Publications
Found 11 results
Filters: Author is R. Matuo [Clear All Filters]
“Campomanesia adamantium extract induces DNA damage, apoptosis, and affects cyclophosphamide metabolism”, vol. 15, p. -, 2016.
, “Campomanesia adamantium extract induces DNA damage, apoptosis, and affects cyclophosphamide metabolism”, vol. 15, p. -, 2016.
, “Campomanesia adamantium extract induces DNA damage, apoptosis, and affects cyclophosphamide metabolism”, vol. 15, p. -, 2016.
, “Moquiniastrum polymorphum subsp floccosum extract: screening for mutagenic and antimutagenic activity”, vol. 15, no. 4, p. -, 2016.
,
Conflicts of interest
The authors declare no conflicts of interest.
ACKNOWLEDGMENTS
Research supported by FUNDECT (Fundação de Apoio ao Desenvolvimento do Ensino, Ciência e Tecnologia do Estado de Mato Grosso do Sul), CAPES (Coordenação de Aperfeiçoamento de Pessoal de Nível Superior), and CNPq (Conselho Nacional de Desenvolvimento Científico e Tecnológico).
REFERENCES
Bohlmann F, Zdero C, Schmeda-Hirschmann G, Jakupovic J, et al (1986). Dimeric guainolides and other constituents from Gochnatia species. Phytochemistry 44: 1175-1178. http://dx.doi.org/10.1016/S0031-9422(00)81575-7
Bueno NR, Castilho RO, Costa RB, Pott A, et al (2005). Medicinal plants used by the Kaiowá and Guarani indigenous populations in the Caarapó reserve, Mato Grosso do Sul, Brazil. Acta Bot. Bras. 19: 39-44. http://dx.doi.org/10.1590/S0102-33062005000100005
Cantero WB, Takahachi NA, Mauro MO, Pesarini JR, et al (2015). Genomic lesions and colorectal carcinogenesis: the effects of protein-calorie restriction and inulin supplementation on deficiency statuses. Genet. Mol. Res. 14: 2422-2435. http://dx.doi.org/10.4238/2015.March.27.27
Catalan CAN, Vega MI, Lopez ME, Cuenca M del R, et al (2003). Coumarins and a kaurane from Gochnatia polymorpha ssp. Polymorpha from Paraguay. Biochem. Syst. Ecol. 31: 417-422. http://dx.doi.org/10.1016/S0305-1978(02)00163-1
Cooper EL, et al (2004). Drug discovery, CAM and natural products. Evid. Based Complement. Alternat. Med. 1: 215-217. http://dx.doi.org/10.1093/ecam/neh032
Cragg GM, Newman DJ, et al (2013). Natural products: a continuing source of novel drug leads. Biochim. Biophys. Acta 1830: 3670-3695. http://dx.doi.org/10.1016/j.bbagen.2013.02.008
David Nd, Mauro MdeO, Gonçalves CA, Pesarini JR, et al (2014). Gochnatia polymorpha ssp. floccosa: bioprospecting of an anti-inflammatory phytotherapy for use during pregnancy. J. Ethnopharmacol. 154: 370-379. http://dx.doi.org/10.1016/j.jep.2014.04.005
Farias ACM, Da Silva JR, Tomassini TCB, et al (1984). Constituents of Mochinea polymorpha. J. Nat. Prod. 47: 363-364. http://dx.doi.org/10.1021/np50032a021
Fedel-Miyasato LES, Formagio ASN, Auharek SA, Kassuya CAL, et al (2014a). Antigenotoxic and antimutagenic effects of Schinus terebinthifolius Raddi in Allium cepa and Swiss mice: a comparative study. Genet. Mol. Res. 13: 3411-3425. http://dx.doi.org/10.4238/2014.April.30.2
Fedel-Miyasato LES, Kassuya CAL, Auharek SA, Formagio ASN, et al (2014b). Evaluation of anti-inflammatory, immunomodulatory, chemopreventive and wound healing potentials from Schinus terebinthifolius methanolic extract. Braz. J. Pharmacog. 24: 565-575.
Felicidade I, Lima JD, Pesarini JR, Monreal ACD, et al (2014a). Mutagenic and antimutagenic effects of aqueous extract of rosemary (Rosmarinus officinalis L.) on meristematic cells of Allium cepa. Genet. Mol. Res. 13: 9986-9996. http://dx.doi.org/10.4238/2014.November.28.3
Felicidade I, Lima JD, Pesarini JR, Monreal ACD, et al (2014b). Mutagenic and antimutagenic effects of crude hydroalcoholic extract of rosemary (Rosmarinus officinalis L.) on cultured meristematic cells Allium cepa. VRI Phytomedicine 2: 30-39.
Fiskesjö G, et al (1993). The Allium test in wastewater monitoring. Environ. Toxicol. 8: 291-298.
