Publications

Found 23 results
Filters: Author is Y. Huang  [Clear All Filters]
2016
H. Q. Tong, Jiang, Z. Q., Dou, T. F., Li, Q. H., Xu, Z. Q., Liu, L. X., Gu, D. H., Rong, H., Huang, Y., Chen, X. B., Jois, M., Pas, M. F. Wte, Ge, C. R., Jia, J. J., Tong, H. Q., Jiang, Z. Q., Dou, T. F., Li, Q. H., Xu, Z. Q., Liu, L. X., Gu, D. H., Rong, H., Huang, Y., Chen, X. B., Jois, M., Pas, M. F. Wte, Ge, C. R., and Jia, J. J., Comparison and analysis of Wuding and avian chicken skeletal muscle satellite cells, vol. 15, p. -, 2016.
H. Q. Tong, Jiang, Z. Q., Dou, T. F., Li, Q. H., Xu, Z. Q., Liu, L. X., Gu, D. H., Rong, H., Huang, Y., Chen, X. B., Jois, M., Pas, M. F. Wte, Ge, C. R., Jia, J. J., Tong, H. Q., Jiang, Z. Q., Dou, T. F., Li, Q. H., Xu, Z. Q., Liu, L. X., Gu, D. H., Rong, H., Huang, Y., Chen, X. B., Jois, M., Pas, M. F. Wte, Ge, C. R., and Jia, J. J., Comparison and analysis of Wuding and avian chicken skeletal muscle satellite cells, vol. 15, p. -, 2016.
H. Feng, Feng, C. L., Huang, Y., Tang, J., Feng, H., Feng, C. L., Huang, Y., Tang, J., Feng, H., Feng, C. L., Huang, Y., and Tang, J., Structure of mitochondrial DNA control region and genetic diversity of Moschus berezovskii populations in Shaanxi Province, vol. 15, p. -, 2016.
H. Feng, Feng, C. L., Huang, Y., Tang, J., Feng, H., Feng, C. L., Huang, Y., Tang, J., Feng, H., Feng, C. L., Huang, Y., and Tang, J., Structure of mitochondrial DNA control region and genetic diversity of Moschus berezovskii populations in Shaanxi Province, vol. 15, p. -, 2016.
H. Feng, Feng, C. L., Huang, Y., Tang, J., Feng, H., Feng, C. L., Huang, Y., Tang, J., Feng, H., Feng, C. L., Huang, Y., and Tang, J., Structure of mitochondrial DNA control region and genetic diversity of Moschus berezovskii populations in Shaanxi Province, vol. 15, p. -, 2016.
2015
Y. Huang, Zheng, M. J., and Xu, Y. H., Analysis of the relationship between peripheral blood T lymphocyte subsets and HCV RNA levels in patients with chronic hepatitis C, vol. 14, pp. 10057-10063, 2015.
S. Wang, Huang, Y., Su, R., Fang, Z., and Han, M., Cyclin D1 G870A polymorphism is associated with an increased risk of multiple myeloma, vol. 14, pp. 5856-5861, 2015.
Z. J. Wei, Wang, F. Y., Guo, M. P., Duan, Z. Z., Zou, N. L., Liu, P., Yan, Q. G., Wen, X. T., Cao, S. J., and Huang, Y., Dynamic changes of virus load in supernatant of primary CEK cell culture infected with different generations of avian infectious bronchitis virus strains Sczy3 as revealed by real-time reverse transcription-polymerase chain reaction, vol. 14, pp. 6340-6349, 2015.
Y. J. Li, Huang, Y., Ding, Q., Gu, Z. H., and Pan, X. L., Evaluation of concentrations of botulinum toxin A for the treatment of hemifacial spasm: a randomized double-blind crossover trial, vol. 14, pp. 1136-1144, 2015.
F. Que, Wang, G. L., Huang, Y., Xu, Z. S., Wang, F., and Xiong, A. S., Genomic identification of group A bZIP transcription factors and their responses to abiotic stress in carrot, vol. 14, pp. 13274-13288, 2015.
H. D. Ye, Li, Y. R., Hong, Q. X., Zhou, A. N., Zhao, Q. L., Xu, L. M., Xu, M. Q., Xu, X. T., Tang, L. L., Dai, D. J., Jiang, D. J., Huang, Y., Wang, D. W., and Duan, S. W., Positive association between PPARD rs2016520 polymorphism and coronary heart disease in a Han Chinese population, vol. 14, pp. 6350-6359, 2015.
Z. W. Shuai, Huang, Y., Zhang, L., Cai, J., and Li, M., Role of autoantibodies to various Ro60 epitopes in the decrease of lymphocytes seen in systemic lupus erythematosus and primary Sjögren’s syndrome, vol. 14, pp. 10096-10102, 2015.
Q. X. Dai, Yao, Y. F., Qi, Z. C., Huang, Y., Ni, Q. Y., Zhang, M. W., and Xu, H. L., Sequence characterization and phylogenetic analysis of toll-like receptor (TLR) 4 gene in the Tibetan macaque (Macaca thibetana), vol. 14, pp. 1875-1886, 2015.
Y. Huang, Ye, H. D., Gao, X., Nie, S., Hong, Q. X., Ji, H. H., Sun, J., Zhou, S. J., Fei, B., Li, K. Q., Zhao, J. K., Wang, Z. P., Xu, M. Q., and Duan, S. W., Significant interaction of APOE rs4420638 polymorphism with HDL-C and APOA-I levels in coronary heart disease in Han Chinese men, vol. 14, pp. 13414-13424, 2015.
