Publications
Found 13 results
Filters: Author is Q. Zhu [Clear All Filters]
, ,
“Confined housing system increased abdominal and subcutaneous fat deposition and gene expressions of carbohydrate response element-binding protein and sterol regulatory element-binding protein 1 in chicken”, vol. 14, pp. 1220-1228, 2015.
, “Effects of sex and age on chicken TBC1D1 gene mRNA expression”, vol. 14, pp. 7704-7714, 2015.
, “Expression patterns of melatonin receptors in chicken ovarian follicles affected by monochromatic light”, vol. 14, pp. 10072-10080, 2015.
, “Identification and association of single-nucleotide polymorphisms in gonadotropin-inhibitory hormone (GnIH) gene with egg production traits in Erlang mountainous chickens”, vol. 14, pp. 294-303, 2015.
, “Molecular cloning and expression analysis of TRAF3 in chicken”, vol. 14, pp. 4408-4419, 2015.
, “Verification of specific selection SNPs between broiler and layer chicken in Chinese indigenous chicken breeds”, vol. 14, pp. 8388-8396, 2015.
, “Wnt/β-catenin aids in regulating the proliferation of hepG2 cells mediated by thy-1”, vol. 13, pp. 5115-5127, 2014.
, “Genetic variations in MOV10 and CACNB2 are associated with hypertension in a Chinese Han population”, vol. 12, pp. 6220-6227, 2013.
, “Genetic effect of the prolactin receptor gene on egg production traits in chickens”, vol. 11, pp. 4307-4315, 2012.
, Bole-Feysot C, Goffin V, Edery M, Binart N, et al. (1998). Prolactin (PRL) and its receptor: actions, signal transduction pathways and phenotypes observed in PRL receptor knockout mice. Endocr. Rev. 19: 225-268.
http://dx.doi.org/10.1210/er.19.3.225
PMid:9626554
Cogburn LA, Wang X, Carre W, Rejto L, et al. (2003). Systems-wide chicken DNA microarrays, gene expression profiling, and discovery of functional genes. Poult. Sci. 82: 939-951.
PMid:12817449
Dunn IC, McEwan G, Okhubo T, Sharp PJ, et al. (1998). Genetic mapping of the chicken prolactin receptor gene: a candidate gene for the control of broodiness. Br. Poult. Sci. (39 Suppl): S23-S24.
http://dx.doi.org/10.1080/00071669888160
PMid:10188027
Elkins PA, Christinger HW, Sandowski Y, Sakal E, et al. (2000). Ternary complex between placental lactogen and the extracellular domain of the prolactin receptor. Nat. Struct. Biol. 7: 808-815.
http://dx.doi.org/10.1038/79047
PMid:10966654
Emsley A (1997). Integration of classical and molecular approaches of genetic selection: egg production. Poult. Sci. 76: 1127-1130.
PMid:9251140
Fleenor D, Arumugam R and Freemark M (2006). Growth hormone and prolactin receptors in adipogenesis: STAT-5 activation, suppressors of cytokine signaling, and regulation of insulin-like growth factor I. Horm. Res. 66: 101-110.
http://dx.doi.org/10.1159/000093667
PMid:16735796
Huang HY, Li SF, Zhao ZH, Liang Z, et al. (2011). Association of polymorphisms for nuclear receptor coactivator 1 gene with egg production traits in the maternal line of Shaobo hens. Br. Poult. Sci. 52: 328-332.
http://dx.doi.org/10.1080/00071668.2011.577057
PMid:21732878
Huang Q, Fu YX and Boerwinkle E (2003). Comparison of strategies for selecting single nucleotide polymorphisms for case/control association studies. Hum. Genet. 113: 253-257.
http://dx.doi.org/10.1007/s00439-003-0965-x
PMid:12811538
Kanehisa M, Goto S, Kawashima S and Nakaya A (2002). The KEGG databases at GenomeNet. Nucleic Acids Res. 30: 42-46.
http://dx.doi.org/10.1093/nar/30.1.42
PMid:11752249 PMCid:99091
Kelly PA, Binart N, Lucas B, Bouchard B, et al. (2001). Implications of multiple phenotypes observed in prolactin receptor knockout mice. Front. Neuroendocrinol. 22: 140-145.
http://dx.doi.org/10.1006/frne.2001.0212
PMid:11259135
Kim MH, Seo DS and Ko Y (2004). Relationship between egg productivity and insulin-like growth factor-I genotypes in Korean native Ogol chickens. Poult. Sci. 83: 1203-1208.