Leme DM, Marin-Morales MA, et al (2009). Allium cepa test in environmental monitoring: a review on its application. Mutat. Res. 682: 71-81. http://dx.doi.org/10.1016/j.mrrev.2009.06.002
López ME, Giordano OS, López LA, et al (2002). Sesquiterpene lactone dehydroleucodine selectively induces transient arrest in G2 in Allium cepa root meristematic cells. Protoplasma 219: 82-88. http://dx.doi.org/10.1007/s007090200008
Magosso MF, Carvalho PC, Shneider BU, Pessatto LR, et al (2016). Acrocomia aculeata prevents toxicogenetic damage caused by the antitumor agent cyclophosphamide. Genet. Mol. Res. 15. http://dx.doi.org/10.4238/gmr.15027816
Manoharan K, Banerjee MR, et al (1985). beta-Carotene reduces sister chromatid exchanges induced by chemical carcinogens in mouse mammary cells in organ culture. Cell Biol. Int. Rep. 9: 783-789. http://dx.doi.org/10.1016/0309-1651(85)90096-7
Martello MD, David N, Matuo R, Carvalho PC, et al (2016). Campomanesia adamantium extract induces DNA damage, apoptosis, and affects cyclophosphamide metabolism. Genet. Mol. Res. 15. http://dx.doi.org/10.4238/gmr.15027678
Martins GG, Lívero FA, Stolf AM, Kopruszinski CM, et al (2015). Sesquiterpene lactones of Moquiniastrum polymorphum subsp. floccosum have antineoplastic effects in Walker-256 tumor-bearing rats. Chem. Biol. Interact. 228: 46-56. http://dx.doi.org/10.1016/j.cbi.2015.01.018
Mauro MO, Pesarini JR, Marin-Morales MA, Monreal MT, et al (2014). Evaluation of the antimutagenic activity and mode of action of the fructooligosaccharide inulin in the meristematic cells of Allium cepa culture. Genet. Mol. Res. 13: 4808-4819. http://dx.doi.org/10.4238/2014.February.14.14
Moreira AS, Spitzer V, Schapoval EE, Schenkel EP, et al (2000). Antiinflammatory activity of extracts and fractions from the leaves of Gochnatia polymorpha. Phytother. Res. 14: 638-640. http://dx.doi.org/10.1002/1099-1573(200012)14:8<638::AID-PTR681>3.0.CO;2-Q
Nantes CI, Pesarini JR, Mauro MO, Monreal ACD, et al (2014). Evaluation of the antimutagenic activity and mode of action of carrageenan fiber in cultured meristematic cells of Allium cepa. Genet. Mol. Res. 13: 9523-9532. http://dx.doi.org/10.4238/2014.November.12.1
Navarro SD, Mauro MO, Pesarini JR, Ogo FM, et al (2015). Resistant starch: a functional food that prevents DNA damage and chemical carcinogenesis. Genet. Mol. Res. 14: 1679-1691. http://dx.doi.org/10.4238/2015.March.6.14
Oliveira RJ, Ribeiro LR, da Silva AF, Matuo R, et al (2006). Evaluation of antimutagenic activity and mechanisms of action of β-glucan from barley, in CHO-k1 and HTC cell lines using the micronucleus test. Toxicol. In Vitro 20: 1225-1233. http://dx.doi.org/10.1016/j.tiv.2006.04.001
Oliveira RJ, Matuo R, da Silva AF, Matiazi HJ, et al (2007). Protective effect of β-glucan extracted from Saccharomyces cerevisiae, against DNA damage and cytotoxicity in wild-type (k1) and repair-deficient (xrs5) CHO cells. Toxicol. In Vitro 21: 41-52. http://dx.doi.org/10.1016/j.tiv.2006.07.018
Oliveira RJ, Fronza LS, Honda RE, Aquino MT, et al (2015). Effects of Avena sativa L. supplementation on ponderal development, reproductive performance and embryo-fetal development of pregnant rats exposed to cyclophosphamide. PECIBES 1: 1-8.
Piornedo R dos R, de Souza P, Stefanello MÉ, Strapasson RL, et al (2011). Anti-inflammatory activity of extracts and 11,13-dihydrozaluzanin C from Gochnatia polymorpha ssp. floccosa trunk bark in mice. J. Ethnopharmacol. 133: 1077-1084. http://dx.doi.org/10.1016/j.jep.2010.11.040
Rang HP, Dale MM, Ritter JM, Flower RJ, et al. (2012). Rang & Dale's pharmacology. 7th edn. Churchill Livingstone, Edinburgh.
Rank J, Nielsen MH, et al (1997). Allium cepa anaphase-telophase root tip chromosome aberration assay on N-methyl-N-nitrosourea, maleic hydrazide, sodium azide, and ethyl methanesulfonate. Mutat. Res. 390: 121-127. http://dx.doi.org/10.1016/S0165-1218(97)00008-6
Rocha RS, Kassuya CAL, Formagio AS, Mauro M de O, et al (2016). Analysis of the anti-inflammatory and chemopreventive potential and description of the antimutagenic mode of action of the Annona crassiflora methanolic extract. Pharm. Biol. 54: 35-47. http://dx.doi.org/10.3109/13880209.2015.1014567
Roque N (2014). Moquiniastrum. Lista de espécies da flora do Brasil. Jardim Botânico do Rio de Janeiro. Available at [http://floradobrasil.jbrj.gov.br/jabot/floradobrasil/FB130872]. Accessed June 28, 2016.
Sacilotto ACB, Vichnewski W, Herz W, et al (1997). Ent-kaurene diterpenes from Gochnatia polymorpha var. polymorpha. Phytochemistry 44: 659-661. http://dx.doi.org/10.1016/S0031-9422(96)00601-2
Schlemper V, Freitas SA, Schlemper SEM, et al (2011). Antispasmodic effects of hydroalcoholic extract from Gochnatia polymorpha ssp. floccosa in the guinea pig ileum. Res. J. Med. Plant 5: 288-294. http://dx.doi.org/10.3923/rjmp.2011.288.294
Schneider BUC, Meza A, Beatriz A, Pesarini JR, et al (2016). Cardanol: toxicogenetic assessment and its effects when combined with cyclophosphamide. Genet. Mol. Biol. 39: 279-289. http://dx.doi.org/10.1590/1678-4685-GMB-2015-0170
Snustad P and Simmons MJ (2013). Fundamentos de genética. 6th edn. Guanabara Koogan, Rio de Janeiro.
