Found 11 results
Filters: Author is Y. Qin  [Clear All Filters]
Y. Ma, Lu, M., Li, J. - Y., Qin, Y., and Gong, X. - G., Evolutive and structural characterization of Nostoc commune iron-superoxide dismutase that is fit for modification, vol. 11, pp. 3607-3617, 2012.
Behrend L, Henderson G and Zwacka RM (2003). Reactive oxygen species in oncogenic transformation. Biochem. Soc. Trans. 31: 1441-1444. PMid:14641084   Brioukhanov AL, Nesatyy VJ and Netrusov AI (2006). Purification and characterization of Fe-containing superoxide dismutase from Methanobrevibacter arboriphilus strain AZ. Biochemistry 71: 441-447. PMid:16615865   Chen X, Kodama T, Iida T and Honda T (2007). Demonstration and characterization of manganese superoxide dismutase of Providencia alcalifaciens. Microbiol. Immunol. 51: 951-961. PMid:17951985   Choudhary M, Jetley UK, Abash KM, Zutshi S, et al. (2007). Effect of heavy metal stress on proline, malondialdehyde, and superoxide dismutase activity in the cyanobacterium Spirulina platensis-S5. Ecotoxicol. Environ. Saf. 66: 204-209. PMid:16600377   Cooper JB, McIntyre K, Badasso MO, Wood SP, et al. (1995). X-ray structure analysis of the iron-dependent superoxide dismutase from Mycobacterium tuberculosis at 2.0 Angstroms resolution reveals novel dimer-dimer interactions. J. Mol. Biol. 246: 531-544. PMid:7877174   Delanian S, Martin M, Bravard A, Luccioni C, et al. (2001). Cu/Zn superoxide dismutase modulates phenotypic changes in cultured fibroblasts from human skin with chronic radiotherapy damage. Radiother. Oncol. 58: 325-331.   Englert C, Horne M and Pfeifer F (1990). Expression of the major gas vesicle protein gene in the halophilic archaebacterium Haloferax mediterranei is modulated by salt. Mol. Gen. Genet. 222: 225-232. PMid:1703266   Go M and Miyazawa S (1980). Relationship between mutability, polarity and exteriority of amino acid residues in protein evolution. Int. J. Pept. Protein Res. 15: 211-224. PMid:7380605   Gottlieb MG, Schwanke CH, Santos AF, Jobim PF, et al. (2005). Association among oxidized LDL levels, MnSOD, apolipoprotein E polymorphisms, and cardiovascular risk factors in a south Brazilian region population. Genet. Mol. Res. 4: 691-703. PMid:16475114   Horne M, Englert C and Pfeifer F (1988). Two genes encoding gas vacuole proteins in Halobacterium halobium. Mol. Gen. Genet. 213: 459-464. PMid:3185512   Hu Y, Rosen DG, Zhou Y, Feng L, et al. (2005). Mitochondrial manganese-superoxide dismutase expression in ovarian cancer: role in cell proliferation and response to oxidative stress. J. Biol. Chem. 280: 39485-39492. PMid:16179351   Jubeh TT, Antler S, Haupt S, Barenholz Y, et al. (2005). Local prevention of oxidative stress in the intestinal epithelium of the rat by adhesive liposomes of superoxide dismutase and tempamine. Mol. Pharm. 