2013
L. S. Wang, Jiao, Y., Huang, Y., Liu, X. Y., Gibson, G., Bennett, B., Hamre, K. M., Li, D. W., Zhao, H. Y., Gelernter, J., Kranzler, H. R., Farrer, L. A., Lu, L., Wang, Y. J., and Gu, W. K., Critical evaluation of transcription factor Atf2 as a candidate modulator of alcohol preference in mouse and human populations, vol. 12, pp. 5992-6005, 2013.
B. F. Zhu, Huang, Y., Dai, Y. G., Bi, C. W., and Hu, C. Y., Genetic diversity among red swamp crayfish (Procambarus clarkii) populations in the middle and lower reaches of the Yangtze River based on AFLP markers, vol. 12, pp. 791-800, 2013.
Agrestia JJ, Agrestia JJ, Agrestia JJ, Poompuang S, et al. (2000). Breeding new strains of tilapia: development of an artificial center of origin and linkage map based on AFLP and microsatellite loci. Aquaculture 185: 43-56. http://dx.doi.org/10.1016/S0044-8486(99)00335-X   Astanei I, Gosling E, Wilson J and Powell E (2005). Genetic variability and phylogeography of the invasive zebra mussel, Dreissena polymorpha (Pallas). Mol. Ecol. 14: 1655-1666. http://dx.doi.org/10.1111/j.1365-294X.2005.02530.x PMid:15836640   Austin CM and Knott B (1996). Systematics of the freswater crayfish Genus Cherax Erichson (Decapoda: Parastacidae) in south-western Australia: electrophoretic, morphological and habitat variation. Aust. J. Zool. 44: 223-258. http://dx.doi.org/10.1071/ZO9960223   Barbaresi S and Gherardi F (2000). The invasion of the alien crayfish Procambarus clarkii in Europe, with particular reference to Italy. Biol. Inv. 2: 259-264. http://dx.doi.org/10.1023/A:1010009701606   Barbaresi S, Fani R, Gherardi F, Mengoni A, et al. (2003). Genetic variability in European populations of an invasive American crayfish: preliminary results. Biol. Inv. 5: 269-274. http://dx.doi.org/10.1023/A:1026133519707   Belfiore NM and May B (2003). Variable microsatellite loci in red swamp crayfish, Procambarus clarkii, and their characterization in other crayfish taxa. Mol. Ecol. 9: 2230-2234. http://dx.doi.org/10.1046/j.1365-294X.2000.105339.x   Doyle RW, Perez-Enriquez R, Takagi M and Taniguchi N (2001). Selective recovery of founder genetic diversity in aquacultural broodstocks and captive, endangered fish populations. Genetica 111: 291-304. http://dx.doi.org/10.1023/A:1013772205330 PMid:11841174   Excoffier L, Laval G and Schneider S (2005) Arlequin (version 3.0): an integrated software package for population genetics data analysis. Evol. Bioinformatics Online 1: 47-50. PMCid:2658868   Gherardi F, Renai B and Corti C (2001). Crayfish predation on tadpoles: a comparison between a native (Austropotamobius pallipes) and an alien species (Procambarus clarkii). Bull. Fr. Pêche Piscic. 361: 659-668. http://dx.doi.org/10.1051/kmae:2001011   Gouin N, Grandjean F, Bouchon D, Reynolds JD, et al. (2001). Population genetic structure of the endangered freshwater crayfish Austropotamobius pallipes, assessed using RAPD markers. Heredity 87: 80-87. http://dx.doi.org/10.1046/j.1365-2540.2001.00909.x PMid:11678990   Guo JG, Vounatsou P, Cao CL, Utzinger J, et al. (2005). A geographic information and remote sensing based model for prediction of Oncomelania hupensis habitats in the Poyang Lake area, China. Acta Trop. 96: 213-222. http://dx.doi.org/10.1016/j.actatropica.2005.07.029 PMid:16140246   Hedgecock D, Stelmach DJ, Nelson K, Lindenfelser ME, et al. (1979). Genetic divergence and biogeography of natural populations of Macrobrachium rosenbergii. Proc. World Maricul. Soc. 10: 873-879. http://dx.doi.org/10.1111/j.1749-7345.1979.tb00084.x   Herborg LM, Weetman D, van Oosterhout C and Hanfling B (2007). Genetic population structure and contemporary dispersal patterns of a recent European invader, the Chinese mitten crab, Eriocheir sinensis. Mol. Ecol. 16: 231-242. http://dx.doi.org/10.1111/j.1365-294X.2006.03133.x PMid:17217341   Kolbe JJ, Glor RE, Rodriguez SL, Lara AC, et al. (2004). Genetic variation increases during biological invasion by a Cuban lizard. Nature 431: 177-181. http://dx.doi.org/10.1038/nature02807 PMid:15356629   Lande R (2002). Mutation and conservation. Conserv. Biol. 9: 782-791. http://dx.doi.org/10.1046/j.1523-1739.1995.09040782.x   Lindqvist OV and Huner JV (1999). Life History Characteristics of Crayfish: What Makes Some of Them Good Colonizers? In: Crayfish in Europe as Alien Species. How to Make the Best of a Bad Situation? (Gherardi F, ed.). A.A. Balkema, Rotterdam, 23-30.   Maheswaran M, Subudhi PK, Nandi S, Xu JC, et al. (1997). Polymorphism, distribution, and segregation of AFLP markers in a doubled haploid rice population. Theor. Appl. Genet. 