Publications

Found 26 results
Filters: Author is W. Liu  [Clear All Filters]
2016
W. Liu, Wang, J., Yin, D. X., Yang, M., Wang, P., Han, Q. S., Ma, Q. Q., Liu, J. J., Wang, J. X., Liu, W., Wang, J., Yin, D. X., Yang, M., Wang, P., Han, Q. S., Ma, Q. Q., Liu, J. J., and Wang, J. X., Genetic diversity and structure of the threatened species Sinopodophyllum hexandrum (Royle) Ying, vol. 15, p. -, 2016.
W. Liu, Wang, J., Yin, D. X., Yang, M., Wang, P., Han, Q. S., Ma, Q. Q., Liu, J. J., Wang, J. X., Liu, W., Wang, J., Yin, D. X., Yang, M., Wang, P., Han, Q. S., Ma, Q. Q., Liu, J. J., and Wang, J. X., Genetic diversity and structure of the threatened species Sinopodophyllum hexandrum (Royle) Ying, vol. 15, p. -, 2016.
L. N. Cao, Cheng, S. L., Liu, W., Cao, L. N., Cheng, S. L., and Liu, W., IL10 rs1800896 polymorphism is associated with liver cirrhosis and chronic hepatitis B, vol. 15, p. -, 2016.
L. N. Cao, Cheng, S. L., Liu, W., Cao, L. N., Cheng, S. L., and Liu, W., IL10 rs1800896 polymorphism is associated with liver cirrhosis and chronic hepatitis B, vol. 15, p. -, 2016.
S. L. Li, Ma, X. H., Ji, J. F., Li, H., Liu, W., Lu, F. Z., Wu, S. T., and Zhang, Y., miR-1 association with cell proliferation inhibition and apoptosis in vestibular schwannoma by targeting VEGFA, vol. 15, no. 4, p. -, 2016.
Conflicts of interestThe authors declare no conflict of interest.REFERENCESArthurs BJ, Fairbanks RK, Demakas JJ, Lamoreaux WT, et al (2011). A review of treatment modalities for vestibular schwannoma. Neurosurg. Rev. 34: 265-277, discussion 277-279. http://dx.doi.org/10.1007/s10143-011-0307-8 Bartel DP, et al (2004). MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 116: 281-297. http://dx.doi.org/10.1016/S0092-8674(04)00045-5 Carmeliet P, et al (2005). VEGF as a key mediator of angiogenesis in cancer. Oncology 69 (Suppl 3): 4-10. http://dx.doi.org/10.1159/000088478 Cayé-Thomasen P, Werther K, Nalla A, Bøg-Hansen TC, et al (2005). VEGF and VEGF receptor-1 concentration in vestibular schwannoma homogenates correlates to tumor growth rate. Otol. Neurotol. 26: 98-101. http://dx.doi.org/10.1097/00129492-200501000-00017 Cech TR, Steitz JA, et al (2014). The noncoding RNA revolution-trashing old rules to forge new ones. Cell 157: 77-94. http://dx.doi.org/10.1016/j.cell.2014.03.008 Chen CZ, et al (2005). MicroRNAs as oncogenes and tumor suppressors. N. Engl. J. Med. 353: 1768-1771. http://dx.doi.org/10.1056/NEJMp058190 Chen H, Zhang X, Zhang Z, Yang T, et al (2014). The role of NF2 gene mutations and pathogenesis-related proteins in sporadic vestibular schwannomas in young individuals. Mol. Cell. Biochem. 392: 145-152. http://dx.doi.org/10.1007/s11010-014-2011-9 Cioffi JA, Yue WY, Mendolia-Loffredo S, Hansen KR, et al (2010). MicroRNA-21 overexpression contributes to vestibular schwannoma cell proliferation and survival. Otol. Neurotol. 31: 1455-1462. Dilwali S, Roberts D, Stankovic KM, et al (2015). Interplay between VEGF-A and cMET signaling in human vestibular schwannomas and schwann cells. Cancer Biol. Ther. 16: 170-175. http://dx.doi.org/10.4161/15384047.2014.972765 Han C, Zhou Y, An Q, Li F, et al (2015). MicroRNA-1 (miR-1) inhibits gastric cancer cell proliferation and migration by targeting MET. Tumour Biol. 36: 6715-6723. http://dx.doi.org/10.1007/s13277-015-3358-6 Jacob A, Lee TX, Neff BA, Miller S, et al (2008). Phosphatidylinositol 3-kinase/AKT pathway activation in human vestibular schwannoma. Otol. Neurotol. 