Strapasson RL, Cervi AC, Carvalho JE, Ruiz AL, et al (2012). Bioactivity-guided isolation of cytotoxic sesquiterpene lactones of Gochnatia polymorpha ssp. floccosa. Phytother. Res. 26: 1053-1056. http://dx.doi.org/10.1002/ptr.3693
Zar HJ, Udwadia ZF, et al (2013). Advances in tuberculosis 2011-2012. Thorax 68: 283-287. http://dx.doi.org/10.1136/thoraxjnl-2012-203127
“Moquiniastrum polymorphum subsp floccosum extract: screening for mutagenic and antimutagenic activity”, vol. 15, no. 4, p. -, 2016.
,
Conflicts of interest
The authors declare no conflicts of interest.
ACKNOWLEDGMENTS
Research supported by FUNDECT (Fundação de Apoio ao Desenvolvimento do Ensino, Ciência e Tecnologia do Estado de Mato Grosso do Sul), CAPES (Coordenação de Aperfeiçoamento de Pessoal de Nível Superior), and CNPq (Conselho Nacional de Desenvolvimento Científico e Tecnológico).
REFERENCES
Bohlmann F, Zdero C, Schmeda-Hirschmann G, Jakupovic J, et al (1986). Dimeric guainolides and other constituents from Gochnatia species. Phytochemistry 44: 1175-1178. http://dx.doi.org/10.1016/S0031-9422(00)81575-7
Bueno NR, Castilho RO, Costa RB, Pott A, et al (2005). Medicinal plants used by the Kaiowá and Guarani indigenous populations in the Caarapó reserve, Mato Grosso do Sul, Brazil. Acta Bot. Bras. 19: 39-44. http://dx.doi.org/10.1590/S0102-33062005000100005
Cantero WB, Takahachi NA, Mauro MO, Pesarini JR, et al (2015). Genomic lesions and colorectal carcinogenesis: the effects of protein-calorie restriction and inulin supplementation on deficiency statuses. Genet. Mol. Res. 14: 2422-2435. http://dx.doi.org/10.4238/2015.March.27.27
Catalan CAN, Vega MI, Lopez ME, Cuenca M del R, et al (2003). Coumarins and a kaurane from Gochnatia polymorpha ssp. Polymorpha from Paraguay. Biochem. Syst. Ecol. 31: 417-422. http://dx.doi.org/10.1016/S0305-1978(02)00163-1
Cooper EL, et al (2004). Drug discovery, CAM and natural products. Evid. Based Complement. Alternat. Med. 1: 215-217. http://dx.doi.org/10.1093/ecam/neh032
Cragg GM, Newman DJ, et al (2013). Natural products: a continuing source of novel drug leads. Biochim. Biophys. Acta 1830: 3670-3695. http://dx.doi.org/10.1016/j.bbagen.2013.02.008
David Nd, Mauro MdeO, Gonçalves CA, Pesarini JR, et al (2014). Gochnatia polymorpha ssp. floccosa: bioprospecting of an anti-inflammatory phytotherapy for use during pregnancy. J. Ethnopharmacol. 154: 370-379. http://dx.doi.org/10.1016/j.jep.2014.04.005
Farias ACM, Da Silva JR, Tomassini TCB, et al (1984). Constituents of Mochinea polymorpha. J. Nat. Prod. 47: 363-364. http://dx.doi.org/10.1021/np50032a021
Fedel-Miyasato LES, Formagio ASN, Auharek SA, Kassuya CAL, et al (2014a). Antigenotoxic and antimutagenic effects of Schinus terebinthifolius Raddi in Allium cepa and Swiss mice: a comparative study. Genet. Mol. Res. 13: 3411-3425. http://dx.doi.org/10.4238/2014.April.30.2
Fedel-Miyasato LES, Kassuya CAL, Auharek SA, Formagio ASN, et al (2014b). Evaluation of anti-inflammatory, immunomodulatory, chemopreventive and wound healing potentials from Schinus terebinthifolius methanolic extract. Braz. J. Pharmacog. 24: 565-575.
Felicidade I, Lima JD, Pesarini JR, Monreal ACD, et al (2014a). Mutagenic and antimutagenic effects of aqueous extract of rosemary (Rosmarinus officinalis L.) on meristematic cells of Allium cepa. Genet. Mol. Res. 13: 9986-9996. http://dx.doi.org/10.4238/2014.November.28.3
Felicidade I, Lima JD, Pesarini JR, Monreal ACD, et al (2014b). Mutagenic and antimutagenic effects of crude hydroalcoholic extract of rosemary (Rosmarinus officinalis L.) on cultured meristematic cells Allium cepa. VRI Phytomedicine 2: 30-39.
Fiskesjö G, et al (1993). The Allium test in wastewater monitoring. Environ. Toxicol. 8: 291-298.