94: 39-45. http://dx.doi.org/10.1007/s001220050379 PMid:19352743   Mickett K, Morton C, Feng J, Li P, et al. (2003). Assessing genetic diversity of domestic populations of channel catfish (Ictalurus punctatus) in Alabama using AFLP markers. Aquaculture 228: 91-105. http://dx.doi.org/10.1016/S0044-8486(03)00311-9   Nei M (1972). Genetic distance between populations. Am. Nat. 106: 283-292. http://dx.doi.org/10.1086/282771   Nei M (1978). Estimation of average heterozyosity and genetic distance from a small number of individuals. Genetics 89: 583-590. PMid:17248844 PMCid:1213855   Nei M (1988). Genetic Distance and Molecular Phylogeny. In: Population Genetics and Fishery Management (Ryman N and Utter FM, eds.) Washington Sea Grant Program, Distributed by University of Washington Press, Seattle and London, 193-223.   Oidtmann B, Schaefers N, Cerenius L, Soderhall K, et al. (2004). Detection of genomic DNA of the crayfish plague fungus Aphanomyces astaci (Oomycete) in clinical samples by PCR. Vet. Microbiol. 100: 269-282. http://dx.doi.org/10.1016/j.vetmic.2004.01.019 PMid:15145505   Paglianti A and Gherardi F (2004). Combined effects of temperature and diet on growth and survival of YOY crayfish: a comparison between indigenous and invasive species. J. Crustacean Biol. 24: 140-148. http://dx.doi.org/10.1651/C-2374   Powell W, Morgante M, Andre C, Hanafey M, et al. (1996). The comparison of RFLP, RAPD, AFLP and SSR (microsatellite) markers for germplasm analysis. Mol. Breed. 2: 225-238. http://dx.doi.org/10.1007/BF00564200   Reed DH and Frankham R (2003). Correlation between fitness and genetic diversity. Conserv. Biol. 17: 230-237. http://dx.doi.org/10.1046/j.1523-1739.2003.01236.x   Renai B and Gherardi F (2004). Predatory efficiency of crayfish: comparison between indigenous and non-indigenous species. Biol. Inv. 6: 89-99. http://dx.doi.org/10.1023/B:BINV.0000010126.94675.50   Rodríguez-Serna M, Carmona-Osalde C, Olvera-Novoa MA and Arredondo-Figuero JL (2000). Fecundity, egg development and growth of juvenile crayfish Procambarus (Austrocambarus) llamasi (Villalobos 1955) under laboratory conditions. Aquac. Res. 31: 173-179. http://dx.doi.org/10.1046/j.1365-2109.2000.00409.x   Rodríguez CF, Bécares E, Fernández-Aláez M and Fernández-Aláez C (2005). Loss of diversity and degradation of wetlands as a result of introducing exotic crayfish. Biol. Inv. 7: 75-85. http://dx.doi.org/10.1007/s10530-004-9636-7   Rozas J, Hernandez M, Cabrera VM and Prevosti A (1990). Colonization of America by Drosophila subobscura: effect of the founder event on the mitochondrial DNA polymorphism. Mol. Biol. Evol. 7: 103-109. PMid:2299979   Skurdal J and Taugbøl T (1994). Do we need harvest regulations for European crayfish? Rev. Fish Biol. Fish. 4: 461-485. http://dx.doi.org/10.1007/BF00042890   Song J, Song ZB, Yue BS and Zheng WJ (2006). Assessing genetic diversity of wild populations of Prenant's schizothoracin, Schizothorax prenanti, using AFLP Markers. Environm. Biol. Fish. 77: 79-86. http://dx.doi.org/10.1007/s10641-006-9056-x   Spielman D, Brook BW and Frankham R (2004). Most species are not driven to extinction before genetic factors impact them. Proc. Nat. Acad. Sci. U. S. A. 101: 15261-15264. http://dx.doi.org/10.1073/pnas.0403809101 PMid:15477597 PMCid:524053   Usio N and Townsend CR (2004). Roles of crayfish: consequences of predation and bioturbation for stream invertebrates. Ecology 85: 807-822. http://dx.doi.org/10.1890/02-0618   Villanelli F and Gherardi F (1998). Breeding in the crayfish, Austropotamobius pallipes: mating patterns, mate choice and intermale competition. Freshwater Biol. 40: 305-315. http://dx.doi.org/10.1046/j.1365-2427.1998.00355.x   Vos P, Hogers R, Bleeker M, Reijans M, et al. (1995). AFLP: a new technique for DNA fingerprinting. Nucleic Acids Res. 23: 4407-4414. http://dx.doi.org/10.1093/nar/23.21.4407 PMid:7501463 PMCid:307397   Wang ZY, Tsoi KH and Chu KH (2004). Applications of AFLP technology in genetic and phylogenetic analysis of penaeid shrimp. Biochem. Syst. Ecol. 32: 399-407. http://dx.doi.org/10.1016/j.bse.2003.10.006   Wilson AB, Naish KA and Boulding EG (1999). Multiple dispersal strategies of the invasive quagga mussel (Dreissena bugensis) as revealed by microsatellite analyses. Can. J. Fish. Aquat. Sci. 56: 2248-2261. http://dx.doi.org/10.1139/f99-162   Yue GH, Li Y, Lim LC and Orban L (2004). Monitoring the genetic diversity of three Asian arowana (Scleropages formosus) captive stocks using AFLP and microsatellites. Aquaculture 237: 89-102. http://dx.doi.org/10.1016/j.aquaculture.2004.04.003   Yue GH, Li J, Bai ZY, Wang CM, et al. (2010). Genetic diversity and population structure of the invasive alien red swamp crayfish. Biol. Inv. 12: 2697-2706. http://dx.doi.org/10.1007/s10530-009-9675-1
Y. Huang, Wang, L., Bennett, B., Williams, R. W., Wang, Y. J., Gu, W. K., and Jiao, Y., Potential role of Atp5g3 in epigenetic regulation of alcohol preference or obesity from a mouse genomic perspective, vol. 12, pp. 3662-3674, 2013.
