Publications

Found 11 results
Filters: Author is L. Lu  [Clear All Filters]
2016
L. Lu, Wei, P., Cao, Y., Zhang, Q., Liu, M., Liu, X. D., Wang, Z. L., Zhang, P. Y., Lu, L., Wei, P., Cao, Y., Zhang, Q., Liu, M., Liu, X. D., Wang, Z. L., and Zhang, P. Y., Effect of total peony glucoside pretreatment on NF-κB and ICAM-1 expression in myocardial tissue of rat with myocardial ischemia-reperfusion injury, vol. 15, no. 4, p. -, 2016.
Conflicts of interest The authors declare no conflict of interest. ACKNOWLEDGMENTS We thank the anonymous reviewers for reviewing this manuscript. REFERENCES Boyd JH, Mathur S, Wang Y, Bateman RM, et al (2006). Toll-like receptor stimulation in cardiomyoctes decreases contractility and initiates an NF-kappaB dependent inflammatory response. Cardiovasc. Res. 72: 384-393. http://dx.doi.org/10.1016/j.cardiores.2006.09.011 Chen JY, Wu HX, Chen Y, Zhang LL, et al (2012). Paeoniflorin inhibits proliferation of fibroblast-like synoviocytes through suppressing G-protein-coupled receptor kinase 2. Planta Med. 78: 665-671. http://dx.doi.org/10.1055/s-0031-1298327 Di Paola R, Mazzon E, Paterniti I, Impellizzeri D, et al (2011). Olprinone, a PDE3 inhibitor, modulates the inflammation associated with myocardial ischemia-reperfusion injury in rats. Eur. J. Pharmacol. 650: 612-620. http://dx.doi.org/10.1016/j.ejphar.2010.10.043 Frantz S, Tillmanns J, Kuhlencordt PJ, Schmidt I, et al (2007). Tissue-specific effects of the nuclear factor kappaB subunit p50 on myocardial ischemia-reperfusion injury. Am. J. Pathol. 171: 507-512. http://dx.doi.org/10.2353/ajpath.2007.061042 Gu Q, Yang XP, Bonde P, DiPaula A, et al (2006). Inhibition of TNF-alpha reduces myocardial injury and proinflammatory pathways following ischemia-reperfusion in the dog. J. Cardiovasc. Pharmacol. 48: 320-328. http://dx.doi.org/10.1097/01.fjc.0000250079.46526.38 Hu ZC, Chen YD, Ren YH, et al (2011). Methylprednisolone improves microcirculation in streptozotocin-induced diabetic rats after myocardial ischemia/reperfusion. Chin. Med. J. (Engl.) 124: 923-929. Ji YY, Wang ZD, Wang SF, Wang BT, et al (2015). Ischemic preconditioning ameliorates intestinal injury induced by ischemia-reperfusion in rats. World J. Gastroenterol. 21: 8081-8088. Jin C, Cleveland JC, Ao L, Li J, et al (2014). Human myocardium releases heat shock protein 27 (HSP27) after global ischemia: the proinflammatory effect of extracellular HSP27 through toll-like receptor (TLR)-2 and TLR4. Mol. Med. 20: 280-289. http://dx.doi.org/10.2119/molmed.2014.00058 Jin YC, Kim CW, Kim YM, Nizamutdinova IT, et al (2009). Cryptotanshinone, a lipophilic compound of Salvia miltiorrriza root, inhibits TNF-alpha-induced expression of adhesion molecules in HUVEC and attenuates rat myocardial ischemia/reperfusion injury in vivo. Eur. J. Pharmacol. 614: 91-97. http://dx.doi.org/10.1016/j.ejphar.2009.04.038 Liang X, Huang J, Lin X, Qin F, et al (2014). The effect of 17-methoxyl-7-hydroxy-benzene-furanchalcone on NF-κB and the inflammatory response during myocardial ischemia reperfusion injury in rats. J. Cardiovasc. Pharmacol. 63: 68-75. http://dx.doi.org/10.1097/FJC.0000000000000027 Liang Z, Liu LF, Yao TM, Huo Y, et al (2012). Cardioprotective effects of Guanxinshutong (GXST) against myocardial ischemia/ reperfusion injury in rats. J. Geriatr. Cardiol. 