Leme DM, Marin-Morales MA, et al (2009). Allium cepa test in environmental monitoring: a review on its application. Mutat. Res. 682: 71-81. http://dx.doi.org/10.1016/j.mrrev.2009.06.002
López ME, Giordano OS, López LA, et al (2002). Sesquiterpene lactone dehydroleucodine selectively induces transient arrest in G2 in Allium cepa root meristematic cells. Protoplasma 219: 82-88. http://dx.doi.org/10.1007/s007090200008
Magosso MF, Carvalho PC, Shneider BU, Pessatto LR, et al (2016). Acrocomia aculeata prevents toxicogenetic damage caused by the antitumor agent cyclophosphamide. Genet. Mol. Res. 15. http://dx.doi.org/10.4238/gmr.15027816
Manoharan K, Banerjee MR, et al (1985). beta-Carotene reduces sister chromatid exchanges induced by chemical carcinogens in mouse mammary cells in organ culture. Cell Biol. Int. Rep. 9: 783-789. http://dx.doi.org/10.1016/0309-1651(85)90096-7
Martello MD, David N, Matuo R, Carvalho PC, et al (2016). Campomanesia adamantium extract induces DNA damage, apoptosis, and affects cyclophosphamide metabolism. Genet. Mol. Res. 15. http://dx.doi.org/10.4238/gmr.15027678
Martins GG, Lívero FA, Stolf AM, Kopruszinski CM, et al (2015). Sesquiterpene lactones of Moquiniastrum polymorphum subsp. floccosum have antineoplastic effects in Walker-256 tumor-bearing rats. Chem. Biol. Interact. 228: 46-56. http://dx.doi.org/10.1016/j.cbi.2015.01.018
Mauro MO, Pesarini JR, Marin-Morales MA, Monreal MT, et al (2014). Evaluation of the antimutagenic activity and mode of action of the fructooligosaccharide inulin in the meristematic cells of Allium cepa culture. Genet. Mol. Res. 13: 4808-4819. http://dx.doi.org/10.4238/2014.February.14.14
Moreira AS, Spitzer V, Schapoval EE, Schenkel EP, et al (2000). Antiinflammatory activity of extracts and fractions from the leaves of Gochnatia polymorpha. Phytother. Res. 14: 638-640. http://dx.doi.org/10.1002/1099-1573(200012)14:8<638::AID-PTR681>3.0.CO;2-Q
Nantes CI, Pesarini JR, Mauro MO, Monreal ACD, et al (2014). Evaluation of the antimutagenic activity and mode of action of carrageenan fiber in cultured meristematic cells of Allium cepa. Genet. Mol. Res. 13: 9523-9532. http://dx.doi.org/10.4238/2014.November.12.1
Navarro SD, Mauro MO, Pesarini JR, Ogo FM, et al (2015). Resistant starch: a functional food that prevents DNA damage and chemical carcinogenesis. Genet. Mol. Res. 14: 1679-1691. http://dx.doi.org/10.4238/2015.March.6.14
Oliveira RJ, Ribeiro LR, da Silva AF, Matuo R, et al (2006). Evaluation of antimutagenic activity and mechanisms of action of β-glucan from barley, in CHO-k1 and HTC cell lines using the micronucleus test. Toxicol. In Vitro 20: 1225-1233. http://dx.doi.org/10.1016/j.tiv.2006.04.001
Oliveira RJ, Matuo R, da Silva AF, Matiazi HJ, et al (2007). Protective effect of β-glucan extracted from Saccharomyces cerevisiae, against DNA damage and cytotoxicity in wild-type (k1) and repair-deficient (xrs5) CHO cells. Toxicol. In Vitro 21: 41-52. http://dx.doi.org/10.1016/j.tiv.2006.07.018
Oliveira RJ, Fronza LS, Honda RE, Aquino MT, et al (2015). Effects of Avena sativa L. supplementation on ponderal development, reproductive performance and embryo-fetal development of pregnant rats exposed to cyclophosphamide. PECIBES 1: 1-8.
Piornedo R dos R, de Souza P, Stefanello MÉ, Strapasson RL, et al (2011). Anti-inflammatory activity of extracts and 11,13-dihydrozaluzanin C from Gochnatia polymorpha ssp. floccosa trunk bark in mice. J. Ethnopharmacol. 133: 1077-1084. http://dx.doi.org/10.1016/j.jep.2010.11.040
Rang HP, Dale MM, Ritter JM, Flower RJ, et al. (2012). Rang & Dale's pharmacology. 7th edn. Churchill Livingstone, Edinburgh.
Rank J, Nielsen MH, et al (1997). Allium cepa anaphase-telophase root tip chromosome aberration assay on N-methyl-N-nitrosourea, maleic hydrazide, sodium azide, and ethyl methanesulfonate. Mutat. Res. 390: 121-127. http://dx.doi.org/10.1016/S0165-1218(97)00008-6
Rocha RS, Kassuya CAL, Formagio AS, Mauro M de O, et al (2016). Analysis of the anti-inflammatory and chemopreventive potential and description of the antimutagenic mode of action of the Annona crassiflora methanolic extract. Pharm. Biol. 54: 35-47. http://dx.doi.org/10.3109/13880209.2015.1014567
Roque N (2014). Moquiniastrum. Lista de espécies da flora do Brasil. Jardim Botânico do Rio de Janeiro. Available at [http://floradobrasil.jbrj.gov.br/jabot/floradobrasil/FB130872]. Accessed June 28, 2016.
Sacilotto ACB, Vichnewski W, Herz W, et al (1997). Ent-kaurene diterpenes from Gochnatia polymorpha var. polymorpha. Phytochemistry 44: 659-661. http://dx.doi.org/10.1016/S0031-9422(96)00601-2
Schlemper V, Freitas SA, Schlemper SEM, et al (2011). Antispasmodic effects of hydroalcoholic extract from Gochnatia polymorpha ssp. floccosa in the guinea pig ileum. Res. J. Med. Plant 5: 288-294. http://dx.doi.org/10.3923/rjmp.2011.288.294
Schneider BUC, Meza A, Beatriz A, Pesarini JR, et al (2016). Cardanol: toxicogenetic assessment and its effects when combined with cyclophosphamide. Genet. Mol. Biol. 39: 279-289. http://dx.doi.org/10.1590/1678-4685-GMB-2015-0170
Snustad P and Simmons MJ (2013). Fundamentos de genética. 6th edn. Guanabara Koogan, Rio de Janeiro.
Strapasson RL, Cervi AC, Carvalho JE, Ruiz AL, et al (2012). Bioactivity-guided isolation of cytotoxic sesquiterpene lactones of Gochnatia polymorpha ssp. floccosa. Phytother. Res. 26: 1053-1056. http://dx.doi.org/10.1002/ptr.3693
Zar HJ, Udwadia ZF, et al (2013). Advances in tuberculosis 2011-2012. Thorax 68: 283-287. http://dx.doi.org/10.1136/thoraxjnl-2012-203127
“Moquiniastrum polymorphum subsp floccosum extract: screening for mutagenic and antimutagenic activity”, vol. 15, no. 4, p. -, 2016.