2012
L. L. Hu, Huang, Y., Wang, Q. C., Zou, Q., and Jiang, Y., Benchmark comparison of ab initio microRNA identification methods and software, vol. 11, pp. 4525-4538, 2012.
Batuwita R and Palade V (2009). microPred: effective classification of pre-miRNAs for human miRNA gene prediction. Bioinformatics 25: 989-995. http://dx.doi.org/10.1093/bioinformatics/btp107 PMid:19233894   Bentwich I, Avniel A, Karov Y, Aharonov R, et al. (2005). Identification of hundreds of conserved and nonconserved human microRNAs. Nat. Genet. 37: 766-770. http://dx.doi.org/10.1038/ng1590 PMid:15965474   Borchert GM, Lanier W and Davidson BL (2006). RNA polymerase III transcribes human microRNAs. Nat. Struct. Mol. Biol. 13: 1097-1101. http://dx.doi.org/10.1038/nsmb1167 PMid:17099701   Brennecke J, Hipfner DR, Stark A, Russell RB, et al. (2003). bantam encodes a developmentally regulated microRNA that controls cell proliferation and regulates the proapoptotic gene hid in Drosophila. Cell 113: 25-36. http://dx.doi.org/10.1016/S0092-8674(03)00231-9   Carrington JC and Ambros V (2003). Role of microRNAs in plant and animal development. Science 301: 336-338. http://dx.doi.org/10.1126/science.1085242 PMid:12869753   Friedlander MR, Chen W, Adamidi C, Maaskola J, et al. (2008). Discovering microRNAs from deep sequencing data using miRDeep. Nat. Biotechnol. 26: 407-415. http://dx.doi.org/10.1038/nbt1394 PMid:18392026   Hackenberg M, Sturm M, Langenberger D, Falcon-Perez JM, et al. (2009). miRanalyzer: a microRNA detection and analysis tool for next-generation sequencing experiments. Nucleic Acids Res. 37: W68-W76. http://dx.doi.org/10.1093/nar/gkp347 PMid:19433510 PMCid:2703919   Hofacker IL (2003). Vienna RNA secondary structure server. Nucleic Acids Res. 31: 3429-3431. http://dx.doi.org/10.1093/nar/gkg599 PMid:12824340 PMCid:169005   Huang JC, Babak T, Corson TW, Chua G, et al. (2007). Using expression profiling data to identify human microRNA targets. Nat. Methods 4: 1045-1049. http://dx.doi.org/10.1038/nmeth1130 PMid:18026111   Huang Y, Zou Q, Tang SM, Wang LG, et al. (2010). Computational identification and characteristics of novel microRNAs from the silkworm (Bombyx mori L.). Mol. Biol. Rep. 37: 3171-3176. http://dx.doi.org/10.1007/s11033-009-9897-4 PMid:19823945   Huang Y, Shen XJ, Zou Q, Wang SP, et al. (2011a). Biological functions of microRNAs: a review. J. Physiol. Biochem. 67: 129-139. http://dx.doi.org/10.1007/s13105-010-0050-6 PMid:20981514   Huang Y, Zou Q, Wang SP, Tang SM, et al. (2011b). The discovery approaches and detection methods of microRNAs. Mol. Biol. Rep. 38: 4125-4135. http://dx.doi.org/10.1007/s11033-010-0532-1 PMid:21107708   Jiang P, Wu H, Wang W, Ma W, et al. (2007). MiPred: classification of real and pseudo microRNA precursors using random forest prediction model with combined features. Nucleic Acids Res. 35: W339-W344. http://dx.doi.org/10.1093/nar/gkm368 PMid:17553836 PMCid:1933124   Kumar S, Ansari FA and Scaria V (2009). Prediction of viral microRNA precursors based on human microRNA precursor sequence and structural features. Virol. J. 6: 129. http://dx.doi.org/10.1186/1743-422X-6-129 PMid:19691855 PMCid:2743665   Lee Y, Ahn C, Han J, Choi H, et al. (2003). The nuclear RNase III Drosha initiates microRNA processing. Nature 425: 415-419. http://dx.doi.org/10.1038/nature01957 PMid:14508493   Li PW, Lu XY, Li CZ, Fang J, et al. (2007). Advances in the study of plant microRNAs. Yi Chuan 29: 283-288. http://dx.doi.org/10.1360/yc-007-0283 PMid:17369147   Lim LP, Lau NC, Weinstein EG, Abdelhakim A, et al. (2003). The microRNAs of Caenorhabditis elegans. Genes Dev. http://dx.doi.org/10.1101/gad.1074403   Reinhart BJ, Slack FJ, Basson M, Pasquinelli AE, et al. (2000). The 21-nucleotide let-7 RNA regulates developmental timing in Caenorhabditis elegans. Nature 403: 901-906. http://dx.doi.org/10.1038/35002607 PMid:10706289   Ruby JG, Jan C, Player C, Axtell MJ, et al. (2006). Large-scale sequencing reveals 21U-RNAs and additional microRNAs and endogenous siRNAs in C. elegans. Cell 127: 1193-1207. http://dx.doi.org/10.1016/j.cell.2006.10.040 PMid:17174894   Sankoff D, Kruskal JB, Mainville S and Cedergren RJ (1983). Fast Algorithms to Determine RNA Secondary Structures Containing Multiple Loops. In: Time Warps, String Edits, and Macromolecules: The Theory and Practice of Sequence Comparison (Sankoff D and Kruskal JB, eds.). Chapter 3. Addison-Wesley, Reading, 93-120.   Sewer A, Paul N, Landgraf P, Aravin A, et al. (2005). Identification of clustered microRNAs using an ab initio prediction method. BMC Bioinformatics 6: 267. http://dx.doi.org/10.1186/1471-2105-6-267 PMid:16274478 PMCid:1315341   Wang X, Zhang J, Li F, Gu J, et al. (2005). MicroRNA identification based on sequence and structure alignment. Bioinformatics 21: 3610-3614. http://dx.doi.org/10.1093/bioinformatics/bti562 PMid:15994192   Wu Y, Wei B, Liu H, Li T, et al. (2011). MiRPara: a SVM-based software tool for prediction of most probable microRNA   Genetics and Molecular Research 11 (4): 4525-4538 (2012) ©FUNPEC-RP www.funpecrp.com.br   L.L. Hu et al. 4538 coding regions in genome scale sequences. BMC Bioinformatics 12: 107.   