9: 130-136. http://dx.doi.org/10.3724/SP.J.1263.2011.11261 Long J, Gao M, Kong Y, Shen X, et al (2012). Cardioprotective effect of total paeony glycosides against isoprenaline-induced myocardial ischemia in rats. Phytomedicine 19: 672-676. http://dx.doi.org/10.1016/j.phymed.2012.03.004 Lungkaphin A, Pongchaidecha A, Palee S, Arjinajarn P, et al (2015). Pinocembrin reduces cardiac arrhythmia and infarct size in rats subjected to acute myocardial ischemia/reperfusion. Appl. Physiol. Nutr. Metab. 40: 1031-1037. http://dx.doi.org/10.1139/apnm-2015-0108 Shen B, Li J, Gao L, Zhang J, et al (2013). Role of CC-chemokine receptor 5 on myocardial ischemia-reperfusion injury in rats. Mol. Cell. Biochem. 378: 137-144. http://dx.doi.org/10.1007/s11010-013-1604-z Wei G, Guan Y, Yin Y, Duan J, et al (2013). Anti-inflammatory effect of protocatechuic aldehyde on myocardial ischemia/reperfusion injury in vivo and in vitro. Inflammation 36: 592-602. http://dx.doi.org/10.1007/s10753-012-9581-z Wu ZY, Wang ZW, Hu R, Zhou Z, et al (2015). Role of Nrf2 signal pathway in rats with deep hypothermia ischemia/reperfusion injury undergoing remote postconditioning. Genet. Mol. Res. 14: 492-499. http://dx.doi.org/10.4238/2015.January.26.2 Wu ZY, Yao Y, Hu R, Dai FF, et al (2016). Cyclic adenosine monophosphate-protein kinase A signal pathway may be involved in pulmonary aquaporin-5 expression in ischemia/reperfusion rats following deep hypothermia cardiac arrest. Genet. Mol. Res. 15: 15017377. http://dx.doi.org/10.4238/gmr.15017377 Xu H, Wang D, Peng C, Huang X, et al (2014). Rabbit sera containing compound danshen dripping pill attenuate leukocytes adhesion to TNF-alpha--activated human umbilical vein endothelial cells by suppressing endothelial ICAM-1 and VCAM-1 expression through NF-kappaB signaling pathway. J. Cardiovasc. Pharmacol. 63: 323-332. http://dx.doi.org/10.1097/FJC.0000000000000046 Xu HY, Chen ZW, Wu YM, et al (2012). Antitumor activity of total paeony glycoside against human chronic myelocytic leukemia K562 cell lines in vitro and in vivo. Med. Oncol. 29: 1137-1147. http://dx.doi.org/10.1007/s12032-011-9909-9 Xu JH, Zhao YY, Wang JK, Yuan ZG, et al (2010). Effects of mouse recombinant bone morphogenetic protein-7 transfection on cell apoptosis, NF-kappaB, and downstream genes in cultured primary cardiomyocytes after simulated ischemia and reperfusion injury. J. Cardiovasc. Pharmacol. 56: 69-77. http://dx.doi.org/10.1097/FJC.0b013e3181e0badc Yin H, Chao L, Chao J, et al (2008). Nitric oxide mediates cardiac protection of tissue kallikrein by reducing inflammation and ventricular remodeling after myocardial ischemia/reperfusion. Life Sci. 82: 156-165. http://dx.doi.org/10.1016/j.lfs.2007.10.021 Zeng M, Yan H, Chen Y, Zhao HJ, et al (2012). Suppression of NF-κB reduces myocardial no-reflow. PLoS One 7: e47306. http://dx.doi.org/10.1371/journal.pone.0047306 Zhao N, Liu YY, Wang F, Hu BH, et al (2010). Cardiotonic pills, a compound Chinese medicine, protects ischemia-reperfusion-induced microcirculatory disturbance and myocardial damage in rats. Am. J. Physiol. Heart Circ. Physiol. 298: H1166-H1176. http://dx.doi.org/10.1152/ajpheart.01186.2009
L. Lu, Wei, P., Cao, Y., Zhang, Q., Liu, M., Liu, X. D., Wang, Z. L., Zhang, P. Y., Lu, L., Wei, P., Cao, Y., Zhang, Q., Liu, M., Liu, X. D., Wang, Z. L., and Zhang, P. Y., Effect of total peony glucoside pretreatment on NF-κB and ICAM-1 expression in myocardial tissue of rat with myocardial ischemia-reperfusion injury, vol. 15, no. 4, p. -, 2016.
