Publications
Found 4 results
Filters: Author is Y.D. Tian [Clear All Filters]
,
“Deposition rule of yolk cholesterol in two different breeds of laying hens”, vol. 12, pp. 5786-5792, 2013.
, “Identification and abundance of miRNA in chicken hypothalamus tissue determined by Solexa sequencing”, vol. 11, pp. 4682-4694, 2012.
, Ambros V (2004). The functions of animal microRNAs. Nature 431: 350-355.
http://dx.doi.org/10.1038/nature02871
PMid:15372042
Burnside J, Ouyang M, Anderson A, Bernberg E, et al. (2008). Deep sequencing of chicken microRNAs. BMC Genomics 9: 185.
http://dx.doi.org/10.1186/1471-2164-9-185
PMid:18430245 PMCid:2375912
Chan JA, Krichevsky AM and Kosik KS (2005). MicroRNA-21 is an antiapoptotic factor in human glioblastoma cells. Cancer Res. 65: 6029-6033.
http://dx.doi.org/10.1158/0008-5472.CAN-05-0137
PMid:16024602
Cui Q, Yu Z, Purisima EO and Wang E (2006). Principles of microRNA regulation of a human cellular signaling network. Mol. Syst. Biol. 2: 46.
http://dx.doi.org/10.1038/msb4100089
PMid:16969338 PMCid:1681519
Dennis G Jr, Sherman BT, Hosack DA, Yang J, et al. (2003). DAVID: database for annotation, visualization, and integrated discovery. Genome Biol. 4: 3.
http://dx.doi.org/10.1186/gb-2003-4-5-p3
Dostie J, Mourelatos Z, Yang M, Sharma A, et al. (2003). Numerous microRNPs in neuronal cells containing novel microRNAs. RNA 9: 180-186.
http://dx.doi.org/10.1261/rna.2141503
PMid:12554860 PMCid:1370383
Eulalio A, Huntzinger E and Izaurralde E (2008). GW182 interaction with Argonaute is essential for miRNA-mediated translational repression and mRNA decay. Nat. Struct. Mol. Biol. 15: 346-353.
http://dx.doi.org/10.1038/nsmb.1405
PMid:18345015
Filipowicz W, Bhattacharyya SN and Sonenberg N (2008). Mechanisms of post-transcriptional regulation by microRNAs: are the answers in sight? Nat. Rev. Genet. 9: 102-114.
http://dx.doi.org/10.1038/nrg2290
PMid:18197166
Glazov EA, Cottee PA, Barris WC, Moore RJ, et al. (2008). A microRNA catalog of the developing chicken embryo identified by a deep sequencing approach. Genome Res. 18: 957-964.
http://dx.doi.org/10.1101/gr.074740.107
PMid:18469162 PMCid:2413163
Hicks JA, Tembhurne P and Liu HC (2008). MicroRNA expression in chicken embryos. Poult. Sci. 87: 2335-2343.
http://dx.doi.org/10.3382/ps.2008-00114
PMid:18931185
Huang da W, Sherman BT and Lempicki RA (2009). Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat. Protoc. 4: 44-57.
PMid:19131956
Kang L, Chen X, Zhou Y, Liu B, et al. (2004). The analysis of large-scale gene expression correlated to the phase changes of the migratory locust. Proc. Natl. Acad. Sci. U. S. A. 101: 17611-17615.
http://dx.doi.org/10.1073/pnas.0407753101
PMid:15591108 PMCid:535406
Krek A, Grun D, Poy MN, Wolf R, et al. (2005). Combinatorial microRNA target predictions. Nat. Genet. 37: 495-500.
http://dx.doi.org/10.1038/ng1536
PMid:15806104
Krichevsky AM, Sonntag KC, Isacson O and Kosik KS (2006). Specific microRNAs modulate embryonic stem cell-derived neurogenesis. Stem Cells 24: 857-864.
http://dx.doi.org/10.1634/stemcells.2005-0441
PMid:16357340 PMCid:2605651
Lagos-Quintana M, Rauhut R, Yalcin A, Meyer J, et al. (2002). Identification of tissue-specific microRNAs from mouse. Curr. Biol. 12: 735-739.
http://dx.doi.org/10.1016/S0960-9822(02)00809-6
Li G, Li Y, Li X, Ning X, et al. (2011). MicroRNA identity and abundance in developing swine adipose tissue as determined by Solexa sequencing. J. Cell Biochem. 112: 1318-1328.
http://dx.doi.org/10.1002/jcb.23045
PMid:21312241
Li R, Li Y, Kristiansen K and Wang J (2008). SOAP: short oligonucleotide alignment program. Bioinformatics 24: 713- 714.
http://dx.doi.org/10.1093/bioinformatics/btn025
PMid:18227114
McDaneld TG (2009). MicroRNA: mechanism of gene regulation and application to livestock. J. Anim. Sci. 87: E21-E28.
http://dx.doi.org/10.2527/jas.2008-1303
PMid:18791136
Miska EA (2005). How microRNAs control cell division, differentiation and death. Curr. Opin. Genet. Dev. 15: 563-568.