,
Conflicts of interest
The authors declare no conflicts of interest.
ACKNOWLEDGMENTS
Research supported by FUNDECT (Fundação de Apoio ao Desenvolvimento do Ensino, Ciência e Tecnologia do Estado de Mato Grosso do Sul), CAPES (Coordenação de Aperfeiçoamento de Pessoal de Nível Superior), and CNPq (Conselho Nacional de Desenvolvimento Científico e Tecnológico).
REFERENCES
Bohlmann F, Zdero C, Schmeda-Hirschmann G, Jakupovic J, et al (1986). Dimeric guainolides and other constituents from Gochnatia species. Phytochemistry 44: 1175-1178. http://dx.doi.org/10.1016/S0031-9422(00)81575-7
Bueno NR, Castilho RO, Costa RB, Pott A, et al (2005). Medicinal plants used by the Kaiowá and Guarani indigenous populations in the Caarapó reserve, Mato Grosso do Sul, Brazil. Acta Bot. Bras. 19: 39-44. http://dx.doi.org/10.1590/S0102-33062005000100005
Cantero WB, Takahachi NA, Mauro MO, Pesarini JR, et al (2015). Genomic lesions and colorectal carcinogenesis: the effects of protein-calorie restriction and inulin supplementation on deficiency statuses. Genet. Mol. Res. 14: 2422-2435. http://dx.doi.org/10.4238/2015.March.27.27
Catalan CAN, Vega MI, Lopez ME, Cuenca M del R, et al (2003). Coumarins and a kaurane from Gochnatia polymorpha ssp. Polymorpha from Paraguay. Biochem. Syst. Ecol. 31: 417-422. http://dx.doi.org/10.1016/S0305-1978(02)00163-1
Cooper EL, et al (2004). Drug discovery, CAM and natural products. Evid. Based Complement. Alternat. Med. 1: 215-217. http://dx.doi.org/10.1093/ecam/neh032
Cragg GM, Newman DJ, et al (2013). Natural products: a continuing source of novel drug leads. Biochim. Biophys. Acta 1830: 3670-3695. http://dx.doi.org/10.1016/j.bbagen.2013.02.008
David Nd, Mauro MdeO, Gonçalves CA, Pesarini JR, et al (2014). Gochnatia polymorpha ssp. floccosa: bioprospecting of an anti-inflammatory phytotherapy for use during pregnancy. J. Ethnopharmacol. 154: 370-379. http://dx.doi.org/10.1016/j.jep.2014.04.005
Farias ACM, Da Silva JR, Tomassini TCB, et al (1984). Constituents of Mochinea polymorpha. J. Nat. Prod. 47: 363-364. http://dx.doi.org/10.1021/np50032a021
Fedel-Miyasato LES, Formagio ASN, Auharek SA, Kassuya CAL, et al (2014a). Antigenotoxic and antimutagenic effects of Schinus terebinthifolius Raddi in Allium cepa and Swiss mice: a comparative study. Genet. Mol. Res. 13: 3411-3425. http://dx.doi.org/10.4238/2014.April.30.2
Fedel-Miyasato LES, Kassuya CAL, Auharek SA, Formagio ASN, et al (2014b). Evaluation of anti-inflammatory, immunomodulatory, chemopreventive and wound healing potentials from Schinus terebinthifolius methanolic extract. Braz. J. Pharmacog. 24: 565-575.
Felicidade I, Lima JD, Pesarini JR, Monreal ACD, et al (2014a). Mutagenic and antimutagenic effects of aqueous extract of rosemary (Rosmarinus officinalis L.) on meristematic cells of Allium cepa. Genet. Mol. Res. 13: 9986-9996. http://dx.doi.org/10.4238/2014.November.28.3
Felicidade I, Lima JD, Pesarini JR, Monreal ACD, et al (2014b). Mutagenic and antimutagenic effects of crude hydroalcoholic extract of rosemary (Rosmarinus officinalis L.) on cultured meristematic cells Allium cepa. VRI Phytomedicine 2: 30-39.
Fiskesjö G, et al (1993). The Allium test in wastewater monitoring. Environ. Toxicol. 8: 291-298.