Xue C, Li F, He T, Liu GP, et al. (2005). Classification of real and pseudo microRNA precursors using local structuresequence features and support vector machine. BMC Bioinformatics 6: 310. http://dx.doi.org/10.1186/1471-2105-6-310 PMid:16381612 PMCid:1360673   Yousef M, Nebozhyn M, Shatkay H, Kanterakis S, et al. (2006). Combining multi-species genomic data for microRNA identification using a Naive Bayes classifier. Bioinformatics 22: 1325-1334. http://dx.doi.org/10.1093/bioinformatics/btl094 PMid:16543277   Zeng Y, Yi R and Cullen BR (2005). Recognition and cleavage of primary microRNA precursors by the nuclear processing enzyme Drosha. EMBO J. 24: 138-148. http://dx.doi.org/10.1038/sj.emboj.7600491 PMid:15565168 PMCid:544904   Zou Q, Zhao T, Liu Y and Guo M (2009). Predicting RNA secondary structure based on the class information and Hopfield network. Comput. Biol. Med. 39: 206-214. http://dx.doi.org/10.1016/j.compbiomed.2008.12.010 PMid:19215914   Zou Q, Lin C, Liu XY, Han YP, et al. (2011). Novel representation of RNA secondary structure used to improve prediction algorithms. Genet. Mol. Res. 10: 1986-1998. http://dx.doi.org/10.4238/vol10-3gmr1181 PMid:21948761   Zuker M (1989a). Computer prediction of RNA structure. Methods Enzymol. 180: 262-288. http://dx.doi.org/10.1016/0076-6879(89)80106-5   Zuker M (1989b). On finding all suboptimal foldings of an RNA molecule. Science 244: 48-52. http://dx.doi.org/10.1126/science.2468181 PMid:2468181   Zuker M (2003). Mfold web server for nucleic acid folding and hybridization prediction. Nucleic Acids Res. 31: 3406-3415. http://dx.doi.org/10.1093/nar/gkg595 PMid:12824337 PMCid:169194   Zuker M and Stiegler P (1981). Optimal computer folding of large RNA sequences using thermodynamics and auxiliary information. Nucleic Acids Res. 9: 133-148. http://dx.doi.org/10.1093/nar/9.1.133 PMid:6163133 PMCid:326673
W. Chen, Liu, X., Huang, Y., Jiang, Y., Zou, Q., and Lin, C., Improved method for predicting protein fold patterns with ensemble classifiers, vol. 11, pp. 174-181, 2012.
Boisvert S, Marchand M, Laviolette F and Corbeil J (2008). HIV-1 coreceptor usage prediction without multiple alignments: an application of string kernels. Retrovirology 5: 110. http://dx.doi.org/10.1186/1742-4690-5-110 PMid:19055831    PMCid:2637298 Breimin L (2001). Random forests. Machine Learn. 45: 5-32. http://dx.doi.org/10.1023/A:1010933404324 Cai CZ, Han LY, Ji ZL, Chen X, et al. (2003). SVM-Prot: Web-based support vector machine software for functional classification of a protein from its primary sequence. Nucleic Acids Res. 31: 3692-3697. http://dx.doi.org/10.1093/nar/gkg600 PMid:12824396    PMCid:169006 Call ME, Schnell JR, Xu C, Lutz RA, et al. (2006). The structure of the zetazeta transmembrane dimer reveals features essential for its assembly with the T cell receptor. Cell 127: 355-368. http://dx.doi.org/10.1016/j.cell.2006.08.044 PMid:17055436 Chen K and Kurgan L (2007). PFRES: protein fold classification by using evolutionary information and predicted secondary structure. Bioinformatics 23: 2843-2850. http://dx.doi.org/10.1093/bioinformatics/btm475 PMid:17942446 Chou KC (2004). Structural bioinformatics and its impact to biomedical science. Curr. Med. Chem. 11: 2105-2134. PMid:15279552 Ding CHQ and Dubchak I (2001). Multi-class protein fold recognition using support vector machines and neural networks. Bioinformatics 17: 349-358. http://dx.doi.org/10.1093/bioinformatics/17.4.349 PMid:11301304 Douglas SM, Chou JJ and Shih WM (2007). DNA-nanotube-induced alignment of membrane proteins for NMR structure determination. Proc. Natl. Acad. Sci. U. S. A. 104: 6644-6648. http://dx.doi.org/10.1073/pnas.0700930104 PMid:17404217    PMCid:1871839 Gao WN, Wei DQ, Li Y, Gao H, et al. (2007). Agaritine and its derivatives are potential inhibitors against HIV proteases. Med. Chem. 3: 221-226. http://dx.doi.org/10.2174/157340607780620644 PMid:17504192 Honda M, Kawai H, Shirota Y, Yamashita T, et al. (2005). cDNA microarray analysis of autoimmune hepatitis, primary biliary cirrhosis and consecutive disease manifestation. J. Autoimmun. 