http://dx.doi.org/10.1016/j.gde.2005.08.005
PMid:16099643
Nielsen M, Hansen JH, Hedegaard J, Nielsen RO, et al. (2010). MicroRNA identity and abundance in porcine skeletal muscles determined by deep sequencing. Anim. Genet. 41: 159-168.
http://dx.doi.org/10.1111/j.1365-2052.2009.01981.x
PMid:19917043
Raman M, Chen W and Cobb MH (2007). Differential regulation and properties of MAPKs. Oncogene 26: 3100-3112.
http://dx.doi.org/10.1038/sj.onc.1210392
PMid:17496909
Rathjen T, Pais H, Sweetman D, Moulton V, et al. (2009). High throughput sequencing of microRNAs in chicken somites. FEBS Lett. 583: 1422-1426.
http://dx.doi.org/10.1016/j.febslet.2009.03.048
PMid:19328789
Reinhart BJ, Slack FJ, Basson M, Pasquinelli AE, et al. (2000). The 21-nucleotide let-7 RNA regulates developmental timing in Caenorhabditis elegans. Nature 403: 901-906.
http://dx.doi.org/10.1038/35002607
PMid:10706289
Richards MP and Proszkowiec-Weglarz M (2007). Mechanisms regulating feed intake, energy expenditure, and body weight in poultry. Poult. Sci. 86: 1478-1490.
PMid:17575199
Scheffner M, Huibregtse JM, Vierstra RD and Howley PM (1993). The HPV-16 E6 and E6-AP complex functions as a ubiquitin-protein ligase in the ubiquitination of p53. Cell 75: 495-505.
http://dx.doi.org/10.1016/0092-8674(93)90384-3
Shao P, Zhou H, Xiao ZD, He JH, et al. (2008). Identification of novel chicken microRNAs and analysis of their genomic organization. Gene 418: 34-40.
http://dx.doi.org/10.1016/j.gene.2008.04.004
PMid:18511220
Ulitsky I, Laurent LC and Shamir R (2010). Towards computational prediction of microRNA function and activity. Nucleic Acids Res. 38: e160.
http://dx.doi.org/10.1093/nar/gkq570
PMid:20576699 PMCid:2926627
Vasudevan S, Tong Y and Steitz JA (2007). Switching from repression to activation: microRNAs can up-regulate translation. Science 318: 1931-1934.
http://dx.doi.org/10.1126/science.1149460
PMid:18048652
Zhang B, Pan X, Cobb GP and Anderson TA (2006). Plant microRNA: a small regulatory molecule with big impact. Dev. Biol. 289: 3-16.
http://dx.doi.org/10.1016/j.ydbio.2005.10.036
PMid:16325172
Zuker M (2003). Mfold web server for nucleic acid folding and hybridization prediction. Nucleic Acids Res. 31: 3406- 3415.
http://dx.doi.org/10.1093/nar/gkg595
PMid:12824337 PMCid:169194
“Two novel SNPs of the 3-hydroxy-3-methylglutaryl coenzyme A reductase gene associated with growth and meat quality traits in the chicken”, vol. 11, pp. 4765-4774, 2012.
, Botstein D, White RL, Skolnick M and Davis RW (1980). Construction of a genetic linkage map in man using restriction fragment length polymorphisms. Am. J. Hum. Genet. 32: 314-331.
PMid:6247908 PMCid:1686077
Brookes AJ (1999). The essence of SNPs. Gene 234: 177-186.
http://dx.doi.org/10.1016/S0378-1119(99)00219-X
Clutterbuck RD, Millar BC, Powles RL, Newman A, et al. (1998). Inhibitory effect of simvastatin on the proliferation of human myeloid leukaemia cells in severe combined immunodeficient (SCID) mice. Br. J. Haematol. 102: 522-527.
http://dx.doi.org/10.1046/j.1365-2141.1998.00783.x
PMid:9695968
Ferguson JJ Jr, Durr IF and Rudney H (1958). Enzymatic reduction of 3-hydroxy-3-methylglutaryl-coenzyme (HMG-CoA) to mevalonic acid in yeast. Fed. Proc. 17: 8487-8496.
Goldstein JL and Brown MS (1990). Regulation of the mevalonate pathway. Nature 343: 425-430.
http://dx.doi.org/10.1038/343425a0
PMid:1967820
Hoshino S, Kimura A, Fukuda Y, Dohi K, et al. (1992). Polymerase chain reaction-single-strand conformation polymorphism analysis of polymorphism in DPA1 and DPB1 genes: a simple, economical, and rapid method for histocompatibility testing. Hum. Immunol. 33: 98-107.
http://dx.doi.org/10.1016/0198-8859(92)90059-V
Huang HY and Chen HQ (2008). HMGR Gene Exon 6-8 Region Cloning, RFLP and its Correlation with Economically Important Traits Analysis in Goose. Master's thesis, Anhui Agricultural University, Hefei.