Leme DM, Marin-Morales MA, et al (2009). Allium cepa test in environmental monitoring: a review on its application. Mutat. Res. 682: 71-81. http://dx.doi.org/10.1016/j.mrrev.2009.06.002
López ME, Giordano OS, López LA, et al (2002). Sesquiterpene lactone dehydroleucodine selectively induces transient arrest in G2 in Allium cepa root meristematic cells. Protoplasma 219: 82-88. http://dx.doi.org/10.1007/s007090200008
Magosso MF, Carvalho PC, Shneider BU, Pessatto LR, et al (2016). Acrocomia aculeata prevents toxicogenetic damage caused by the antitumor agent cyclophosphamide. Genet. Mol. Res. 15. http://dx.doi.org/10.4238/gmr.15027816
Manoharan K, Banerjee MR, et al (1985). beta-Carotene reduces sister chromatid exchanges induced by chemical carcinogens in mouse mammary cells in organ culture. Cell Biol. Int. Rep. 9: 783-789. http://dx.doi.org/10.1016/0309-1651(85)90096-7
Martello MD, David N, Matuo R, Carvalho PC, et al (2016). Campomanesia adamantium extract induces DNA damage, apoptosis, and affects cyclophosphamide metabolism. Genet. Mol. Res. 15. http://dx.doi.org/10.4238/gmr.15027678
Martins GG, Lívero FA, Stolf AM, Kopruszinski CM, et al (2015). Sesquiterpene lactones of Moquiniastrum polymorphum subsp. floccosum have antineoplastic effects in Walker-256 tumor-bearing rats. Chem. Biol. Interact. 228: 46-56. http://dx.doi.org/10.1016/j.cbi.2015.01.018
Mauro MO, Pesarini JR, Marin-Morales MA, Monreal MT, et al (2014). Evaluation of the antimutagenic activity and mode of action of the fructooligosaccharide inulin in the meristematic cells of Allium cepa culture. Genet. Mol. Res. 13: 4808-4819. http://dx.doi.org/10.4238/2014.February.14.14
Moreira AS, Spitzer V, Schapoval EE, Schenkel EP, et al (2000). Antiinflammatory activity of extracts and fractions from the leaves of Gochnatia polymorpha. Phytother. Res. 14: 638-640. http://dx.doi.org/10.1002/1099-1573(200012)14:8<638::AID-PTR681>3.0.CO;2-Q
Nantes CI, Pesarini JR, Mauro MO, Monreal ACD, et al (2014). Evaluation of the antimutagenic activity and mode of action of carrageenan fiber in cultured meristematic cells of Allium cepa. Genet. Mol. Res. 13: 9523-9532. http://dx.doi.org/10.4238/2014.November.12.1
Navarro SD, Mauro MO, Pesarini JR, Ogo FM, et al (2015). Resistant starch: a functional food that prevents DNA damage and chemical carcinogenesis. Genet. Mol. Res. 14: 1679-1691. http://dx.doi.org/10.4238/2015.March.6.14
Oliveira RJ, Ribeiro LR, da Silva AF, Matuo R, et al (2006). Evaluation of antimutagenic activity and mechanisms of action of β-glucan from barley, in CHO-k1 and HTC cell lines using the micronucleus test. Toxicol. In Vitro 20: 1225-1233. http://dx.doi.org/10.1016/j.tiv.2006.04.001
Oliveira RJ, Matuo R, da Silva AF, Matiazi HJ, et al (2007). Protective effect of β-glucan extracted from Saccharomyces cerevisiae, against DNA damage and cytotoxicity in wild-type (k1) and repair-deficient (xrs5) CHO cells. Toxicol. In Vitro 21: 41-52. http://dx.doi.org/10.1016/j.tiv.2006.07.018
Oliveira RJ, Fronza LS, Honda RE, Aquino MT, et al (2015). Effects of Avena sativa L. supplementation on ponderal development, reproductive performance and embryo-fetal development of pregnant rats exposed to cyclophosphamide. PECIBES 1: 1-8.
Piornedo R dos R, de Souza P, Stefanello MÉ, Strapasson RL, et al (2011). Anti-inflammatory activity of extracts and 11,13-dihydrozaluzanin C from Gochnatia polymorpha ssp. floccosa trunk bark in mice. J. Ethnopharmacol. 133: 1077-1084. http://dx.doi.org/10.1016/j.jep.2010.11.040
Rang HP, Dale MM, Ritter JM, Flower RJ, et al. (2012). Rang & Dale's pharmacology. 7th edn. Churchill Livingstone, Edinburgh.
Rank J, Nielsen MH, et al (1997). Allium cepa anaphase-telophase root tip chromosome aberration assay on N-methyl-N-nitrosourea, maleic hydrazide, sodium azide, and ethyl methanesulfonate. Mutat. Res. 390: 121-127. http://dx.doi.org/10.1016/S0165-1218(97)00008-6
Rocha RS, Kassuya CAL, Formagio AS, Mauro M de O, et al (2016). Analysis of the anti-inflammatory and chemopreventive potential and description of the antimutagenic mode of action of the Annona crassiflora methanolic extract. Pharm. Biol. 54: 35-47. http://dx.doi.org/10.3109/13880209.2015.1014567
Roque N (2014). Moquiniastrum. Lista de espécies da flora do Brasil. Jardim Botânico do Rio de Janeiro. Available at [http://floradobrasil.jbrj.gov.br/jabot/floradobrasil/FB130872]. Accessed June 28, 2016.
Sacilotto ACB, Vichnewski W, Herz W, et al (1997). Ent-kaurene diterpenes from Gochnatia polymorpha var. polymorpha. Phytochemistry 44: 659-661. http://dx.doi.org/10.1016/S0031-9422(96)00601-2
Schlemper V, Freitas SA, Schlemper SEM, et al (2011). Antispasmodic effects of hydroalcoholic extract from Gochnatia polymorpha ssp. floccosa in the guinea pig ileum. Res. J. Med. Plant 5: 288-294. http://dx.doi.org/10.3923/rjmp.2011.288.294
Schneider BUC, Meza A, Beatriz A, Pesarini JR, et al (2016). Cardanol: toxicogenetic assessment and its effects when combined with cyclophosphamide. Genet. Mol. Biol. 39: 279-289. http://dx.doi.org/10.1590/1678-4685-GMB-2015-0170
Snustad P and Simmons MJ (2013). Fundamentos de genética. 6th edn. Guanabara Koogan, Rio de Janeiro.
Strapasson RL, Cervi AC, Carvalho JE, Ruiz AL, et al (2012). Bioactivity-guided isolation of cytotoxic sesquiterpene lactones of Gochnatia polymorpha ssp. floccosa. Phytother. Res. 26: 1053-1056. http://dx.doi.org/10.1002/ptr.3693
Zar HJ, Udwadia ZF, et al (2013). Advances in tuberculosis 2011-2012. Thorax 68: 283-287. http://dx.doi.org/10.1136/thoraxjnl-2012-203127
“Evaluation of pH effects on genomic integrity in adipose-derived mesenchymal stem cells using the comet assay”, vol. 14, pp. 339-348, 2015.
, “Antigenotoxic and antimutagenic effects of glutamine supplementation on mice treated with cisplatin”, vol. 13, pp. 4820-4830, 2014.