Conflicts of interest The authors declare no conflict of interest. ACKNOWLEDGMENTS We thank the anonymous reviewers for reviewing this manuscript. REFERENCES Boyd JH, Mathur S, Wang Y, Bateman RM, et al (2006). Toll-like receptor stimulation in cardiomyoctes decreases contractility and initiates an NF-kappaB dependent inflammatory response. Cardiovasc. Res. 72: 384-393. http://dx.doi.org/10.1016/j.cardiores.2006.09.011 Chen JY, Wu HX, Chen Y, Zhang LL, et al (2012). Paeoniflorin inhibits proliferation of fibroblast-like synoviocytes through suppressing G-protein-coupled receptor kinase 2. Planta Med. 78: 665-671. http://dx.doi.org/10.1055/s-0031-1298327 Di Paola R, Mazzon E, Paterniti I, Impellizzeri D, et al (2011). Olprinone, a PDE3 inhibitor, modulates the inflammation associated with myocardial ischemia-reperfusion injury in rats. Eur. J. Pharmacol. 650: 612-620. http://dx.doi.org/10.1016/j.ejphar.2010.10.043 Frantz S, Tillmanns J, Kuhlencordt PJ, Schmidt I, et al (2007). Tissue-specific effects of the nuclear factor kappaB subunit p50 on myocardial ischemia-reperfusion injury. Am. J. Pathol. 171: 507-512. http://dx.doi.org/10.2353/ajpath.2007.061042 Gu Q, Yang XP, Bonde P, DiPaula A, et al (2006). Inhibition of TNF-alpha reduces myocardial injury and proinflammatory pathways following ischemia-reperfusion in the dog. J. Cardiovasc. Pharmacol. 48: 320-328. http://dx.doi.org/10.1097/01.fjc.0000250079.46526.38 Hu ZC, Chen YD, Ren YH, et al (2011). Methylprednisolone improves microcirculation in streptozotocin-induced diabetic rats after myocardial ischemia/reperfusion. Chin. Med. J. (Engl.) 124: 923-929. Ji YY, Wang ZD, Wang SF, Wang BT, et al (2015). Ischemic preconditioning ameliorates intestinal injury induced by ischemia-reperfusion in rats. World J. Gastroenterol. 21: 8081-8088. Jin C, Cleveland JC, Ao L, Li J, et al (2014). Human myocardium releases heat shock protein 27 (HSP27) after global ischemia: the proinflammatory effect of extracellular HSP27 through toll-like receptor (TLR)-2 and TLR4. Mol. Med. 20: 280-289. http://dx.doi.org/10.2119/molmed.2014.00058 Jin YC, Kim CW, Kim YM, Nizamutdinova IT, et al (2009). Cryptotanshinone, a lipophilic compound of Salvia miltiorrriza root, inhibits TNF-alpha-induced expression of adhesion molecules in HUVEC and attenuates rat myocardial ischemia/reperfusion injury in vivo. Eur. J. Pharmacol. 614: 91-97. http://dx.doi.org/10.1016/j.ejphar.2009.04.038 Liang X, Huang J, Lin X, Qin F, et al (2014). The effect of 17-methoxyl-7-hydroxy-benzene-furanchalcone on NF-κB and the inflammatory response during myocardial ischemia reperfusion injury in rats. J. Cardiovasc. Pharmacol. 63: 68-75. http://dx.doi.org/10.1097/FJC.0000000000000027 Liang Z, Liu LF, Yao TM, Huo Y, et al (2012). Cardioprotective effects of Guanxinshutong (GXST) against myocardial ischemia/ reperfusion injury in rats. J. Geriatr. Cardiol. 9: 130-136. http://dx.doi.org/10.3724/SP.J.1263.2011.11261 Long J, Gao M, Kong Y, Shen X, et al (2012). Cardioprotective effect of total paeony glycosides against isoprenaline-induced myocardial ischemia in rats. Phytomedicine 19: 672-676. http://dx.doi.org/10.1016/j.phymed.2012.03.004 Lungkaphin A, Pongchaidecha A, Palee S, Arjinajarn P, et al (2015). Pinocembrin reduces cardiac arrhythmia and infarct size in rats subjected to acute myocardial ischemia/reperfusion. Appl. Physiol. Nutr. Metab. 