PMid:15285513
Kmiec M and Terman A (2006). Associations between the prolactin receptor gene polymorphism and reproductive traits of boars. J. Appl. Genet. 47: 139-141.
http://dx.doi.org/10.1007/BF03194613
PMid:16682755
Kuhn M, von Mering C, Campillos M, Jensen LJ, et al. (2008). STITCH: interaction networks of chemicals and proteins. Nucleic Acids Res. 36: D684-D688.
http://dx.doi.org/10.1093/nar/gkm795
PMid:18084021 PMCid:2238848
Lewis PD and Gous RM (2006). Effect of final photoperiod and twenty-week body weight on sexual maturity and early egg production in broiler breeders. Poult. Sci. 85: 377-383.
PMid:16553263
Linville RC, Pomp D, Johnson RK and Rothschild MF (2001). Candidate gene analysis for loci affecting litter size and ovulation rate in swine. J. Anim. Sci. 79: 60-67.
PMid:11204716
Lu A, Hu X, Chen H, Dong Y, et al. (2011). Novel SNPs of the bovine PRLR gene associated with milk production traits. Biochem. Genet. 49: 177-189.
http://dx.doi.org/10.1007/s10528-010-9397-1
PMid:21165768
Luo PT, Yang RQ and Yang N (2007). Estimation of genetic parameters for cumulative egg numbers in a broiler dam line by using a random regression model. Poult. Sci. 86: 30-36.
PMid:17179412
Nicoll CS, Mayer GL and Russell SM (1986). Structural features of prolactins and growth hormones that can be related to their biological properties. Endocr. Rev. 7: 169-203.
http://dx.doi.org/10.1210/edrv-7-2-169
PMid:3013605
Orita M, Suzuki Y, Sekiya T and Hayashi K (1989). Rapid and sensitive detection of point mutations and DNA polymorphisms using the polymerase chain reaction. Genomics 5: 874-879.
http://dx.doi.org/10.1016/0888-7543(89)90129-8
Ou JT, Tang SQ, Sun DX and Zhang Y (2009). Polymorphisms of three neuroendocrine-correlated genes associated with growth and reproductive traits in the chicken. Poult. Sci. 88: 722-727.
http://dx.doi.org/10.3382/ps.2008-00497
PMid:19276414
Rothschild MF and Soller M (1997). Candidate gene analysis to detect genes controlling traits of economic importance in domestic livestock. Probe 8: 13-20.
Sambrook J, Fritsch E and Maniatis T (1989). Molecular Cloning: A Laboratory Manual. Cold Spring Harbor Laboratory Press, New York, 931-957.
Serrano AB, Haro JGH, Hori-Oshima S, Espinosa AG, et al. (2009). Prolactin receptor (Prlr) gen polymorphism and associations with reproductive traits in pigs. J. Anim. Vet. Adv. 8: 469-475.
Sinha YN (1995). Structural variants of prolactin: occurrence and physiological significance. Endocr. Rev. 16: 354-369.
PMid:7671851
Stephens JC, Schneider JA, Tanguay DA, Choi J, et al. (2001). Haplotype variation and linkage disequilibrium in 313 human genes. Science 293: 489-493.
http://dx.doi.org/10.1126/science.1059431
PMid:11452081
Thompson DL Jr, Hoffman R and DePew CL (1997). Prolactin administration to seasonally anestrous mares: reproductive, metabolic, and hair-shedding responses. J. Anim. Sci. 75: 1092-1099.