2: 2-11. PMid:15804172   Kim CS, Lee CH, Shin JS, Chung YS, et al. (1997). A simple and rapid method for isolation of high quality genomic DNA from fruit trees and conifers using PVP. Nucleic Acids Res. 25: 1085-1086. PMid:9023124 PMCid:146538   Kopp J and Schwede T (2006). The SWISS-MODEL Repository: new features and functionalities. Nucleic Acids Res. 34: D315-D318. PMid:16381875 PMCid:1347419   Li J, Zhou K, Meng X, Wu Q, et al. (2008). Increased ROS generation and SOD activity in heteroplasmic tissues of transmitochondrial mice with A3243G mitochondrial DNA mutation. Genet. Mol. Res. 7: 1054-1062. PMid:19048484   Lu M, Gong X, Lu Y, Guo J, et al. (2006). Molecular cloning and functional characterization of a cell-permeable superoxide dismutase targeted to lung adenocarcinoma cells. Inhibition cell proliferation through the Akt/p27kip1 pathway. J. Biol. Chem. 281: 13620-13627. PMid:16551617   Marklund S and Marklund G (1974). Involvement of the superoxide anion radical in the autoxidation of pyrogallol and a convenient assay for superoxide dismutase. Eur. J. Biochem. 47: 469-474. PMid:4215654   Oyanagui Y, Sato S and Inoue M (1991). Inhibition of carrageenan-induced paw edema by superoxide dismutase that binds to heparan sulfates on vascular endothelial cells. Biochem. Pharmacol. 42: 991-995.   Parker MW and Blake CC (1988a). Crystal structure of manganese superoxide dismutase from Bacillus stearothermophilus at 2.4 A resolution. J. Mol. Biol. 199: 649-661.   Parker MW and Blake CC (1988b). Iron- and manganese-containing superoxide dismutases can be distinguished by analysis of their primary structures. FEBS Lett. 229: 377-382.   Regelsberger G, Laaha U, Dietmann D, Ruker F, et al. (2004). The iron superoxide dismutase from the filamentous cyanobacterium Nostoc PCC 7120. Localization, overexpression, and biochemical characterization. J. Biol. Chem. 279: 44384-44393. PMid:15302891   Rengel RG, Filipovic-Grcic J, Cepelak I, Zanic-Grubisic T, et al. (2005). The effect of liposomes with superoxide dismutase on A2182 cells. Eur. J. Pharm. Biopharm. 60: 47-51. PMid:15848055   Schwede T, Kopp J, Guex N and Peitsch MC (2003). SWISS-MODEL: An automated protein homology-modeling server. Nucleic Acids Res. 31: 3381-3385. PMid:12824332 PMCid:168927   Seo SN, Lee JH and Kim YM (2007). Characterization of an iron- and manganese-containing superoxide dismutase from Methylobacillus sp strain SK1 DSM 8269. Mol. Cells 23: 370-378. PMid:17646712   Shirkey B, Kovarcik DP, Wright DJ, Wilmoth G, et al. (2000). Active Fe-containing superoxide dismutase and abundant sodF mRNA in Nostoc commune (Cyanobacteria) after years of desiccation. J. Bacteriol. 182: 189-197. PMid:10613879 PMCid:94256   Takenaka S, Koshiya J, Okugawa S, Takata A, et al. (2011). Fe-superoxide dismutase and 2-hydroxy-1,4-benzoquinone reductase preclude the auto-oxidation step in 4-aminophenol metabolism by Burkholderia sp strain AK-5. Biodegradation 22: 1-11. PMid:20480210   Tamura K, Dudley J, Nei M and Kumar S (2007). MEGA4: Molecular Evolutionary Genetics Analysis (MEGA) software version 4.0. Mol. Biol. Evol. 24: 1596-1599. PMid:17488738   Van CW, Bowler C, Villarroel R, Tsang EW, et al. (1990). Characterization of iron superoxide dismutase cDNAs from plants obtained by genetic complementation in Escherichia coli. Proc. Natl. Acad. Sci. U. S. A. 87: 9903-9907.   Zhang Y, Zhao W, Zhang HJ, Domann FE, et al. (2002). Overexpression of copper zinc superoxide dismutase suppresses human glioma cell growth. Cancer Res. 62: 1205-1212. PMid:11861405
Y. Zhang, Kang, Y., Qin, Y., Zhou, Z., Lei, M., and Guo, H., Genetic diversity of endangered Polyporus umbellatus from China assessed using a sequence-related amplified polymorphism technique, vol. 11. pp. 4121-4129, 2012.