40: 1031-1037. http://dx.doi.org/10.1139/apnm-2015-0108 Shen B, Li J, Gao L, Zhang J, et al (2013). Role of CC-chemokine receptor 5 on myocardial ischemia-reperfusion injury in rats. Mol. Cell. Biochem. 378: 137-144. http://dx.doi.org/10.1007/s11010-013-1604-z Wei G, Guan Y, Yin Y, Duan J, et al (2013). Anti-inflammatory effect of protocatechuic aldehyde on myocardial ischemia/reperfusion injury in vivo and in vitro. Inflammation 36: 592-602. http://dx.doi.org/10.1007/s10753-012-9581-z Wu ZY, Wang ZW, Hu R, Zhou Z, et al (2015). Role of Nrf2 signal pathway in rats with deep hypothermia ischemia/reperfusion injury undergoing remote postconditioning. Genet. Mol. Res. 14: 492-499. http://dx.doi.org/10.4238/2015.January.26.2 Wu ZY, Yao Y, Hu R, Dai FF, et al (2016). Cyclic adenosine monophosphate-protein kinase A signal pathway may be involved in pulmonary aquaporin-5 expression in ischemia/reperfusion rats following deep hypothermia cardiac arrest. Genet. Mol. Res. 15: 15017377. http://dx.doi.org/10.4238/gmr.15017377 Xu H, Wang D, Peng C, Huang X, et al (2014). Rabbit sera containing compound danshen dripping pill attenuate leukocytes adhesion to TNF-alpha--activated human umbilical vein endothelial cells by suppressing endothelial ICAM-1 and VCAM-1 expression through NF-kappaB signaling pathway. J. Cardiovasc. Pharmacol. 63: 323-332. http://dx.doi.org/10.1097/FJC.0000000000000046 Xu HY, Chen ZW, Wu YM, et al (2012). Antitumor activity of total paeony glycoside against human chronic myelocytic leukemia K562 cell lines in vitro and in vivo. Med. Oncol. 29: 1137-1147. http://dx.doi.org/10.1007/s12032-011-9909-9 Xu JH, Zhao YY, Wang JK, Yuan ZG, et al (2010). Effects of mouse recombinant bone morphogenetic protein-7 transfection on cell apoptosis, NF-kappaB, and downstream genes in cultured primary cardiomyocytes after simulated ischemia and reperfusion injury. J. Cardiovasc. Pharmacol. 56: 69-77. http://dx.doi.org/10.1097/FJC.0b013e3181e0badc Yin H, Chao L, Chao J, et al (2008). Nitric oxide mediates cardiac protection of tissue kallikrein by reducing inflammation and ventricular remodeling after myocardial ischemia/reperfusion. Life Sci. 82: 156-165. http://dx.doi.org/10.1016/j.lfs.2007.10.021 Zeng M, Yan H, Chen Y, Zhao HJ, et al (2012). Suppression of NF-κB reduces myocardial no-reflow. PLoS One 7: e47306. http://dx.doi.org/10.1371/journal.pone.0047306 Zhao N, Liu YY, Wang F, Hu BH, et al (2010). Cardiotonic pills, a compound Chinese medicine, protects ischemia-reperfusion-induced microcirculatory disturbance and myocardial damage in rats. Am. J. Physiol. Heart Circ. Physiol. 298: H1166-H1176. http://dx.doi.org/10.1152/ajpheart.01186.2009
2013
L. S. Wang, Jiao, Y., Huang, Y., Liu, X. Y., Gibson, G., Bennett, B., Hamre, K. M., Li, D. W., Zhao, H. Y., Gelernter, J., Kranzler, H. R., Farrer, L. A., Lu, L., Wang, Y. J., and Gu, W. K., Critical evaluation of transcription factor Atf2 as a candidate modulator of alcohol preference in mouse and human populations, vol. 12, pp. 5992-6005, 2013.