29: 58-68. http://dx.doi.org/10.1097/mao.0b013e31816021f7 Jiang S, Zhao C, Yang X, Li X, et al (2016). miR-1 suppresses the growth of esophageal squamous cell carcinoma in vivo and in vitro through the downregulation of MET, cyclin D1 and CDK4 expression. Int. J. Mol. Med. 38: 113-122. Koutsimpelas D, Bjelopavlovic M, Yetis R, Frauenknecht K, et al (2012). The VEGF/VEGF-R axis in sporadic vestibular schwannomas correlates with irradiation and disease recurrence. ORL J. Otorhinolaryngol. Relat. Spec. 74: 330-338. http://dx.doi.org/10.1159/000346238 Liu R, Li J, Lai Y, Liao Y, et al (2015). Hsa-miR-1 suppresses breast cancer development by down-regulating K-ras and long non-coding RNA MALAT1. Int. J. Biol. Macromol. 81: 491-497. http://dx.doi.org/10.1016/j.ijbiomac.2015.08.016 Mataki H, Enokida H, Chiyomaru T, Mizuno K, et al (2015). Downregulation of the microRNA-1/133a cluster enhances cancer cell migration and invasion in lung-squamous cell carcinoma via regulation of Coronin1C. J. Hum. Genet. 60: 53-61. http://dx.doi.org/10.1038/jhg.2014.111 Nasser MW, Datta J, Nuovo G, Kutay H, et al (2008). Down-regulation of micro-RNA-1 (miR-1) in lung cancer. Suppression of tumorigenic property of lung cancer cells and their sensitization to doxorubicin-induced apoptosis by miR-1. J. Biol. Chem. 283: 33394-33405. http://dx.doi.org/10.1074/jbc.M804788200 Osaka E, Yang X, Shen JK, Yang P, et al (2014). MicroRNA-1 (miR-1) inhibits chordoma cell migration and invasion by targeting slug. J. Orthop. Res. 32: 1075-1082. http://dx.doi.org/10.1002/jor.22632 Shi H, Ji Y, Zhang D, Liu Y, et al (2015). MiR-135a inhibits migration and invasion and regulates EMT-related marker genes by targeting KLF8 in lung cancer cells. Biochem. Biophys. Res. Commun. 465: 125-130. http://dx.doi.org/10.1016/j.bbrc.2015.07.145 Taniguchi K, Sakai M, Sugito N, Kumazaki M, et al (2016). PTBP1-associated microRNA-1 and -133b suppress the Warburg effect in colorectal tumors. Oncotarget 7: 18940-18952. Torres-Martin M, Lassaletta L, de Campos JM, Isla A, et al (2013). Global profiling in vestibular schwannomas shows critical deregulation of microRNAs and upregulation in those included in chromosomal region 14q32. PLoS One 8: e65868. http://dx.doi.org/10.1371/journal.pone.0065868 Wang F, Song G, Liu M, Li X, et al (2011). miRNA-1 targets fibronectin1 and suppresses the migration and invasion of the HEp2 laryngeal squamous carcinoma cell line. FEBS Lett. 585: 3263-3269. http://dx.doi.org/10.1016/j.febslet.2011.08.052 Wang X, Huang Y, Zhuang H, Qian Y, et al (2015). Downregulation of microRNA-1 is associated with poor prognosis in hepatocellular carcinoma. Clin. Lab. 61: 1331-1336. Wu YY, Chen YL, Jao YC, Hsieh IS, et al (2014). miR-320 regulates tumor angiogenesis driven by vascular endothelial cells in oral cancer by silencing neuropilin 1. Angiogenesis 17: 247-260. http://dx.doi.org/10.1007/s10456-013-9394-1 Xiao H, Zeng J, Li H, Chen K, et al (2015). MiR-1 downregulation correlates with poor survival in clear cell renal cell carcinoma where it interferes with cell cycle regulation and metastasis. Oncotarget 6: 13201-13215. http://dx.doi.org/10.18632/oncotarget.3915 Xu K, Zhao YC, et al (2016). MEF2D/Wnt/β-catenin pathway regulates the proliferation of gastric cancer cells and is regulated by microRNA-19. Tumour Biol. 37: 9059-9069. http://dx.doi.org/10.1007/s13277-015-4766-3 Yamamoto N, Nishikawa R, Chiyomaru T, Goto Y, et al (2015). The tumor-suppressive microRNA-1/133a cluster targets PDE7A and inhibits cancer cell migration and invasion in endometrial cancer. Int. J. Oncol. 47: 325-334. Zhu K, Wang W, et al (2016). Green tea polyphenol EGCG suppresses osteosarcoma cell growth through upregulating miR-1. Tumour Biol. 37: 4373-4382. http://dx.doi.org/10.1007/s13277-015-4187-3     
J. Q. Deng, Liu, B. Q., Wang, Y., Liu, W., Cai, J. F., Long, R., Li, W. H., Deng, J. Q., Liu, B. Q., Wang, Y., Liu, W., Cai, J. F., Long, R., and Li, W. H., Y-STR genetic screening by high-resolution melting analysis, vol. 15, p. -, 2016.
