Publications
Found 15 results
Filters: Author is Z.M. Wang [Clear All Filters]
“All-trans retinoic acid prevents the development of type 1 diabetes by affecting the levels of interferon gamma and interleukin 4 in streptozotocin-induced murine diabetes model”, vol. 15, p. -, 2016.
, “All-trans retinoic acid prevents the development of type 1 diabetes by affecting the levels of interferon gamma and interleukin 4 in streptozotocin-induced murine diabetes model”, vol. 15, p. -, 2016.
, “All-trans retinoic acid prevents the development of type 1 diabetes by affecting the levels of interferon gamma and interleukin 4 in streptozotocin-induced murine diabetes model”, vol. 15, p. -, 2016.
, “Cloning and characterization of a novel betaine aldehyde dehydrogenase gene from Suaeda corniculata”, vol. 15, p. -, 2016.
, “Cloning and characterization of a novel betaine aldehyde dehydrogenase gene from Suaeda corniculata”, vol. 15, p. -, 2016.
, “Correlative study between the JAK2V617F mutation and thrombosis in patients with myeloproliferative neoplasm”, vol. 15, p. -, 2016.
, “Correlative study between the JAK2V617F mutation and thrombosis in patients with myeloproliferative neoplasm”, vol. 15, p. -, 2016.
, “Effect of acute/subchronic samarium exposure on the concentration, motility, and morphology of sperm in male mice”, vol. 15, p. -, 2016.
, “Effect of acute/subchronic samarium exposure on the concentration, motility, and morphology of sperm in male mice”, vol. 15, p. -, 2016.
, “Histone H3K9 acetylation influences growth characteristics of goat adipose-derived stem cells in vitro”, vol. 15, no. 4, p. -, 2016.
,
Conflicts of interest
The authors declare no conflict of interest.
ACKNOWLEDGMENTS
Research supported by a High Yield Transgenic Cashmere Goats Breeding grant (#2014ZX08008-002).
REFERENCES
Ahmadi N, Razavi S, Kazemi M, Oryan S, et al (2012). Stability of neural differentiation in human adipose derived stem cells by two induction protocols. Tissue Cell 44: 87-94. http://dx.doi.org/10.1016/j.tice.2011.11.006
Ali A, Bluteau O, Messaoudi K, Palazzo A, et al (2013). Thrombocytopenia induced by the histone deacetylase inhibitor abexinostat involves p53-dependent and -independent mechanisms. Cell Death Dis. 4: e738. http://dx.doi.org/10.1038/cddis.2013.260
Baltus GA, Kowalski MP, Tutter AV, Kadam S, et al (2009). A positive regulatory role for the mSin3A-HDAC complex in pluripotency through Nanog and Sox2. J. Biol. Chem. 284: 6998-7006. http://dx.doi.org/10.1074/jbc.M807670200
Collas P, et al (2010). Programming differentiation potential in mesenchymal stem cells. Epigenetics 5: 476-482. http://dx.doi.org/10.4161/epi.5.6.12517
Culmes M, Eckstein HH, Burgkart R, Nüssler AK, et al (2013). Endothelial differentiation of adipose-derived mesenchymal stem cells is improved by epigenetic modifying drug BIX-01294. Eur. J. Cell Biol. 92: 70-79. http://dx.doi.org/10.1016/j.ejcb.2012.11.001
Dudakovic A, Camilleri ET, Lewallen EA, McGee-Lawrence ME, et al (2015). Histone deacetylase inhibition destabilizes the multi-potent state of uncommitted adipose-derived mesenchymal stromal cells. J. Cell. Physiol. 230: 52-62. http://dx.doi.org/10.1002/jcp.24680
Fan QD, Wu G, Liu ZR, et al (2014). Dynamics of posttranslational modifications of p53. Comput. Math. Methods Med. 2014: 245610. http://dx.doi.org/10.1155/2014/245610