, “Therapeutic potential of mesenchymal stem cells to treat Achilles tendon injuries”, vol. 13, pp. 10434-10449, 2014.
, “ATP-dependent chromatin remodeling and histone acetyltransferases in 5-FU cytotoxicity in Saccharomyces cerevisiae”, vol. 12, pp. 1440-1456, 2013.
, Altaf M, Saksouk N and Cote J (2007). Histone modifications in response to DNA damage. Mutat. Res. 618: 81-90.
http://dx.doi.org/10.1016/j.mrfmmm.2006.09.009
PMid:17306843
Ataian Y and Krebs JE (2006). Five repair pathways in one context: chromatin modification during DNA repair. Biochem. Cell Biol. 84: 490-504.
http://dx.doi.org/10.1139/o06-075
PMid:16936822
Aylon Y and Kupiec M (2004). New insights into the mechanism of homologous recombination in yeast. Mutat. Res. 566: 231-248.
http://dx.doi.org/10.1016/j.mrrev.2003.10.001
PMid:15082239
Bao Y and Shen X (2007). INO80 subfamily of chromatin remodeling complexes. Mutat. Res. 618: 18-29.
http://dx.doi.org/10.1016/j.mrfmmm.2006.10.006
PMid:17316710 PMCid:2699258
Benson LJ, Phillips JA, Gu Y, Parthun MR, et al. (2007). Properties of the type B histone acetyltransferase Hat1: H4 tail interaction, site preference, and involvement in DNA repair. J. Biol. Chem. 282: 836-842.
http://dx.doi.org/10.1074/jbc.M607464200
PMid:17052979
Broomfield S, Hryciw T and Xiao W (2001). DNA postreplication repair and mutagenesis in Saccharomyces cerevisiae. Mutat. Res. 486: 167-184.
http://dx.doi.org/10.1016/S0921-8777(01)00091-X
Campos EI and Reinberg D (2009). Histones: annotating chromatin. Annu. Rev. Genet. 43: 559-599.
http://dx.doi.org/10.1146/annurev.genet.032608.103928
PMid:19886812
Cardone JM, Revers LF, Machado RM, Bonatto D, et al. (2006). Psoralen-sensitive mutant pso9-1 of Saccharomyces cerevisiae contains a mutant allele of the DNA damage checkpoint gene MEC3. DNA Repair 5: 163-171.
http://dx.doi.org/10.1016/j.dnarep.2005.08.018
PMid:16202664
Clarke AS, Lowell JE, Jacobson SJ and Pillus L (1999). Esa1p is an essential histone acetyltransferase required for cell cycle progression. Mol. Cell Biol. 19: 2515-2526.
PMid:10082517 PMCid:84044
Ding J, Miao ZH, Meng LH and Geng MY (2006). Emerging cancer therapeutic opportunities target DNA-repair systems. Trends Pharmacol. Sci. 27: 338-344.
http://dx.doi.org/10.1016/j.tips.2006.04.007
PMid:16697054
Downs JA, Allard S, Jobin-Robitaille O, Javaheri A, et al. (2004). Binding of chromatin-modifying activities to phosphorylated histone H2A at DNA damage sites. Mol. Cell 16: 979-990.
http://dx.doi.org/10.1016/j.molcel.2004.12.003
PMid:15610740
Doyon Y and Côté J (2004). The highly conserved and multifunctional NuA4 HAT complex. Curr. Opin. Genet. Dev. 14: 147-154.
http://dx.doi.org/10.1016/j.gde.2004.02.009
PMid:15196461
Escargueil AE, Soares DG, Salvador M, Larsen AK, et al. (2008). What histone code for DNA repair? Mutat. Res. 658: 259-270.
http://dx.doi.org/10.1016/j.mrrev.2008.01.004
PMid:18296106
Falbo KB, Alabert C, Katou Y, Wu S, et al. (2009). Involvement of a chromatin remodeling complex in damage tolerance during DNA replication. Nat. Struct. Mol. Biol. 16: 1167-1172.
http://dx.doi.org/10.1038/nsmb.1686
PMid:19855395 PMCid:2974178
Gan GN, Wittschieben JP, Wittschieben BO and Wood RD (2008). DNA polymerase zeta (pol zeta) in higher eukaryotes. Cell Res. 18: 174-183.
http://dx.doi.org/10.1038/cr.2007.117
PMid:18157155
Gangaraju VK and Bartholomew B (2007). Mechanisms of ATP dependent chromatin remodeling. Mutat. Res. 618: 3-17.
http://dx.doi.org/10.1016/j.mrfmmm.2006.08.015
PMid:17306844 PMCid:2584342
Gietz RD and Woods RA (2002). Transformation of yeast by lithium acetate/single-stranded carrier DNA/polyethylene glycol method. Methods Enzymol. 350: 87-96.
http://dx.doi.org/10.1016/S0076-6879(02)50957-5
Hargreaves DC and Crabtree GR (2011). ATP-dependent chromatin remodeling: genetics, genomics and mechanisms. Cell Res. 21: 396-420.
http://dx.doi.org/10.1038/cr.2011.32
PMid:21358755 PMCid:3110148
Henikoff S and Ahmad K (2005). Assembly of variant histones into chromatin. Annu. Rev. Cell Dev. Biol. 21: 133-153.
http://dx.doi.org/10.1146/annurev.cellbio.21.012704.133518
PMid:16212490
Huertas D, Sendra R and Munoz P (2009). Chromatin dynamics coupled to DNA repair. Epigenetics 4: 31-42.
http://dx.doi.org/10.4161/epi.4.1.7733
PMid:19218832
Karras GI and Jentsch S (2010). The RAD6 DNA damage tolerance pathway operates uncoupled from the replication fork and is functional beyond S phase. Cell 141: 255-267.
http://dx.doi.org/10.1016/j.cell.2010.02.028
PMid:20403322
Kufe DW and Major PP (1981). 5-Fluorouracil incorporation into human breast carcinoma RNA correlates with cytotoxicity. J. Biol. Chem. 256: 9802-9805.