25: 133-140. http://dx.doi.org/10.1016/j.jaut.2005.03.009 PMid:16150573 Li Y, Wei DQ, Gao WN, Gao H, et al. (2007). Computational approach to drug design for oxazolidinones as antibacterial agents. Med. Chem. 3: 576-582. http://dx.doi.org/10.2174/157340607782360362 PMid:18045208 Murzin AG, Brenner SE, Hubbard T and Chothia C (1995). SCOP: a structural classification of proteins database for the investigation of sequences and structures. J. Mol. Biol. 247: 536-540. http://dx.doi.org/10.1016/S0022-2836(05)80134-2 Nanni L (2006). A novel ensemble of classifiers for protein fold recognition. Neurocomputing 69: 2434-2437. http://dx.doi.org/10.1016/j.neucom.2006.01.026 Niels L, Mark H and Eibe F (2005). Logistic model trees. Machine Learn 95: 161-205. Pu X, Guo J, Leung H and Lin Y (2007). Prediction of membrane protein types from sequences and position-specific scoring matrices. J. Theor. Biol. 247: 259-265. http://dx.doi.org/10.1016/j.jtbi.2007.01.016 PMid:17433369 Schaffer AA, Aravind L, Madden TL, Shavirin S, et al. (2001). Improving the accuracy of PSI-BLAST protein database searches with composition-based statistics and other refinements. Nucleic Acids Res. 29: 2994-3005. http://dx.doi.org/10.1093/nar/29.14.2994 PMid:11452024    PMCid:55814 Schnell JR and Chou JJ (2008). Structure and mechanism of the M2 proton channel of influenza A virus. Nature 451: 591-595. http://dx.doi.org/10.1038/nature06531 PMid:18235503    PMCid:3108054 Shen HB and Chou KC (2006). Ensemble classifier for protein fold pattern recognition. Bioinformatics 22: 1717-1722. http://dx.doi.org/10.1093/bioinformatics/btl170 PMid:16672258 Shen HB and Chou KC (2009). Predicting protein fold pattern with functional domain and sequential evolution information. J. Theor. Biol. 256: 441-446. http://dx.doi.org/10.1016/j.jtbi.2008.10.007 PMid:18996396 Sumner M, Frank E and Hall MA (2005). Speeding up Logistic Model Tree Induction. In: Proceedings of 9th European Conference on Principles and Practice of Knowledge Discovery in Databases, Porto, Portugal (Jorge A, ed.). Springer, Germany, 675-683. Vendruscolo M and Dobson CM (2005). A glimpse at the organization of the protein universe. PNAS 102: 5641-5642. http://dx.doi.org/10.1073/pnas.0500274102 PMid:15827120    PMCid:556289
H. Liu, Huang, Y., Du, X., Chen, Z., Zeng, X., Chen, Y., and Zhang, H., Patterns of synonymous codon usage bias in the model grass Brachypodium distachyon, vol. 11, pp. 4695-4706, 2012.
Bulmer M (1988). Are codon usage patterns in unicellular organisms determined by selection-mutation balance? J. Mol. Biol. 1: 15-26.   Bulmer M (1991). The selection-mutation-drift theory of synonymous codon usage. Genetics 129: 897-907. PMid:1752426 PMCid:1204756   Carels N and Bernardi G (2000). Two classes of genes in plants. Genetics 154: 1819-1825. PMid:10747072 PMCid:1461008   Chiapello H, Lisacek F, Caboche M and Henaut A (1998). Codon usage and gene function are related in sequences of Arabidopsis thaliana. Gene 209: GC1-GC38. http://dx.doi.org/10.1016/S0378-1119(97)00671-9   De Amicis F and Marchetti S (2000). Intercodon dinucleotides affect codon choice in plant genes. Nucleic Acids Res. 28: 3339-3345. http://dx.doi.org/10.1093/nar/28.17.3339 PMid:10954603 PMCid:110687   Doust A (2007). Architectural evolution and its implications for domestication in grasses. Ann. Bot. 100: 941-950. http://dx.doi.org/10.1093/aob/mcm040 PMid:17478546 PMCid:2759198   Draper J, Mur LA, Jenkins G, Ghosh-Biswas GC, et al. (2001). Brachypodium distachyon. A new model system for functional genomics in grasses. Plant Physiol. 127: 1539-1555. http://dx.doi.org/10.1104/pp.010196 PMid:11743099 PMCid:133562   Duret L and Mouchiroud D (1999). Expression pattern and, surprisingly, gene length shape codon usage in Caenorhabditis, Drosophila, and Arabidopsis. Proc. Natl. Acad. Sci. U. S. A. 96: 4482-4487. http://dx.doi.org/10.1073/pnas.96.8.4482 PMid:10200288 PMCid:16358   Eyre-Walker AC (1991). An analysis of codon usage in mammals: selection or mutation bias? J. Mol. Evol. 33: 442-449. http://dx.doi.org/10.1007/BF02103136 PMid:1960741   Gupta SK, Bhattacharyya TK and Ghosh TC (2004). Synonymous codon usage in Lactococcus lactis: mutational bias versus translational selection. J. Biomol. Struct. Dyn. 21: 527-536. http://dx.doi.org/10.1080/07391102.2004.10506946 PMid:14692797   Hershberg R and Petrov DA (2008). Selection on codon bias. Annu. Rev. Genet. 42: 287-299. http://dx.doi.org/10.1146/annurev.genet.42.110807.091442 PMid:18983258   International Brachypodium Initiative (2010). Genome sequencing and analysis of the model grass Brachypodium distachyon. Nature 463: 763-768. http://dx.doi.org/10.1038/nature08747 PMid:20148030   Jiang Y, Deng F, Wang H and Hu Z (2008). An extensive analysis on the global codon usage pattern of baculoviruses. Arch. Virol. 153: 2273-2282. http://dx.doi.org/10.1007/s00705-008-0260-1 PMid:19030954   Kawabe A and Miyashita NT (2003). Patterns of codon usage bias in three dicot and four monocot plant species. Genes Genet. Syst. 78: 343-352. http://dx.doi.org/10.1266/ggs.78.343 PMid:14676425   Liu H, He R, Zhang H, Huang Y, et al. (2010). Analysis of synonymous codon usage in Zea mays. Mol. Biol. Rep. 37: 677-684. http://dx.doi.org/10.1007/s11033-009-9521-7 PMid:19330534   Liu Q (2006). Analysis of codon usage pattern in the radioresistant bacterium Deinococcus radiodurans. Biosystems 85: 99-106. http://dx.doi.org/10.1016/j.biosystems.2005.12.003 PMid:16431014   Liu Q and Xue Q (2005). Comparative studies on codon usage pattern of chloroplasts and their host nuclear genes in four plant species. J. Genet. 