu MS, Hsieh RP, Huang SP, Chang YT, et al. (2002). Association of HLA-DQB1*0301 and HLA-DQB1*0602 with different subtypes of gastric cancer in Taiwan. Jpn. J. Cancer Res. 93: 404-410. http://dx.doi.org/10.1111/j.1349-7006.2002.tb01271.x PMid:11985790   Wu Y, Liu B, Lin W, Xu Y, et al. (2007). Human leukocyte antigen class II alleles and risk of cervical cancer in China. Hum. Immunol. 68: 192-200. http://dx.doi.org/10.1016/j.humimm.2006.07.005 PMid:17349874   Yari F, Sobhani M, Sabaghi F, Zaman-Vaziri M, et al. (2008). Frequencies of HLA-DRB1 in Iranian normal population and in patients with acute lymphoblastic leukemia. Arch. Med. Res. 39: 205-208. http://dx.doi.org/10.1016/j.arcmed.2007.09.009 PMid:18164964   Yoshimura C, Nomura S, Yamaoka M, Ohtani T, et al. (2000). Analysis of serum ErbB-2 protein and HLA-DRB1 in Japanese patients with lung cancer. Cancer Lett. 152: 87-95. http://dx.doi.org/10.1016/S0304-3835(99)00437-1   Young NT and Darke C (1993). Allelic typing of the HLA-DR4 group by polymerase chain reaction-single-strand conformation polymorphism analysis. Hum. Immunol. 37: 69-74. http://dx.doi.org/10.1016/0198-8859(93)90144-P   Zhang SW, Chen WQ and Lei ZI (2008). A report of cancer incidence from 37 cancer registries in China, 2004. Bull. Chin. Cancer 17: 909-912.