P. Hu, Hu, B., Qin, Y. H., Lu, L., Li, Z. Q., Tao, L. Q., Pei, Q., and Chen, J., Serum lipid abnormalities are not associated with apoB 3' VNTR polymorphism in nephrotic children, vol. 12, pp. 765-774, 2013.
Bairaktari E, Hatzidimou K, Tzallas C, Vini M, et al. (2000). Estimation of LDL cholesterol based on the Friedewald formula and on apo B levels. Clin. Biochem. 33: 549-555. http://dx.doi.org/10.1016/S0009-9120(00)00162-4   Batanian JR, Ledbetter DH and Fenwick RG (1998). A simple VNTR-PCR method for detecting maternal cell contamination in prenatal diagnosis. Genet. Test. 2: 347-350. http://dx.doi.org/10.1089/gte.1998.2.347 PMid:10464615   Boerwinkle E, Xiong WJ, Fourest E and Chan L (1989). Rapid typing of tandemly repeated hypervariable loci by the polymerase chain reaction: application to the apolipoprotein B 3' hypervariable region. Proc. Natl. Acad. Sci. U. S. A. 86: 212-216. http://dx.doi.org/10.1073/pnas.86.1.212 PMid:2911570 PMCid:286434   Choong ML, Koay ES, Khaw MC and Aw TC (1999). Apolipoprotein B 5'-Ins/Del and 3'-VNTR polymorphisms in Chinese, malay and Indian singaporeans. Hum. Hered. 49: 31-40. http://dx.doi.org/10.1159/000022837 PMid:9858855   Cohen SL, Cramp DG, Lewis AD and Tickner TR (1980). The mechanism of hyperlipidaemia in nephrotic syndrome--role of low albumin and the LCAT reaction. Clin. Chim. Acta 104: 393-400. http://dx.doi.org/10.1016/0009-8981(80)90398-8   Deka R, Chakraborty R, DeCroo S, Rothhammer F, et al. (1992). Characteristics of polymorphism at a VNTR locus 3' to the apolipoprotein B gene in five human populations. Am. J. Hum. Genet. 51: 1325-1333. PMid:1463014 PMCid:1682919   Destro-Bisol G, Presciuttini S, d'Aloja E, Dobosz M, et al. (1994). Genetic variation at the ApoB 3'HVR, D2S44, and D7S21 loci in the Ewondo Ethnic Group of Cameroon. Am. J. Hum. Genet. 55: 168-174. PMid:7912886 PMCid:1918238   Dixit M, Srivastava A, Choudhuri G and Mittal B (2008). Higher alleles of apolipoprotein B Gene 3' VNTR: risk for gallstone disease. Ind. J. Clin. Biochem. 23: 123-129. http://dx.doi.org/10.1007/s12291-008-0029-z PMid:23105737 PMCid:3453088   Dixit VM and Hettiaratchi ES (1979). The mechanism of hyperlipidaemia in the nephrotic syndrome. Med. Hypotheses 5: 1327-1331. http://dx.doi.org/10.1016/0306-9877(79)90102-6   Friedl W, Ludwig EH, Paulweber B, Sandhofer F, et al. (1990). Hypervariability in a minisatellite 3' of the apolipoprotein B gene in patients with coronary heart disease compared with normal controls. J. Lipid Res. 31: 659-665. PMid:2351870   Gipson DS, Massengill SF, Yao L, Nagaraj S, et al. (2009). Management of childhood onset nephrotic syndrome. Pediatrics 124: 747-757. http://dx.doi.org/10.1542/peds.2008-1559 PMid:19651590   Gong WK, Cheung W and Yap HK (2000). Minimal change nephrotic syndrome - a complex genetic disorder. Ann. Acad. Med. Singapore 29: 351-356. PMid:10976389   Gordillo R and Spitzer A (2009). The nephrotic syndrome. Pediatr. Rev. 30: 94-104. http://dx.doi.org/10.1542/pir.30-3-94 PMid:19255123   Hansen PS, Gerdes LU, Klausen IC, Gregersen N, et al. (1993). Polymorphisms in the apolipoprotein B-100 gene contributes to normal variation in plasma lipids in 464 Danish men born in 1948. Hum. Genet. 