84: 55-62. http://dx.doi.org/10.1007/BF02715890 PMid:15876584   Liu Q, Feng Y, Zhao X, Dong H, et al. (2004). Synonymous codon usage bias in Oryza sativa. Plant Sci. 167: 101-105. http://dx.doi.org/10.1016/j.plantsci.2004.03.003   Liu Q, Dou S, Ji Z and Xue Q (2005). Synonymous codon usage and gene function are strongly related in Oryza sativa. Biosystems 80: 123-131. http://dx.doi.org/10.1016/j.biosystems.2004.10.008 PMid:15823411   Mitreva M, Wendl MC, Martin J, Wylie T, et al. (2006). Codon usage patterns in Nematoda: analysis based on over 25 million codons in thirty-two species. Genome Biol. 7: R75. http://dx.doi.org/10.1186/gb-2006-7-8-r75 PMCid:1779591   Morton BR and Wright SI (2007). Selective constraints on codon usage of nuclear genes from Arabidopsis thaliana. Mol. Biol. Evol. 24: 122-129. http://dx.doi.org/10.1093/molbev/msl139 PMid:17021276   Mukhopadhyay P, Basak S and Ghosh TC (2007a). Synonymous codon usage in different protein secondary structural classes of human genes: implication for increased non-randomness of GC3 rich genes towards protein stability. J. Biosci. 32: 947-963. http://dx.doi.org/10.1007/s12038-007-0095-z PMid:17914237   Mukhopadhyay P, Basak S and Ghosh TC (2007b). Nature of selective constraints on synonymous codon usage of rice differs in GC-poor and GC-rich genes. Gene 400: 71-81. http://dx.doi.org/10.1016/j.gene.2007.05.027 PMid:17629420   Murray EE, Lotzer J and Eberle M (1989). Codon usage in plant genes. Nucleic Acids Res. 17: 477-498. http://dx.doi.org/10.1093/nar/17.2.477 PMid:2644621 PMCid:331598   Naya H, Romero H, Carels N, Zavala A, et al. (2001). Translational selection shapes codon usage in the GC-rich genome of Chlamydomonas reinhardtii. FEBS Lett. 501: 127-130. http://dx.doi.org/10.1016/S0014-5793(01)02644-8   Peraldi A, Beccari G, Steed A and Nicholson P (2011). Brachypodium distachyon: a new pathosystem to study Fusarium head blight and other Fusarium diseases of wheat. BMC Plant Biol. 11: 100. http://dx.doi.org/10.1186/1471-2229-11-100 PMid:21639892 PMCid:3123626   Roychoudhury S and Mukherjee D (2010). A detailed comparative analysis on the overall codon usage pattern in herpesviruses. Virus Res. 148: 31-43. http://dx.doi.org/10.1016/j.virusres.2009.11.018 PMid:19969032   Sharp PM and Li WH (1987). The codon Adaptation Index - a measure of directional synonymous codon usage bias, and its potential applications. Nucleic Acids Res. 15: 1281-1295. http://dx.doi.org/10.1093/nar/15.3.1281 PMid:3547335 PMCid:340524   Sharp PM, Stenico M, Peden JF and Lloyd AT (1993). Codon usage: mutational bias, translational selection, or both? Biochem. Soc. Trans. 21: 835-841. PMid:8132077   Shields DC and Sharp PM (1987). Synonymous codon usage in Bacillus subtilis reflects both translational selection and mutational biases. Nucleic Acids Res. 15: 8023-8040. http://dx.doi.org/10.1093/nar/15.19.8023 PMid:3118331 PMCid:306324   Shields DC, Sharp PM, Higgins DG and Wright F (1988). "Silent" sites in Drosophila genes are not neutral: evidence of selection among synonymous codons. Mol. Biol. Evol. 5: 704-716. PMid:3146682   Stenico M, Lloyd AT and Sharp PM (1994). Codon usage in Caenorhabditis elegans: delineation of translational selection and mutational biases. Nucleic Acids Res. 22: 2437-2446. http://dx.doi.org/10.1093/nar/22.13.2437 PMid:8041603 PMCid:308193   Sueoka N (1988). Directional mutation pressure and neutral molecular evolution. Proc. Natl. Acad. Sci. U. S. A. 85: 2653-2657. http://dx.doi.org/10.1073/pnas.85.8.2653 PMid:3357886 PMCid:280056   Sueoka N and Kawanishi Y (2000). DNA G+C content of the third codon position and codon usage biases of human genes. Gene 261: 53-62. http://dx.doi.org/10.1016/S0378-1119(00)00480-7   Wang HC and Hickey DA (2007). Rapid divergence of codon usage patterns within the rice genome. BMC Evol. Biol. 7: S6. http://dx.doi.org/10.1186/1471-2148-7-S1-S6 PMid:17288579 PMCid:1796615   Wright F (1990). The 'effective number of codons' used in a gene. Gene 87: 23-29. http://dx.doi.org/10.1016/0378-1119(90)90491-9   Zhang WJ, Zhou J, Li ZF, Wang L, et al. (2007). Comparative analysis of codon usage patterns among mitochondrion, chloroplast and nuclear genes in Triticum aestivum L. J. Integr. Plant Biol. 49: 246-254. http://dx.doi.org/10.1111/j.1744-7909.2007.00404.x   Zhao S, Zhang Q, Chen Z, Zhao Y, et al. (2007). The factors shaping synonymous codon usage in the genome of Burkholderia mallei. J. Genet. Genomics 34: 362-372. http://dx.doi.org/10.1016/S1673-8527(07)60039-3
F. F. Yang, Huang, Y., Li, Q. B., Dai, J. H., and Fu, Z., Single nucleotide polymorphisms in the ORM1-like 3 gene associated with childhood asthma in a Chinese population, vol. 11, pp. 4646-4653, 2012.