Ayana A, Bekele E and Bryngelsson T (2000). Genetic variation in wild sorghum (Sorghum bicolor ssp. verticilliflorum (L.) Moench) germplasm from Ethiopia assessed by random amplified polymorphic DNA (RAPD). Hereditas 132: 249-254. PMid:11075520   Budak H, Shearman RC, Parmaksiz I, Gaussoin RE, et al. (2004). Molecular characterization of Buffalograss germplasm using sequence-related amplified polymorphism markers. Theor. Appl. Genet. 108: 328-334. PMid:13679978   Imazeki R and Hongo T (1965). Colored Illustrations of Fungi of Japan. Vol. 2. Hoikusha, Osaka.   Kikuchi G and Yamaji H (2010). Identification of Armillaria species associated with Polyporus umbellatus using ITS sequences of nuclear ribosomal DNA. Mycoscience 51: 366-372.   Lakhanpaul S, Velayudhan KC and Bhat KV (2003). Analysis of genetic diversity in Indian taro [Colocasia esculenta (L.) Schott] using random amplified polymorphic DNA (RAPD) markers. Genet. Resour. Crop Evol. 50: 603-609.   Li G and Quiros CF (2001). Sequence-related amplified polymorphism (SRAP), a new marker system based on a simple PCR reaction: its application to mapping and gene tagging in Brassica. Theor. Appl. Genet. 103: 455-461.   Li SQ (2008). Endangered Polyporus umbellatus need immediate conservation. Mod. Chin. Med. 10: 43-45.   Peakall R and Smouse PE (2001). GenAlEX V5: Genetic Analysis in Microsoft Excel. Population Genetic Software for Teaching and Research. Australian National University, Canberra. Available at [] Accessed November 27, 2012.   Ren X, Huang J, Liao B, Zhang X, et al. (2010). Genomic affinities of Arachis genus and interspecific hybrids were revealed by SRAP markers. Genet. Resour. Crop Evol. 57: 903-913.   Rohlf FJ (2000). NTSYS-PC Version 2.10 s. Numerical Taxonomy and Multivariate Analysis System. Exeter Publications, Setauket.   Wang HC (2010). Advances in the studies of systematics of Armillaria all over the world. J. Chongqing Univer. 27: 61-68.   Wang Z, Wang JE, Wang XM, Gao HW, et al. (2011). Assessment of genetic diversity in Galega officinalis L. using ISSR and SRAP markers. Genet. Resour. Crop Evol. 59: 865-873.   Xing XK and Guo SX (2004). The phylogenetic relationships of Grifola umbellata and its companion fungus: evidence from ITS sequence analysis. Microbiology 31: 34-38.   Xu GB, Fu WJ and Zhao XK (2003). Advances in studies on Polyporus umbellatus in China. J. Fung. Res. 1: 58-61.   Xu JT (1997). Medicinal Fungi in China. United Publishing House of Beijing Medical University and Chinese Union Medical University, Beijing.   Yuan D, Mori J, Komatsu KI, Makino T, et al. (2004). An anti-aldosteronic diuretic component (drain dampness) in Polyporus sclerotium. Biol. Pharm. Bull. 27: 867-870. PMid:15187435   Zhang YJ, Fan S, Liang ZS, Wang W, et al. (2010). Mycelial growth and polysaccharide content of Polyporus umbellatus. J. Med. Plant Res. 4: 1847-1852.   Zhang YJ, Qin Y, Wang Z, Guo L, et al. (2011). DNA isolation and optimization of sequence-related amplified polymorphism-polymerase chain reaction (SRAP-PCR) condition for endangered Polyporus umbellatus. J. Med. Plant Res. 5: 6890-6894.   Zhao YY, Chao X, Zhang Y, Lin RC, et al. (2010). Cytotoxic steroids from Polyporus umbellatus. Planta Med. 76: 1755-1758. PMid:20458671