Ge W, Liu Y, Chen T, Zhang X, et al (2014). The epigenetic promotion of osteogenic differentiation of human adipose-derived stem cells by the genetic and chemical blockade of histone demethylase LSD1. Biomaterials 35: 6015-6025. http://dx.doi.org/10.1016/j.biomaterials.2014.04.055
Huang Y, Liang P, Liu D, Huang J, et al (2014). Telomere regulation in pluripotent stem cells. Protein Cell 5: 194-202. http://dx.doi.org/10.1007/s13238-014-0028-1
Kwon MJ, Kang SJ, Park YI, Yang YH, et al (2015). Hepatic differentiation of human adipose tissue-derived mesenchymal stem cells and adverse effects of arsanilic acid and acetaminophen during in vitro hepatic developmental stage. Cell Biol. Toxicol. 31: 149-159. http://dx.doi.org/10.1007/s10565-015-9300-2
Lagutina I, Fulka H, Lazzari G, Galli C, et al (2013). Interspecies somatic cell nuclear transfer: advancements and problems. Cell. Reprogram. 15: 374-384. http://dx.doi.org/10.1089/cell.2013.0036
Latella L, Palacios D, Forcales S, Puri PL, et al (2012). Epigenetic control of reprogramming and cellular differentiation. Comp. Funct. Genomics 2012: 538639. http://dx.doi.org/10.1155/2012/538639
Lee K, Kim H, Kim JM, Kim JR, et al (2011). Systemic transplantation of human adipose-derived stem cells stimulates bone repair by promoting osteoblast and osteoclast function. J. Cell. Mol. Med. 15: 2082-2094. http://dx.doi.org/10.1111/j.1582-4934.2010.01230.x
Leu S, Lin YC, Yuen CM, Yen CH, et al (2010). Adipose-derived mesenchymal stem cells markedly attenuate brain infarct size and improve neurological function in rats. J. Transl. Med. 8: 63. http://dx.doi.org/10.1186/1479-5876-8-63
Lin T, Chao C, Saito S, Mazur SJ, et al (2005). p53 induces differentiation of mouse embryonic stem cells by suppressing Nanog expression. Nat. Cell Biol. 7: 165-171. http://dx.doi.org/10.1038/ncb1211
Long CR, Westhusin ME, Golding MC, et al (2014). Reshaping the transcriptional frontier: epigenetics and somatic cell nuclear transfer. Mol. Reprod. Dev. 81: 183-193. http://dx.doi.org/10.1002/mrd.22271
Makarova AV, Burgers PM, et al (2015). Eukaryotic DNA polymerase ζ. DNA Repair (Amst.) 29: 47-55. http://dx.doi.org/10.1016/j.dnarep.2015.02.012
Mejlvang J, Feng Y, Alabert C, Neelsen KJ, et al (2014). New histone supply regulates replication fork speed and PCNA unloading. J. Cell Biol. 204: 29-43. http://dx.doi.org/10.1083/jcb.201305017
Ogura A, Inoue K, Wakayama T, et al (2013). Recent advancements in cloning by somatic cell nuclear transfer. Philos. Trans. R. Soc. Lond. B Biol. Sci. 368: 20110329. http://dx.doi.org/10.1098/rstb.2011.0329
Oh ET, Park MT, Choi BH, Ro S, et al (2012). Novel histone deacetylase inhibitor CG200745 induces clonogenic cell death by modulating acetylation of p53 in cancer cells. Invest. New Drugs 30: 435-442. http://dx.doi.org/10.1007/s10637-010-9568-2
Oh HJ, Park JE, Kim MJ, Hong SG, et al (2011). Recloned dogs derived from adipose stem cells of a transgenic cloned beagle. Theriogenology 75: 1221-1231. http://dx.doi.org/10.1016/j.theriogenology.2010.11.035
Oh HJ, Park JE, Park EJ, Kim MJ, et al (2014). Analysis of cell growth and gene expression of porcine adipose tissue-derived mesenchymal stem cells as nuclear donor cell. Dev. Growth Differ. 56: 595-604. http://dx.doi.org/10.1111/dgd.12159
Peterson DR, Mok HO, Au DW, et al (2015). Modulation of telomerase activity in fish muscle by biological and environmental factors. Comp. Biochem. Physiol. C Toxicol. Pharmacol. 178: 51-59.