PMid:9110225
Xiao L-H, Chen S-Y, Zhao X-L, Zhu Q, et al. (2011). Association of cellular retinol-binding protein 2 (Crbp2) gene polymorphism with egg production in erlang mountainous chicken. J. Poult. Sci. 48: 162-167.
http://dx.doi.org/10.2141/jpsa.010099
Xu HP, Shen X, Zhou M, Fang MX, et al. (2010). The genetic effects of the dopamine D1 receptor gene on chicken egg production and broodiness traits. BMC Genet. 11: 17.
http://dx.doi.org/10.1186/1471-2156-11-17
PMid:20199684 PMCid:2848132
Xu HP, Zeng H, Zhang DX, Jia XL, et al. (2011). Polymorphisms associated with egg number at 300 days of age in chickens. Genet. Mol. Res. 10: 2279-2289.
http://dx.doi.org/10.4238/2011.October.3.5
PMid:22002122
Zhang W, Collins A and Morton NE (2004). Does haplotype diversity predict power for association mapping of disease susceptibility? Hum. Genet. 115: 157-164.
http://dx.doi.org/10.1007/s00439-004-1122-x
PMid:15221450
Zhu M and Zhao S (2007). Candidate gene identification approach: progress and challenges. Int. J. Biol. Sci. 3: 420-427.
http://dx.doi.org/10.7150/ijbs.3.420
PMid:17998950 PMCid:2043166
“mRNA expression profiles of calmodulin and liver receptor homolog-1 genes in chickens”, vol. 11, pp. 3482-3489, 2012.
,
Boerboom D, Pilon N, Behdjani R, Silversides DW, et al. (2000). Expression and regulation of transcripts encoding two members of the NR5A nuclear receptor subfamily of orphan nuclear receptors, steroidogenic factor-1 and NR5A2, in equine ovarian cells during the ovulatory process. Endocrinology 141: 4647-4656.
http://dx.doi.org/10.1210/en.141.12.4647
PMid:11108279
Brännström M, Lind AK and Dahm-Kähler P (2010). Ovulation: A molecular view. Reprod. Endocrinol. Infertil. 119-132.
Burger LL, Haisenleder DJ, Aylor KW and Marshall JC (2008). Regulation of intracellular signaling cascades by GNRH pulse frequency in the rat pituitary: roles for CaMK II, ERK, and JNK activation. Biol. Reprod. 79: 947-953.
http://dx.doi.org/10.1095/biolreprod.108.070987
PMid:18716286 PMCid:2574636
Cheung VG and Spielman RS (2002). The genetics of variation in gene expression. Nat. Genet. 32: 522-525.
http://dx.doi.org/10.1038/ng1036
PMid:12454648
Contijoch AM, Malamed S, McDonald JK and Advis JP (1993). Neuropeptide Y regulation of LHRH release in the median eminence: immunocytochemical and physiological evidence in hens. Neuroendocrinology 57: 135-145.
http://dx.doi.org/10.1159/000126353
PMid:8479609
Crawford JL, Heath DA, Haydon LJ, Thomson BP, et al. (2009). Gene expression and secretion of LH and FSH in relation to gene expression of GnRH receptors in the brushtail possum (Trichosurus vulpecula) demonstrates highly conserved mechanisms. Reproduction 137: 129-140.
http://dx.doi.org/10.1530/REP-08-0347
PMid:18818271
Dunn IC, Lewis PD, Wilson PW and Sharp PJ (2003). Acceleration of maturation of FSH and LH responses to photostimulation in prepubertal domestic hens by oestrogen. Reproduction 126: 217-225.
http://dx.doi.org/10.1530/rep.0.1260217
PMid:12887278
Fayard E, Auwerx J and Schoonjans K (2004). LRH-1: an orphan nuclear receptor involved in development, metabolism and steroidogenesis. Trends Cell Biol. 14: 250-260.
http://dx.doi.org/10.1016/j.tcb.2004.03.008
PMid:15130581
Fisher CR, Graves KH, Parlow AF and Simpson ER (1998). Characterization of mice deficient in aromatase (ArKO) because of targeted disruption of the cyp19 gene. Proc. Natl. Acad. Sci. U. S. A. 95: 6965-6970.
http://dx.doi.org/10.1073/pnas.95.12.6965
PMid:9618522 PMCid:22703
Gershon E, Hourvitz A, Reikhav S, Maman E, et al. (2007). Low expression of COX-2, reduced cumulus expansion, and impaired ovulation in SULT1E1-deficient mice. FASEB J. 21: 1893-1901.
http://dx.doi.org/10.1096/fj.06-7688com
PMid:17341680
Haisenleder DJ, Ferris HA and Shupnik MA (2003a). The calcium component of gonadotropin-releasing hormone-stimulated luteinizing hormone subunit gene transcription is mediated by calcium/calmodulin-dependent protein kinase type II. Endocrinology 144: 2409-2416.