91: 45-50. http://dx.doi.org/10.1007/BF00230221 PMid:8095917   Hokken-Koelega AC, Hackeng WH, Stijnen T, Wit JM, et al. (1990). Twenty-four-hour plasma growth hormone (GH) profiles, urinary GH excretion, and plasma insulin-like growth factor-I and -II levels in prepubertal children with chronic renal insufficiency and severe growth retardation. J. Clin. Endocrinol. Metab 71: 688-695. http://dx.doi.org/10.1210/jcem-71-3-688 PMid:2394775   Hu P, Lu L, Hu B and Du PF (2009a). Characteristics of lipid metabolism under different urinary protein excretion in children with primary nephrotic syndrome. Scand. J. Clin. Lab. Invest. 69: 680-686. http://dx.doi.org/10.3109/00365510902980751 PMid:19468931   Hu P, Qin YH, Jing CX, Lei FY, et al. (2009b). Association of polymorphisms at restriction enzyme recognition sites of apolipoprotein B and E gene with dyslipidemia in children undergoing primary nephrotic syndrome. Mol. Biol. Rep. 36: 1015-1021. http://dx.doi.org/10.1007/s11033-008-9275-7 PMid:18512131   Hu P, Qin YH, Jing CX, Lu L, et al. (2009c). Effect of apolipoprotein B polymorphism on body mass index, serum protein and lipid profiles in children of Guangxi, China. Ann. Hum. Biol. 36: 411-420. http://dx.doi.org/10.1080/03014460902882475 PMid:19449275   Hu P, Qin YH, Hu B and Lu L (2010). Hypervariability in a minisatellite 3' of the apolipoprotein B gene: allelic distribution and influence on lipid profiles in Han Children from central China. Clin. Chim. Acta 411: 2092-2096. http://dx.doi.org/10.1016/j.cca.2010.09.010 PMid:20837003   Hu P, Wang J, Hu B, Lu L, et al. (2012). Dyslipidemia acts as a close link between cardiovascular risk and renal progression in nephrotic children. Asian Biomed. 6: 151-157.   Huang LS and Breslow JL (1987). A unique AT-rich hypervariable minisatellite 3' to the ApoB gene defines a high information restriction fragment length polymorphism. J. Biol. Chem. 262: 8952-8955. PMid:2885324   Khrunin A, Verbenko D, Nikitina K and Limborska S (2007). Regional differences in the genetic variability of Finno- Ugric speaking Komi populations. Am. J. Hum. Biol. 19: 741-750. http://dx.doi.org/10.1002/ajhb.20620 PMid:17691096   Lechner BL, Bockenhauer D, Iragorri S, Kennedy TL, et al. (2004). The risk of cardiovascular disease in adults who have had childhood nephrotic syndrome. Pediatr. Nephrol. 19: 744-748. http://dx.doi.org/10.1007/s00467-004-1460-x PMid:15085419   Mitsnefes MM (2008). Cardiovascular complications of pediatric chronic kidney disease. Pediatr. Nephrol. 23: 27-39. http://dx.doi.org/10.1007/s00467-006-0359-0 PMid:17120060 PMCid:2100430   Noguera NI, Tallano CE, Bragos IM and Milani AC (2000). Modified salting-out method for DNA isolation from newborn cord blood nucleated cells. J. Clin. Lab. Anal. 14: 280-283. http://dx.doi.org/10.1002/1098-2825(20001212)14:6<280::AID-JCLA6>3.0.CO;2-0   Pan JP, Chiang AN, Chou CY, Chan WL, et al. (1998). Polymorphisms of the apolipoprotein B 3' variable number of tandem repeats region associated with coronary artery disease in Taiwanese. J. Formos. Med. Assoc. 