PMid:7275977
Kufe DW, Major PP, Egan EM and Loh E (1981). 5-Fluoro-2'-deoxyuridine incorporation in L1210 DNA. J. Biol. Chem. 256: 8885-8888.
PMid:6455432
Loizou JI, Murr R, Finkbeiner MG, Sawan C, et al. (2006). Epigenetic information in chromatin: the code of entry for DNA repair. Cell Cycle 5: 696-701.
http://dx.doi.org/10.4161/cc.5.7.2616
PMid:16582631
Matuo R, Sousa FG, Escargueil AE, Grivicich I, et al. (2009). 5-Fluorouracil and its active metabolite FdUMP cause DNA damage in human SW620 colon adenocarcinoma cell line. J. Appl. Toxicol. 29: 308-316.
http://dx.doi.org/10.1002/jat.1411
PMid:19115314
Matuo R, Sousa FG, Escargueil AE, Soares DG, et al. (2010). DNA repair pathways involved in repair of lesions induced by 5-fluorouracil and its active metabolite FdUMP. Biochem. Pharmacol. 79: 147-153.
http://dx.doi.org/10.1016/j.bcp.2009.08.016
PMid:19712668
Minesinger BK and Jinks-Robertson S (2005). Roles of RAD6 epistasis group members in spontaneous polzeta-dependent translesion synthesis in Saccharomyces cerevisiae. Genetics 169: 1939-1955.
http://dx.doi.org/10.1534/genetics.104.033894
PMid:15687278 PMCid:1449579
Mizuguchi G, Shen X, Landry J, Wu WH, et al. (2004). ATP-driven exchange of histone H2AZ variant catalyzed by SWR1 chromatin remodeling complex. Science 303: 343-348.
http://dx.doi.org/10.1126/science.1090701
PMid:14645854
Morrison AJ, Highland J, Krogan NJ, Arbel-Eden A, et al. (2004). INO80 and gamma-H2AX interaction links ATP-dependent chromatin remodeling to DNA damage repair. Cell 119: 767-775.
http://dx.doi.org/10.1016/j.cell.2004.11.037
PMid:15607974
Noordhuis P, Holwerda U, Van der Wilt CL, van Groeningen CJ, et al. (2004). 5-Fluorouracil incorporation into RNA and DNA in relation to thymidylate synthase inhibition of human colorectal cancers. Ann. Oncol. 15: 1025-1032.
http://dx.doi.org/10.1093/annonc/mdh264
PMid:15205195
Osley MA, Tsukuda T and Nickoloff JA (2007). ATP-dependent chromatin remodeling factors and DNA damage repair. Mutat. Res. 618: 65-80.
http://dx.doi.org/10.1016/j.mrfmmm.2006.07.011
PMid:17291544 PMCid:1904433
Poletto NP, Rosado JO and Bonatto D (2009). Evaluation of cytotoxic and cytostatic effects in Saccharomyces cerevisiae by poissoner quantitative drop test. Basic Clin. Pharmacol. Toxicol. 104: 71-75.
http://dx.doi.org/10.1111/j.1742-7843.2008.00336.x
PMid:19152554
Prakash S, Johnson RE and Prakash L (2005). Eukaryotic translesion synthesis DNA polymerases: specificity of structure and function. Annu. Rev. Biochem. 74: 317-353.
http://dx.doi.org/10.1146/annurev.biochem.74.082803.133250
PMid:15952890
Qin S and Parthun MR (2006). Recruitment of the type B histone acetyltransferase Hat1p to chromatin is linked to DNA double-strand breaks. Mol. Cell Biol. 26: 3649-3658.
http://dx.doi.org/10.1128/MCB.26.9.3649-3658.2006
PMid:16612003 PMCid:1447429
Raisner RM and Madhani HD (2006). Patterning chromatin: form and function for H2A.Z variant nucleosomes. Curr. Opin. Genet. Dev. 16: 119-124.
http://dx.doi.org/10.1016/j.gde.2006.02.005
PMid:16503125
Tamburini BA and Tyler JK (2005). Localized histone acetylation and deacetylation triggered by the homologous recombination pathway of double-strand DNA repair. Mol. Cell Biol. 25: 4903-4913.
http://dx.doi.org/10.1128/MCB.25.12.4903-4913.2005
PMid:15923609 PMCid:1140608
van Attikum H and Gasser SM (2005a). ATP-dependent chromatin remodeling and DNA double-strand break repair. Cell Cycle 4: 1011-1014.
http://dx.doi.org/10.4161/cc.4.8.1887
PMid:16082209
van Attikum H and Gasser SM (2005b). The histone code at DNA breaks: a guide to repair? Nat. Rev. Mol Cell Biol. 6: 757-765.
http://dx.doi.org/10.1038/nrm1737
PMid:16167054
Wyatt MD and Wilson DM III (2009). Participation of DNA repair in the response to 5-fluorouracil. Cell Mol. Life Sci. 66: 788-799.
http://dx.doi.org/10.1007/s00018-008-8557-5
PMid:18979208 PMCid:2649968
Yu Y, Teng Y, Liu H, Reed SH, et al. (2005). UV irradiation stimulates histone acetylation and chromatin remodeling at a repressed yeast locus. Proc. Natl. Acad. Sci. U. S. A. 102: 8650-8655.
http://dx.doi.org/10.1073/pnas.0501458102
PMid:15939881 PMCid:1150825
“Pre-treatment with glutamine reduces genetic damage due to cancer treatment with cisplatin”, vol. 12, pp. 6040-6051, 2013.
,