http://dx.doi.org/10.1210/en.2002-0013
PMid:12746302
Haisenleder DJ, Burger LL, Aylor KW, Dalkin AC, et al. (2003b). Gonadotropin-releasing hormone stimulation of gonadotropin subunit transcription: evidence for the involvement of calcium/calmodulin-dependent kinase II (Ca/ CAMK II) activation in rat pituitaries. Endocrinology 144: 2768-2774.
http://dx.doi.org/10.1210/en.2002-0168
PMid:12810529
Kahl CR and Means AR (2003). Regulation of cell cycle progression by calcium/calmodulin-dependent pathways. Endocr. Rev. 24: 719-736.
http://dx.doi.org/10.1210/er.2003-0008
PMid:14671000
Kudo T and Sutou S (2006). Chicken LRH-1 gene is transcribed from multiple promoters in steroidogenic organs. Gene 367: 38-45.
http://dx.doi.org/10.1016/j.gene.2005.08.026
PMid:16403608
Linville RC, Pomp D, Johnson RK and Rothschild MF (2001). Candidate gene analysis for loci affecting litter size and ovulation rate in swine. J. Anim. Sci. 79: 60-67.
PMid:11204716
Livak KJ and Schmittgen TD (2001). Analysis of relative gene expression data using real-time quantitative PCR and the 2-ΔΔCt Method. Methods 25: 402-408.
http://dx.doi.org/10.1006/meth.2001.1262
PMid:11846609
Mueller M, Cima I, Noti M, Fuhrer A, et al. (2006). The nuclear receptor LRH-1 critically regulates extra-adrenal glucocorticoid synthesis in the intestine. J. Exp. Med. 203: 2057-2062.
http://dx.doi.org/10.1084/jem.20060357
PMid:16923850 PMCid:2118403
Patsoula E, Loutradis D, Drakakis P, Kallianidis K, et al. (2001). Expression of mRNA for the LH and FSH receptors in mouse oocytes and preimplantation embryos. Reproduction 121: 455-461.
http://dx.doi.org/10.1530/rep.0.1210455
PMid:11226072
Roberson MS, Bliss SP, Xie J, Navratil AM, et al. (2005). Gonadotropin-releasing hormone induction of extracellular-signal regulated kinase is blocked by inhibition of calmodulin. Mol. Endocrinol. 19: 2412-2423.
http://dx.doi.org/10.1210/me.2005-0094
PMid:15890671
Semiz O and Evirgen O (2009). The effect of growth hormone on ovarian follicular response and oocyte nuclear maturation in young and aged mice. Acta Histochem. 111: 104-111.
http://dx.doi.org/10.1016/j.acthis.2008.04.007
PMid:18674800
Sharp PJ, Dunn IC and Cerolini S (1992). Neuroendocrine control of reduced persistence of egg-laying in domestic hens: evidence for the development of photorefractoriness. J. Reprod. Fertil. 94: 221-235.
http://dx.doi.org/10.1530/jrf.0.0940221
PMid:1552483
Sun YM, Dunn IC, Baines E, Talbot RT, et al. (2001). Distribution and regulation by oestrogen of fully processed and variant transcripts of gonadotropin releasing hormone I and gonadotropin releasing hormone receptor mRNAs in the male chicken. J. Neuroendocrinol. 13: 37-49.
http://dx.doi.org/10.1046/j.1365-2826.2001.00587.x
PMid:11123514
Weng G, Bhalla US and Iyengar R (1999). Complexity in biological signaling systems. Science 284: 92-96.
http://dx.doi.org/10.1126/science.284.5411.92
PMid:10102825
Zhu M and Zhao S (2007). Candidate gene identification approach: progress and challenges. Int. J. Biol. Sci. 3: 420-427.
http://dx.doi.org/10.7150/ijbs.3.420
PMid:17998950 PMCid:2043166
“Plasma resistin, associated with single nucleotide polymorphism -420, is correlated with C-reactive protein in Chinese Han patients with spontaneous basal ganglia hemorrhage”, vol. 11, pp. 1841-1850, 2012.