Adinoff AD, Rosloniec DM, McCall LL and Nelson HS (1990). Immediate skin test reactivity to Food and Drug Administration-approved standardized extracts. J. Allergy Clin. Immunol. 86: 766-774. http://dx.doi.org/10.1016/S0091-6749(05)80181-2   Barton SJ, Koppelman GH, Vonk JM, Browning CA, et al. (2009). PLAUR polymorphisms are associated with asthma, PLAUR levels, and lung function decline. J. Allergy Clin. Immunol. 123: 1391-1400. http://dx.doi.org/10.1016/j.jaci.2009.03.014 PMid:19443020   Bateman ED, Hurd SS, Barnes PJ, Bousquet J, et al. (2008). Global strategy for asthma management and prevention: GINA executive summary. Eur. Respir. J. 31: 143-178. http://dx.doi.org/10.1183/09031936.00138707 PMid:18166595   Breslow DK, Collins SR, Bodenmiller B, Aebersold R, et al. (2010). Orm family proteins mediate sphingolipid homeostasis. Nature 463: 1048-1053. http://dx.doi.org/10.1038/nature08787 PMid:20182505 PMCid:2877384   Cantero-Recasens G, Fandos C, Rubio-Moscardo F, Valverde MA, et al. (2010). The asthma-associated ORMDL3 gene product regulates endoplasmic reticulum-mediated calcium signaling and cellular stress. Hum. Mol. Genet. 19: 111-121. http://dx.doi.org/10.1093/hmg/ddp471 PMid:19819884   Chen YZ (2003). A nationwide survey in China on prevalence of asthma in urban children. Zhonghua Er Ke Za Zhi 41: 123-127. PMid:14759318   Chen YZ (2004). Recent status of prevention and treatment of asthma in children in China. Zhonghua Er Ke Za Zhi 42: 81-82. PMid:15059477   Galanter J, Choudhry S, Eng C, Nazario S, et al. (2008). ORMDL3 gene is associated with asthma in three ethnically diverse populations. Am. J. Respir. Crit. Care Med. 177: 1194-1200. http://dx.doi.org/10.1164/rccm.200711-1644OC PMid:18310477 PMCid:2408437   Galanter JM, Choudhry S, Eng C, Nazario S, et al. (2009). Polymorphisms in the ORMDL3 gene are associated with earlyonsetaAsthma in African Americans. Am. J. Respir. Crit. Care Med. 179: A2743.   Halapi E, Gudbjartsson DF, Jonsdottir GM, Bjornsdottir US, et al. (2010). A sequence variant on 17q21 is associated with age at onset and severity of asthma. Eur. J. Hum. Genet. 18: 902-908. http://dx.doi.org/10.1038/ejhg.2010.38 PMid:20372189 PMCid:2987388   Hirota T, Harada M, Sakashita M, Doi S, et al. (2008). Genetic polymorphism regulating ORM1-like 3 (Saccharomyces cerevisiae) expression is associated with childhood atopic asthma in a Japanese population. J. Allergy Clin. Immunol. 121: 769-770. http://dx.doi.org/10.1016/j.jaci.2007.09.038 PMid:18155279   Hjelmqvist L, Tuson M, Marfany G, Herrero E, et al. (2002). ORMDL proteins are a conserved new family of endoplasmic reticulum membrane proteins. Genome Biol. 3: RESEARCH0027.   Hoffjan S and Ober C (2002). Present status on the genetic studies of asthma. Curr. Opin. Immunol. 14: 709-717. http://dx.doi.org/10.1016/S0952-7915(02)00393-X   Koppelman GH (2006). Gene by environment interaction in asthma. Curr. Allergy Asthma Rep. 6: 103-111. http://dx.doi.org/10.1007/s11882-006-0047-y PMid:16566859   Leung TF, Sy HY, Ng MC, Chan IH, et al. (2009). Asthma and atopy are associated with chromosome 17q21 markers in Chinese children. Allergy 64: 621-628. http://dx.doi.org/10.1111/j.1398-9995.2008.01873.x PMid:19175592   Moffatt MF, Kabesch M, Liang L, Dixon AL, et al. (2007). Genetic variants regulating ORMDL3 expression contribute to the risk of childhood asthma. Nature 448: 470-473. http://dx.doi.org/10.1038/nature06014 PMid:17611496   Ober C and Hoffjan S (2006). Asthma genetics 2006: the long and winding road to gene discovery. Genes Immun. 7: http://dx.doi.org/10.1038/sj.gene.6364284