Ren Y, Wu H, Zhou X, Wen J, et al (2012). Isolation, expansion, and differentiation of goat adipose-derived stem cells. Res. Vet. Sci. 93: 404-411. http://dx.doi.org/10.1016/j.rvsc.2011.08.014
Rinaldi L, Benitah SA, et al (2015). Epigenetic regulation of adult stem cell function. FEBS J. 282: 1589-1604. http://dx.doi.org/10.1111/febs.12946
Rizzino A, et al (2013). Concise review: The Sox2-Oct4 connection: critical players in a much larger interdependent network integrated at multiple levels. Stem Cells 31: 1033-1039. http://dx.doi.org/10.1002/stem.1352
Rodriguez J, Boucher F, Lequeux C, Josset-Lamaugarny A, et al (2015). Intradermal injection of human adipose-derived stem cells accelerates skin wound healing in nude mice. Stem Cell Res. Ther. 6: 241. http://dx.doi.org/10.1186/s13287-015-0238-3
Saunders A, Faiola F, Wang J, et al (2013). Concise review: pursuing self-renewal and pluripotency with the stem cell factor Nanog. Stem Cells 31: 1227-1236. http://dx.doi.org/10.1002/stem.1384
Teven CM, Liu X, Hu N, Tang N, et al (2011). Epigenetic regulation of mesenchymal stem cells: a focus on osteogenic and adipogenic differentiation. Stem Cells Int. 2011: 201371. http://dx.doi.org/10.4061/2011/201371
Wang S, Hu C, Zhu J, et al (2007). Transcriptional silencing of a novel hTERT reporter locus during in vitro differentiation of mouse embryonic stem cells. Mol. Biol. Cell 18: 669-677. http://dx.doi.org/10.1091/mbc.E06-09-0840
Wang Z, Oron E, Nelson B, Razis S, et al (2012). Distinct lineage specification roles for NANOG, OCT4, and SOX2 in human embryonic stem cells. Cell Stem Cell 10: 440-454. http://dx.doi.org/10.1016/j.stem.2012.02.016
Wankhade UD, Shen M, Kolhe R, Fulzele S, et al (2016). Advances in adipose-derived stem cells isolation, characterization, and application in regenerative tissue engineering. Stem Cells Int. 2016: 3206807. http://dx.doi.org/10.1155/2016/3206807
Yang H, Yan B, Liao D, Huang S, et al (2015). Acetylation of HDAC1 and degradation of SIRT1 form a positive feedback loop to regulate p53 acetylation during heat-shock stress. Cell Death Dis. 6: e1747. http://dx.doi.org/10.1038/cddis.2015.106
Yannarelli G, Pacienza N, Cuniberti L, Medin J, et al (2013). Brief report: The potential role of epigenetics on multipotent cell differentiation capacity of mesenchymal stromal cells. Stem Cells 31: 215-220. http://dx.doi.org/10.1002/stem.1262
Yoon DS, Choi Y, Jang Y, Lee M, et al (2014). SIRT1 directly regulates SOX2 to maintain self-renewal and multipotency in bone marrow-derived mesenchymal stem cells. Stem Cells 32: 3219-3231. http://dx.doi.org/10.1002/stem.1811
Zhang C, Qu S, Wei X, Feng Y, et al (2016). HSP25 down-regulation enhanced p53 acetylation by dissociation of SIRT1 from p53 in doxorubicin-induced H9c2 cell apoptosis. Cell Stress Chaperones 21: 251-260. http://dx.doi.org/10.1007/s12192-015-0655-3
Zhang Q, Ramlee MK, Brunmeir R, Villanueva CJ, et al (2012). Dynamic and distinct histone modifications modulate the expression of key adipogenesis regulatory genes. Cell Cycle 11: 4310-4322. http://dx.doi.org/10.4161/cc.22224
Zhang S, Cui W, et al (2014). Sox2, a key factor in the regulation of pluripotency and neural differentiation. World J. Stem Cells 6: 305-311. http://dx.doi.org/10.4252/wjsc.v6.i3.305
Zhang Y, Zhang A, Shen C, Zhang B, et al (2014). E2F1 acts as a negative feedback regulator of c-Myc‑induced hTERT transcription during tumorigenesis. Oncol. Rep. 32: 1273-1280.