,
Al-Daghri N, Chetty R, McTernan PG, Al-Rubean K, et al. (2005). Serum resistin is associated with C-reactive protein & LDL cholesterol in type 2 diabetes and coronary artery disease in a Saudi population. Cardiovasc. Diabetol. 4: 10.
http://dx.doi.org/10.1186/1475-2840-4-10
PMid:15998471 PMCid:1183229
Bokarewa M, Nagaev I, Dahlberg L, Smith U, et al. (2005). Resistin, an adipokine with potent proinflammatory properties. J. Immunol. 174: 5789-5795.
PMid:15843582
Brown R, Thompson HJ, Imran SA, Ur E, et al. (2008). Traumatic brain injury induces adipokine gene expression in rat brain. Neurosci. Lett. 432: 73-78.
http://dx.doi.org/10.1016/j.neulet.2007.12.008
PMid:18178314 PMCid:2367125
Cho YM, Youn BS, Chung SS, Kim KW, et al. (2004). Common genetic polymorphisms in the promoter of resistin gene are major determinants of plasma resistin concentrations in humans. Diabetologia 47: 559-565.
PMid:14740159
Dong XQ, Hu YY, Yu WH and Zhang ZY (2010a). High concentrations of resistin in the peripheral blood of patients with acute basal ganglia hemorrhage are associated with poor outcome. J. Crit. Care 25: 243-247.
http://dx.doi.org/10.1016/j.jcrc.2009.09.008
PMid:19903588
Dong XQ, Yang SB, Zhu FL, Lv QW, et al. (2010b). Resistin is associated with mortality in patients with traumatic brain injury. Crit. Care 14: R190.
http://dx.doi.org/10.1186/cc9307
PMid:21029428 PMCid:3219297
Efstathiou SP, Tsiakou AG, Tsioulos DI, Panagiotou TN, et al. (2007). Prognostic significance of plasma resistin levels in patients with atherothrombotic ischemic stroke. Clin. Chim. Acta 378: 78-85.
http://dx.doi.org/10.1016/j.cca.2006.10.023
PMid:17173885
Fasshauer M, Klein J, Neumann S, Eszlinger M, et al. (2001). Tumor necrosis factor alpha is a negative regulator of resistin gene expression and secretion in 3T3-L1 adipocytes. Biochem. Biophys. Res. Commun. 288: 1027-1031.
http://dx.doi.org/10.1006/bbrc.2001.5874
PMid:11689013
Hivert MF, Manning AK, McAteer JB, Dupuis J, et al. (2009). Association of variants in RETN with plasma resistin levels and diabetes-related traits in the Framingham Offspring Study. Diabetes 58: 750-756.
http://dx.doi.org/10.2337/db08-1339
PMid:19074981 PMCid:2646076
Kaser S, Kaser A, Sandhofer A, Ebenbichler CF, et al. (2003). Resistin messenger-RNA expression is increased by proinflammatory cytokines in vitro. Biochem. Biophys. Res. Commun. 309: 286-290.
http://dx.doi.org/10.1016/j.bbrc.2003.07.003
PMid:12951047
Kawanami D, Maemura K, Takeda N, Harada T, et al. (2004). Direct reciprocal effects of resistin and adiponectin on vascular endothelial cells: a new insight into adipocytokine-endothelial cell interactions. Biochem. Biophys. Res. Commun. 314: 415-419.
http://dx.doi.org/10.1016/j.bbrc.2003.12.104
PMid:14733921
Kothari RU, Brott T, Broderick JP, Barsan WG, et al. (1996). The ABCs of measuring intracerebral hemorrhage volumes. Stroke 27: 1304-1305.
http://dx.doi.org/10.1161/01.STR.27.8.1304
PMid:8711791
Lin XJ, Zhang YD, Guan QS, Di Q, et al. (2007). Plasma resistin levels and single-nucleotide polymorphisms in resistin gene 5' flanking region in patients with stroke. Chin. Med. Sci. J. 22: 27-32.