Humphries SE, Tata F, Henry I, Barichard F, et al. (1985). The isolation, characterisation, and chromosomal assignment of the gene for human 3-hydroxy-3-methylglutaryl coenzyme A reductase, (HMG-CoA reductase). Hum. Genet. 71: 254-258.
http://dx.doi.org/10.1007/BF00284585
PMid:2998972
Hwa JJ, Zollman S, Warden CH, Taylor BA, et al. (1992). Genetic and dietary interactions in the regulation of HMG-CoA reductase gene expression. J. Lipid. Res. 33: 711-725.
PMid:1352323
Johnston IA, Alderson R, Sandham C, Mitchell D, et al. (2000). Patterns of muscle growth in early and late maturing populations of Atlantic salmon (Salmo salar L.). Aquaculture 189: 307-333.
http://dx.doi.org/10.1016/S0044-8486(00)00372-0
Johnston IA, Manthri S, Alderson R, Smart A, et al. (2003). Freshwater environment affects growth rate and muscle fibre recruitment in seawater stages of Atlantic salmon (Salmo salar L.). J. Exp. Biol. 206: 1337-1351.
http://dx.doi.org/10.1242/jeb.00262
PMid:12624169
Kohn TA, Kritzinger B, Hoffman LC and Myburgh KH (2005). Characteristics of impala (Aepyceros melampus) skeletal muscles. Meat Sci. 69: 277-282.
http://dx.doi.org/10.1016/j.meatsci.2004.07.007
PMid:22062819
Kwok PY (2000). High-throughput genotyping assay approaches. Pharmacogenomics 1: 95-100.
http://dx.doi.org/10.1517/14622416.1.1.95
PMid:11258600
Kwok PY (2003). Single Nucleotide Polymorphisms: Methods and Protocols. Humana Press Inc., New York, 212.
Lynen F, Henning U, Bublitz C and Sorbo B (1958). Der chemische Mechanismus der Acetessigsäurebildung in der Leber. Biochem. Z. 330: 269-295.
PMid:13596371
Nei M (1978). Estimation of average heterozygosity and genetic distance from a small number of individuals. Genetics 89: 583-590.
PMid:17248844 PMCid:1213855
Orita M, Iwahana H, Kanazawa H, Hayashi K, et al. (1989a). Detection of polymorphisms of human DNA by gel electrophoresis as single-strand conformation polymorphisms. Proc. Natl. Acad. Sci. U. S. A. 86: 2766-2770.
http://dx.doi.org/10.1073/pnas.86.8.2766
PMid:2565038 PMCid:286999
Orita M, Suzuki Y, Sekiya T and Hayashi K (1989b). Rapid and sensitive detection of point mutations and DNA polymorphisms using the polymerase chain reaction. Genomics 5: 874-879.
http://dx.doi.org/10.1016/0888-7543(89)90129-8
Rothschild MF and Soller M (1997). Candidate gene analysis to detect traits of economic importance in domestic livestock. Probe 8: 13-20.
Ru QH, Jing HE, Luo GA and Huang Q (2000). Single-strand conformation polymorphism analysis to detect the p53 mutation in colon tumor samples by capillary electrophoresis. J. Chromatogr. A 894: 171-177.
http://dx.doi.org/10.1016/S0021-9673(00)00711-1
Rubins JB, Greatens T, Kratzke RA, Tan AT, et al. (1998). Lovastatin induces apoptosis in malignant mesothelioma cells. Am. J. Respir. Crit. Care Med. 157: 1616-1622.
http://dx.doi.org/10.1164/ajrccm.157.5.9709020
PMid:9603146
Ryu YC and Kim BC (2005). The relationship between muscle fiber characteristics, postmortem metabolic rate, and meat quality of pig longissimus dorsi muscle. Meat Sci. 71: 351-357.
http://dx.doi.org/10.1016/j.meatsci.2005.04.015
PMid:22064236
Syvanen AC (2001). Accessing genetic variation: genotyping single nucleotide polymorphisms. Nat. Rev. Genet. 2: 930- 942.
http://dx.doi.org/10.1038/35103535
PMid:11733746
Van Doren M, Broihier HT, Moore LA and Lehmann R (1998). HMG-CoA reductase guides migrating primordial germ ceils. Nature 396: 466-469.
http://dx.doi.org/10.1038/24871
PMid:9853754
Yao YG, Lu XM, Luo HR, Li WH, et al. (2000). Gene admixture in the silk road region of China: evidence from mtDNA and melanocortin 1 receptor polymorphism. Genes Genet. Syst. 75: 173-178.
http://dx.doi.org/10.1266/ggs.75.173
PMid:11126565
Zhang Y, Xu P, Lu C, Kuang Y, et al. (2011). Genetic linkage mapping and analysis of muscle fiber-related QTLs in common carp (Cyprinus carpio L.). Mar. Biotechnol. 13: 376-392.
http://dx.doi.org/10.1007/s10126-010-9307-x
PMid:20886255
Zhong L, Hong-Quan C, Hua-Yun H, Li-Sha Z, et al. (2008). SNP in intron 5 of 3-hydroxy-3-methylglutaryl coenzyme A reductase (HMGR) gene and its genetic effects on important economic traits in geese. Chin. J. Agric. Biotechnol. 5: 127-132.
http://dx.doi.org/10.1017/S1479236208002027