Zhu Y, Song X, Han F, Li Y, et al (2015). Alteration of histone acetylation pattern during long-term serum-free culture conditions of human fetal placental mesenchymal stem cells. PLoS One 10: e0117068. http://dx.doi.org/10.1371/journal.pone.0117068
“Histone H3K9 acetylation influences growth characteristics of goat adipose-derived stem cells in vitro”, vol. 15, no. 4, p. -, 2016.
,
Conflicts of interest
The authors declare no conflict of interest.
ACKNOWLEDGMENTS
Research supported by a High Yield Transgenic Cashmere Goats Breeding grant (#2014ZX08008-002).
REFERENCES
Ahmadi N, Razavi S, Kazemi M, Oryan S, et al (2012). Stability of neural differentiation in human adipose derived stem cells by two induction protocols. Tissue Cell 44: 87-94. http://dx.doi.org/10.1016/j.tice.2011.11.006
Ali A, Bluteau O, Messaoudi K, Palazzo A, et al (2013). Thrombocytopenia induced by the histone deacetylase inhibitor abexinostat involves p53-dependent and -independent mechanisms. Cell Death Dis. 4: e738. http://dx.doi.org/10.1038/cddis.2013.260
Baltus GA, Kowalski MP, Tutter AV, Kadam S, et al (2009). A positive regulatory role for the mSin3A-HDAC complex in pluripotency through Nanog and Sox2. J. Biol. Chem. 284: 6998-7006. http://dx.doi.org/10.1074/jbc.M807670200
Collas P, et al (2010). Programming differentiation potential in mesenchymal stem cells. Epigenetics 5: 476-482. http://dx.doi.org/10.4161/epi.5.6.12517
Culmes M, Eckstein HH, Burgkart R, Nüssler AK, et al (2013). Endothelial differentiation of adipose-derived mesenchymal stem cells is improved by epigenetic modifying drug BIX-01294. Eur. J. Cell Biol. 92: 70-79. http://dx.doi.org/10.1016/j.ejcb.2012.11.001
Dudakovic A, Camilleri ET, Lewallen EA, McGee-Lawrence ME, et al (2015). Histone deacetylase inhibition destabilizes the multi-potent state of uncommitted adipose-derived mesenchymal stromal cells. J. Cell. Physiol. 230: 52-62. http://dx.doi.org/10.1002/jcp.24680
Fan QD, Wu G, Liu ZR, et al (2014). Dynamics of posttranslational modifications of p53. Comput. Math. Methods Med. 2014: 245610. http://dx.doi.org/10.1155/2014/245610
Ge W, Liu Y, Chen T, Zhang X, et al (2014). The epigenetic promotion of osteogenic differentiation of human adipose-derived stem cells by the genetic and chemical blockade of histone demethylase LSD1. Biomaterials 35: 6015-6025. http://dx.doi.org/10.1016/j.biomaterials.2014.04.055
Huang Y, Liang P, Liu D, Huang J, et al (2014). Telomere regulation in pluripotent stem cells. Protein Cell 5: 194-202. http://dx.doi.org/10.1007/s13238-014-0028-1
Kwon MJ, Kang SJ, Park YI, Yang YH, et al (2015). Hepatic differentiation of human adipose tissue-derived mesenchymal stem cells and adverse effects of arsanilic acid and acetaminophen during in vitro hepatic developmental stage. Cell Biol. Toxicol. 31: 149-159. http://dx.doi.org/10.1007/s10565-015-9300-2