PMid:17441314
Lu SC, Shieh WY, Chen CY, Hsu SC, et al. (2002). Lipopolysaccharide increases resistin gene expression in vivo and in vitro. FEBS Lett. 530: 158-162.
http://dx.doi.org/10.1016/S0014-5793(02)03450-6
Osawa H, Yamada K, Onuma H, Murakami A, et al. (2004). The G/G genotype of a resistin single-nucleotide polymorphism at -420 increases type 2 diabetes mellitus susceptibility by inducing promoter activity through specific binding of Sp1/3. Am. J. Hum. Genet. 75: 678-686.
http://dx.doi.org/10.1086/424761
PMid:15338456 PMCid:1182055
Osawa H, Tabara Y, Kawamoto R, Ohashi J, et al. (2007). Plasma resistin, associated with single nucleotide polymorphism -420, is correlated with insulin resistance, lower HDL cholesterol, and high-sensitivity C-reactive protein in the Japanese general population. Diabetes Care 30: 1501-1506.
http://dx.doi.org/10.2337/dc06-1936
PMid:17384338
Pang SS and Le YY (2006). Role of resistin in inflammation and inflammation-related diseases. Cell. Mol. Immunol. 3: 29-34.
PMid:16549046
Piestrzeniewicz K, Luczak K and Goch JH (2009). Factors associated with C-reactive protein at the early stage of acute myocardial infarction in men. Cardiol. J. 16: 36-42.
PMid:19130414
Reilly MP, Lehrke M, Wolfe ML, Rohatgi A, et al. (2005). Resistin is an inflammatory marker of atherosclerosis in humans. Circulation 111: 932-939.
http://dx.doi.org/10.1161/01.CIR.0000155620.10387.43
PMid:15710760
Shetty GK, Economides PA, Horton ES, Mantzoros CS, et al. (2004). Circulating adiponectin and resistin levels in relation to metabolic factors, inflammatory markers, and vascular reactivity in diabetic patients and subjects at risk for diabetes. Diabetes Care 27: 2450-2457.
http://dx.doi.org/10.2337/diacare.27.10.2450
PMid:15451915
Silswal N, Singh AK, Aruna B, Mukhopadhyay S, et al. (2005). Human resistin stimulates the pro-inflammatory cytokines TNF-alpha and IL-12 in macrophages by NF-kappaB-dependent pathway. Biochem. Biophys. Res. Commun. 334: 1092-1101.
http://dx.doi.org/10.1016/j.bbrc.2005.06.202
PMid:16039994
Steppan CM, Bailey ST, Bhat S, Brown EJ, et al. (2001a). The hormone resistin links obesity to diabetes. Nature 409: 307-312.
http://dx.doi.org/10.1038/35053000
PMid:11201732
Steppan CM, Brown EJ, Wright CM, Bhat S, et al. (2001b). A family of tissue-specific resistin-like molecules. Proc. Natl. Acad. Sci. U. S. A. 98: 502-506.
http://dx.doi.org/10.1073/pnas.98.2.502
PMid:11209052 PMCid:14616
Tsukahara T, Nakashima E, Watarai A, Hamada Y, et al. (2009). Polymorphism in resistin promoter region at -420 determines the serum resistin levels and may be a risk marker of stroke in Japanese type 2 diabetic patients. Diabetes Res. Clin. Pract. 84: 179-186.
http://dx.doi.org/10.1016/j.diabres.2008.10.021
PMid:19269054
Ukkola O, Kunnari A and Kesaniemi YA (2008). Genetic variants at the resistin locus are associated with the plasma resistin concentration and cardiovascular risk factors. Regul. Pept. 149: 56-59.
http://dx.doi.org/10.1016/j.regpep.2007.08.025
PMid:18440081
Wiesner G, Brown RE, Robertson GS, Imran SA, et al. (2006). Increased expression of the adipokine genes resistin and fasting-induced adipose factor in hypoxic/ischaemic mouse brain. Neuroreport 17: 1195-1198.
http://dx.doi.org/10.1097/01.wnr.0000224776.12647.ba
PMid:16837853
Wilkinson M, Brown R, Imran SA and Ur E (2007). Adipokine gene expression in brain and pituitary gland. Neuroendocrinology 86: 191-209.
http://dx.doi.org/10.1159/000108635
PMid:17878708
Yoshino T, Kusunoki N, Tanaka N, Kaneko K, et al. (2011). Elevated serum levels of resistin, leptin, and adiponectin are associated with C-reactive protein and also other clinical conditions in rheumatoid arthritis. Intern. Med. 50: 269-275.
http://dx.doi.org/10.2169/internalmedicine.50.4306
PMid:21325757