Publications
Found 12 results
Filters: Author is G.X. Wang [Clear All Filters]
“Effect of domestication on microorganism diversity and anaerobic digestion of food waste”, vol. 15, p. -, 2016.
, “Effect of domestication on microorganism diversity and anaerobic digestion of food waste”, vol. 15, p. -, 2016.
, “Evaluation of novel assays for the detection of human papilloma virus in self-collected samples for cervical cancer screening”, vol. 15, p. -, 2016.
, “Evaluation of novel assays for the detection of human papilloma virus in self-collected samples for cervical cancer screening”, vol. 15, p. -, 2016.
, “Systematic tracking of altered modules identifies disrupted pathways in teratozoospermia”, vol. 15, p. -, 2016.
, , , “Diversity of endophytic fungi of Myricaria laxiflora grown under pre- and post-flooding conditions”, vol. 14, pp. 10849-10862, 2015.
, “Construction of an adenoviral expression vector carrying FLAG and hrGFP-1 genes and its expression in bone marrow mesenchymal stem cells”, vol. 13, pp. 1070-1078, 2014.
, “In vivo osteogenic activity of bone marrow stromal stem cells transfected with Ad-GFP-hBMP-2”, vol. 13, pp. 4456-4465, 2014.
, “Mutation screening of TSC1 and TSC2 genes in Chinese Han children with tuberous sclerosis complex”, vol. 13. pp. 2102-2106, 2014.
, “A novel RUNX2 mutation (T420I) in Chinese patients with cleidocranial dysplasia”, vol. 9, pp. 41-47, 2010.
, Brooks JK and Nikitakis NG (2008). Multiple unerupted teeth. Cleidocranial dysplasia. Gen. Dent. 56: 393, 395-396.
PMid:19284203
Cunningham ML, Seto ML, Hing AV, Bull MJ, et al. (2006). Cleidocranial dysplasia with severe parietal bone dysplasia: C-terminal RUNX2 mutations. Birth Defects Res. A Clin. Mol. Teratol. 76: 78-85.
http://dx.doi.org/10.1002/bdra.20231
PMid:16463420
Lee B, Thirunavukkarasu K, Zhou L, Pastore L, et al. (1997). Missense mutations abolishing DNA binding of the osteoblast-specific transcription factor OSF2/CBFA1 in cleidocranial dysplasia. Nat. Genet. 16: 307-310.
http://dx.doi.org/10.1038/ng0797-307
PMid:9207800
Lee MT, Tsai AC, Chou CH, Sun FM, et al. (2008). Intragenic microdeletion of RUNX2 is a novel mechanism for cleidocranial dysplasia. Genomic Med. 2: 45-49.
http://dx.doi.org/10.1007/s11568-008-9024-y
PMid:18696259 PMCid:2518658
Lo Muzio L, Tete S, Mastrangelo F, Cazzolla AP, et al. (2007). A novel mutation of gene CBFA1/RUNX2 in cleidocranial dysplasia. Ann. Clin. Lab. Sci. 37: 115-120.
PMid:17522365
Mundlos S, Otto F, Mundlos C, Mulliken JB, et al. (1997). Mutations involving the transcription factor CBFA1 cause cleidocranial dysplasia. Cell 89: 773-779.
http://dx.doi.org/10.1016/S0092-8674(00)80260-3
Otto F, Thornell AP, Crompton T, Denzel A, et al. (1997). Cbfa1, a candidate gene for cleidocranial dysplasia syndrome, is essential for osteoblast differentiation and bone development. Cell 89: 765-771.
http://dx.doi.org/10.1016/S0092-8674(00)80259-7
Quack I, Vonderstrass B, Stock M, Aylsworth AS, et al. (1999). Mutation analysis of core binding factor A1 in patients with cleidocranial dysplasia. Am. J. Hum. Genet. 65: 1268-1278.
http://dx.doi.org/10.1086/302622
PMid:10521292 PMCid:1288279
Shen Z, Zou CC, Yang RW and Zhao ZY (2009). Cleidocranial dysplasia: report of 3 cases and literature review. Clin. Pediatr. 48: 194-198.
http://dx.doi.org/10.1177/0009922808323107
PMid:18832541
Yoshida T, Kanegane H, Osato M, Yanagida M, et al. (2002). Functional analysis of RUNX2 mutations in Japanese patients with cleidocranial dysplasia demonstrates novel genotype-phenotype correlations. Am. J. Hum. Genet. 71: 724-738.
http://dx.doi.org/10.1086/342717
PMid:12196916 PMCid:378531
Zhou G, Chen Y, Zhou L, Thirunavukkarasu K, et al. (1999). CBFA1 mutation analysis and functional correlation with phenotypic variability in cleidocranial dysplasia. Hum. Mol. Genet. 8: 2311-2316.
http://dx.doi.org/10.1093/hmg/8.12.2311
PMid:10545612