Lagutina I, Fulka H, Lazzari G, Galli C, et al (2013). Interspecies somatic cell nuclear transfer: advancements and problems. Cell. Reprogram. 15: 374-384. http://dx.doi.org/10.1089/cell.2013.0036
Latella L, Palacios D, Forcales S, Puri PL, et al (2012). Epigenetic control of reprogramming and cellular differentiation. Comp. Funct. Genomics 2012: 538639. http://dx.doi.org/10.1155/2012/538639
Lee K, Kim H, Kim JM, Kim JR, et al (2011). Systemic transplantation of human adipose-derived stem cells stimulates bone repair by promoting osteoblast and osteoclast function. J. Cell. Mol. Med. 15: 2082-2094. http://dx.doi.org/10.1111/j.1582-4934.2010.01230.x
Leu S, Lin YC, Yuen CM, Yen CH, et al (2010). Adipose-derived mesenchymal stem cells markedly attenuate brain infarct size and improve neurological function in rats. J. Transl. Med. 8: 63. http://dx.doi.org/10.1186/1479-5876-8-63
Lin T, Chao C, Saito S, Mazur SJ, et al (2005). p53 induces differentiation of mouse embryonic stem cells by suppressing Nanog expression. Nat. Cell Biol. 7: 165-171. http://dx.doi.org/10.1038/ncb1211
Long CR, Westhusin ME, Golding MC, et al (2014). Reshaping the transcriptional frontier: epigenetics and somatic cell nuclear transfer. Mol. Reprod. Dev. 81: 183-193. http://dx.doi.org/10.1002/mrd.22271
Makarova AV, Burgers PM, et al (2015). Eukaryotic DNA polymerase ζ. DNA Repair (Amst.) 29: 47-55. http://dx.doi.org/10.1016/j.dnarep.2015.02.012
Mejlvang J, Feng Y, Alabert C, Neelsen KJ, et al (2014). New histone supply regulates replication fork speed and PCNA unloading. J. Cell Biol. 204: 29-43. http://dx.doi.org/10.1083/jcb.201305017
Ogura A, Inoue K, Wakayama T, et al (2013). Recent advancements in cloning by somatic cell nuclear transfer. Philos. Trans. R. Soc. Lond. B Biol. Sci. 368: 20110329. http://dx.doi.org/10.1098/rstb.2011.0329
Oh ET, Park MT, Choi BH, Ro S, et al (2012). Novel histone deacetylase inhibitor CG200745 induces clonogenic cell death by modulating acetylation of p53 in cancer cells. Invest. New Drugs 30: 435-442. http://dx.doi.org/10.1007/s10637-010-9568-2
Oh HJ, Park JE, Kim MJ, Hong SG, et al (2011). Recloned dogs derived from adipose stem cells of a transgenic cloned beagle. Theriogenology 75: 1221-1231. http://dx.doi.org/10.1016/j.theriogenology.2010.11.035
Oh HJ, Park JE, Park EJ, Kim MJ, et al (2014). Analysis of cell growth and gene expression of porcine adipose tissue-derived mesenchymal stem cells as nuclear donor cell. Dev. Growth Differ. 56: 595-604. http://dx.doi.org/10.1111/dgd.12159
Peterson DR, Mok HO, Au DW, et al (2015). Modulation of telomerase activity in fish muscle by biological and environmental factors. Comp. Biochem. Physiol. C Toxicol. Pharmacol. 178: 51-59.