97: 233-238. PMid:9585673   Pontrelli L, Sidiropoulos KG and Adeli K (2004). Translational control of apolipoprotein B mRNA: regulation via cis elements in the 5' and 3' untranslated regions. Biochemistry 43: 6734-6744. http://dx.doi.org/10.1021/bi049887s PMid:15157107   Rantala M, Rantala TT, Savolainen MJ, Friedlander Y, et al. (2000). Apolipoprotein B gene polymorphisms and serum lipids: meta-analysis of the role of genetic variation in responsiveness to diet. Am. J. Clin. Nutr. 71: 713-724. PMid:10702164   Rebhi L, Omezzine A, Kchok K, Belkahla R, et al. (2008). 5' ins/del and 3' VNTR polymorphisms in the apolipoprotein B gene in relation to lipids and coronary artery disease. Clin. Chem. Lab. Med. 46: 329-334. http://dx.doi.org/10.1515/CCLM.2008.067 PMid:18254714   Ruf RG, Wolf MT, Hennies HC, Lucke B, et al. (2003). A gene locus for steroid-resistant nephrotic syndrome with deafness maps to chromosome 14q24.2. J. Am. Soc. Nephrol. 14: 1519-1522. http://dx.doi.org/10.1097/01.ASN.0000066141.55735.8D PMid:12761252   Ruixing Y, Guangqin C, Yong W, Weixiong L, et al. (2007). Effect of the 3'APOB-VNTR polymorphism on the lipid profiles in the Guangxi Hei Yi Zhuang and Han populations. BMC Med. Genet. 8: 45. http://dx.doi.org/10.1186/1471-2350-8-45 PMid:17640344 PMCid:1939985   Sajantila A, Lukka M and Syvanen AC (1999). Experimentally observed germline mutations at human micro- and minisatellite loci. Eur. J. Hum. Genet. 7: 263-266. http://dx.doi.org/10.1038/sj.ejhg.5200257 PMid:10196715   Segrest JP, Jones MK, De Loof H and Dashti N (2001). Structure of apolipoprotein B-100 in low density lipoproteins. J. Lipid Res. 42: 1346-1367. PMid:11518754   Soares-Vieira JA, Billerbeck AE, Iwamura ES, Cardoso L, et al. (2000). Post-mortem forensic identity testing: application of PCR to the identification of fire victim. Sao Paulo Med. J. 118: 75-77. http://dx.doi.org/10.1590/S1516-31802000000300005 PMid:10810332   Tovar AR, Murguia F, Cruz C, Hernandez-Pando R, et al. (2002). A soy protein diet alters hepatic lipid metabolism gene expression and reduces serum lipids and renal fibrogenic cytokines in rats with chronic nephrotic syndrome. J. Nutr. 132: 2562-2569. PMid:12221209   Verbenko DA, Pogoda TV, Spitsyn VA, Mikulich AI, et al. (2003). Apolipoprotein B 3'-VNTR polymorphism in Eastern European populations. Eur. J. Hum. Genet. 11: 444-451. http://dx.doi.org/10.1038/sj.ejhg.5200986 PMid:12774037   Wiecek A, Kokot F, Strzelczyk P, Witkowicz J, et al. (1993). Relationship between renal biopsy histopathology and profile of changes in serum protein, lipids and proteinuria in patients with nephrotic syndrome due to chronic glomerulonephritis. Pol. Arch. Med. Wewn. 90: 426-432. PMid:8146046   Yasuda N and Kimura M (1968). A gene-counting method of maximum likelihood for estimating gene frequencies in ABO and ABO-like systems. Ann. Hum. Genet. 31: 409-420. http://dx.doi.org/10.1111/j.1469-1809.1968.tb00574.x PMid:5673164