J. Q. Deng, Liu, B. Q., Wang, Y., Liu, W., Cai, J. F., Long, R., Li, W. H., Deng, J. Q., Liu, B. Q., Wang, Y., Liu, W., Cai, J. F., Long, R., and Li, W. H., Y-STR genetic screening by high-resolution melting analysis, vol. 15, p. -, 2016.
2015
N. C. Yin, Lang, X. P., Wang, X. D., and Liu, W., AGER genetic polymorphisms increase risks of breast and lung cancers, vol. 14, pp. 17776-17787, 2015.
Y. Ling, Huang, L. K., Zhang, X. Q., Ma, X., Liu, W., Chen, S. Y., and Yan, H. D., Assessment of genetic diversity of bermudagrass germplasm from southwest China and Africa by using AFLP markers, vol. 14, pp. 1748-1756, 2015.
Y. - K. Zhao, Jia, C. - M., Yuan, G. - J., Liu, W., Qiu, Y., and Zhu, Q. - G., Expression and clinical value of the soluble major histocompatibility complex class I-related chain A molecule in the serum of patients with renal tumors, vol. 14, pp. 7233-7240, 2015.
B. Deng, Yu, T., Liu, W., Ye, S. Q., Wang, L. X., Yang, Y., Gong, P., Ran, Z. P., Huang, H. J., and Wen, J. H., Identification of genes and pathways related to lipopolysaccharide signaling in duckling spleens, vol. 14, pp. 17312-17321, 2015.
N. Zhao, Sui, Y., Li, X. F., Liu, W., Lu, Y. P., Feng, W. H., Ma, C., Wang, Y. W., Bao, H. X., Huang, F., Wang, H., Yi, D. X., Han, W. T., and Jiang, M., Mutation analysis of four Chinese families with pure hereditary spastic paraplegia: pseudo- X-linked dominant inheritance and male lethality due to a novel ATL1 mutation, vol. 14, pp. 14690-14697, 2015.
M. Yang, Shi, S. G., Liu, W., Zhang, M., Gou, L., Kang, Y. X., and Liu, J. J., Phenotypic variation and diversity of Magnolia sprengeri Pamp. in native habitat, vol. 14, pp. 6495-6508, 2015.
H. Wu, Wang, K., Liu, W., and Hao, Q., Recombinant adenovirus-mediated overexpression of PTEN and KRT10 improves cisplatin resistance of ovarian cancer in vitro and in vivo, vol. 14, pp. 6591-6597, 2015.
H. J. Ou, Huang, G., Liu, W., Ma, X. L., Wei, Y., Zhou, T., and Pan, Z. M., Relationship of the APOA5/A4/C3/A1 gene cluster and APOB gene polymorphisms with dyslipidemia, vol. 14, pp. 9277-9290, 2015.
R. C. Xing, Zheng, J., Zheng, W. H., Qin, Z. P., Liu, W., and Yao, R. C., Relevance of E-cadherin expression to EGFR-TKI molecular targeted therapy sensitivity/resistance and its clinical significance, vol. 14, pp. 5785-5792, 2015.
X. Li, Fan, X. W., Liu, W., Guo, L., Li, Y., Hu, X., Liang, X., Ma, X. P., and Yang, S. E., Risk factors for damaged liver function after chemotherapy in hepatitis B virus carriers with non-Hodgkin lymphoma, vol. 14, pp. 2647-2653, 2015.
L. H. Shi, Zhou, Y., Guo, M. F., Liu, J. S., Li, C. X., Wang, G. F., Liu, W., and Tian, L., Serum levels of S-100β correlate with the clinical status and severity of hypoxic-ischemic encephalopathy in neonates, vol. 14, pp. 14760-14771, 2015.
W. X. Hu, Ding, C. M., Li, R. J., Fan, H. Y., Guo, Z. J., and Liu, W., Single nucleotide polymorphisms in the mitochondrial displacement loop and age-at-onset of non-small cell lung cancer, vol. 14, pp. 2512-2517, 2015.
Y. Zhang, Li, H. Q., Yao, Y. F., Liu, W., Ni, Q. Y., Zhang, M. W., and Xu, H. L., Uneven evolutionary rate of the melatonin-related receptor gene (GPR50) in primates, vol. 14, pp. 680-690, 2015.
2013
Q. Zhang, Shi, H., Liu, W., Wang, Y., Wang, Q., and Li, H., Differential expression of L-FABP and L-BABP between fat and lean chickens, vol. 12, pp. 4192-4206, 2013.
W. Liu, Yao, Y. F., Zhou, L., Ni, Q. Y., and Xu, H. L., Evolutionary analysis of the short-type peptidoglycan-recognition protein gene (PGLYRP1) in primates, vol. 12, pp. 453-462, 2013.