Ren Y, Wu H, Zhou X, Wen J, et al (2012). Isolation, expansion, and differentiation of goat adipose-derived stem cells. Res. Vet. Sci. 93: 404-411. http://dx.doi.org/10.1016/j.rvsc.2011.08.014
Rinaldi L, Benitah SA, et al (2015). Epigenetic regulation of adult stem cell function. FEBS J. 282: 1589-1604. http://dx.doi.org/10.1111/febs.12946
Rizzino A, et al (2013). Concise review: The Sox2-Oct4 connection: critical players in a much larger interdependent network integrated at multiple levels. Stem Cells 31: 1033-1039. http://dx.doi.org/10.1002/stem.1352
Rodriguez J, Boucher F, Lequeux C, Josset-Lamaugarny A, et al (2015). Intradermal injection of human adipose-derived stem cells accelerates skin wound healing in nude mice. Stem Cell Res. Ther. 6: 241. http://dx.doi.org/10.1186/s13287-015-0238-3
Saunders A, Faiola F, Wang J, et al (2013). Concise review: pursuing self-renewal and pluripotency with the stem cell factor Nanog. Stem Cells 31: 1227-1236. http://dx.doi.org/10.1002/stem.1384
Teven CM, Liu X, Hu N, Tang N, et al (2011). Epigenetic regulation of mesenchymal stem cells: a focus on osteogenic and adipogenic differentiation. Stem Cells Int. 2011: 201371. http://dx.doi.org/10.4061/2011/201371
Wang S, Hu C, Zhu J, et al (2007). Transcriptional silencing of a novel hTERT reporter locus during in vitro differentiation of mouse embryonic stem cells. Mol. Biol. Cell 18: 669-677. http://dx.doi.org/10.1091/mbc.E06-09-0840
Wang Z, Oron E, Nelson B, Razis S, et al (2012). Distinct lineage specification roles for NANOG, OCT4, and SOX2 in human embryonic stem cells. Cell Stem Cell 10: 440-454. http://dx.doi.org/10.1016/j.stem.2012.02.016
Wankhade UD, Shen M, Kolhe R, Fulzele S, et al (2016). Advances in adipose-derived stem cells isolation, characterization, and application in regenerative tissue engineering. Stem Cells Int. 2016: 3206807. http://dx.doi.org/10.1155/2016/3206807
Yang H, Yan B, Liao D, Huang S, et al (2015). Acetylation of HDAC1 and degradation of SIRT1 form a positive feedback loop to regulate p53 acetylation during heat-shock stress. Cell Death Dis. 6: e1747. http://dx.doi.org/10.1038/cddis.2015.106
Yannarelli G, Pacienza N, Cuniberti L, Medin J, et al (2013). Brief report: The potential role of epigenetics on multipotent cell differentiation capacity of mesenchymal stromal cells. Stem Cells 31: 215-220. http://dx.doi.org/10.1002/stem.1262
Yoon DS, Choi Y, Jang Y, Lee M, et al (2014). SIRT1 directly regulates SOX2 to maintain self-renewal and multipotency in bone marrow-derived mesenchymal stem cells. Stem Cells 32: 3219-3231. http://dx.doi.org/10.1002/stem.1811
Zhang C, Qu S, Wei X, Feng Y, et al (2016). HSP25 down-regulation enhanced p53 acetylation by dissociation of SIRT1 from p53 in doxorubicin-induced H9c2 cell apoptosis. Cell Stress Chaperones 21: 251-260. http://dx.doi.org/10.1007/s12192-015-0655-3
Zhang Q, Ramlee MK, Brunmeir R, Villanueva CJ, et al (2012). Dynamic and distinct histone modifications modulate the expression of key adipogenesis regulatory genes. Cell Cycle 11: 4310-4322. http://dx.doi.org/10.4161/cc.22224
Zhang S, Cui W, et al (2014). Sox2, a key factor in the regulation of pluripotency and neural differentiation. World J. Stem Cells 6: 305-311. http://dx.doi.org/10.4252/wjsc.v6.i3.305
Zhang Y, Zhang A, Shen C, Zhang B, et al (2014). E2F1 acts as a negative feedback regulator of c-Myc‑induced hTERT transcription during tumorigenesis. Oncol. Rep. 32: 1273-1280.
Zhu Y, Song X, Han F, Li Y, et al (2015). Alteration of histone acetylation pattern during long-term serum-free culture conditions of human fetal placental mesenchymal stem cells. PLoS One 10: e0117068. http://dx.doi.org/10.1371/journal.pone.0117068
“Molecular cloning and expression analysis of five GhRAXs in upland cotton (Gossypium hirsutum L.)”, vol. 14, pp. 12118-12127, 2015.
, “Molecular cloning and expression analysis of GhLOF genes in upland cotton (Gossypium hirsutum L.)”, vol. 14, pp. 4575-4583, 2015.
, , “Expressions of Src homology 2 domain-containing phosphatase and its clinical significance in laryngeal carcinoma”, vol. 12, pp. 4207-4212, 2013.
,