Dimopoulos G, Christophides GK, Meister S, Schultz J, et al. (2002). Genome expression analysis of Anopheles gambiae: responses to injury, bacterial challenge, and malaria infection. Proc. Natl. Acad. Sci. U. S. A. 99: 8814-8819. http://dx.doi.org/10.1073/pnas.092274999 PMid:12077297 PMCid:124381   Dziarski R (2003). Recognition of bacterial peptidoglycan by the innate immune system. Cell Mol. Life Sci. 60: 1793-1804. http://dx.doi.org/10.1007/s00018-003-3019-6 PMid:14523544   Dziarski R (2004). Peptidoglycan recognition proteins (PGRPs). Mol. Immunol. 40: 877-886. http://dx.doi.org/10.1016/j.molimm.2003.10.011 PMid:14698226   Fornhem C, Peterson CG and Alving K (1996). Isolation and characterization of porcine cationic eosinophil granule proteins. Int. Arch. Allergy Immunol. 110: 132-142. http://dx.doi.org/10.1159/000237277 PMid:8645990   Garver LS, Wu J and Wu LP (2006). The peptidoglycan recognition protein PGRP-SC1a is essential for Toll signaling and phagocytosis of Staphylococcus aureus in Drosophila. Proc. Natl. Acad. Sci. U. S. A. 103: 660-665. http://dx.doi.org/10.1073/pnas.0506182103 PMid:16407137 PMCid:1334640   Gelius E, Persson C, Karlsson J and Steiner H (2003). A mammalian peptidoglycan recognition protein with N-acetylmuramoyl-L-alanine amidase activity. Biochem. Biophys. Res. Commun. 306: 988-994. http://dx.doi.org/10.1016/S0006-291X(03)01096-9   Ghosh A, Lee S, Dziarski R and Chakravarti S (2009). A novel antimicrobial peptidoglycan recognition protein in the cornea. Invest. Ophthalmol. Vis. Sci. 50: 4185-4191. http://dx.doi.org/10.1167/iovs.08-3040 PMid:19387073 PMCid:3052780   Girardin SE and Philpott DJ (2004). Mini-review: the role of peptidoglycan recognition in innate immunity. Eur. J. Immunol. 34: 1777-1782. http://dx.doi.org/10.1002/eji.200425095 PMid:15214025   Goodman M, Porter CA, Czelusniak J, Page SL, et al. (1998). Toward a phylogenetic classification of Primates based on DNA evidence complemented by fossil evidence. Mol. Phylogenet. Evol. 9: 585-598. http://dx.doi.org/10.1006/mpev.1998.0495 PMid:9668008   Guan R, Malchiodi EL, Wang Q, Schuck P, et al. (2004). Crystal structure of the C-terminal peptidoglycan-binding domain of human peptidoglycan recognition protein Iα. J. Biol. Chem. 279: 31873-31882. http://dx.doi.org/10.1074/jbc.M404920200 PMid:15140887   Guan R, Wang Q, Sundberg EJ and Mariuzza RA (2005). Crystal structure of human peptidoglycan recognition protein S (PGRP-S) at 1.70 Å resolution. J. Mol. Biol. 347: 683-691. http://dx.doi.org/10.1016/j.jmb.2005.01.070 PMid:15769462   Hasegawa M, Kishino H and Yano T (1985). Dating of the human-ape splitting by a molecular clock of mitochondrial DNA. J. Mol. Evol. 22: 160-174. http://dx.doi.org/10.1007/BF02101694 PMid:3934395   Hoffmann JA and Reichhart JM (2002). Drosophila innate immunity: an evolutionary perspective. Nat. Immunol. 3: 121-126. http://dx.doi.org/10.1038/ni0202-121 PMid:11812988   Janeway CA Jr and Medzhitov R (2002). Innate immune recognition. Annu. Rev. Immunol. 20: 197-216. http://dx.doi.org/10.1146/annurev.immunol.20.083001.084359 PMid:11861602   Kaneko T, Golenbock D and Silverman N (2005). Peptidoglycan recognition by the Drosophila Imd pathway. J. Endotoxin. Res. 11: 383-389. PMid:16303095   Kang D, Liu G, Lundstrom A, Gelius E, et al. (1998). A peptidoglycan recognition protein in innate immunity conserved from insects to humans. Proc. Natl. Acad. Sci. U. S. A. 95: 10078-10082. http://dx.doi.org/10.1073/pnas.95.17.10078 PMid:9707603 PMCid:21464   Kashyap DR, Wang M, Liu LH, Boons GJ, et al. (2011). Peptidoglycan recognition proteins kill bacteria by activating protein-sensing two-component systems. Nat. Med. 17: 676-683. http://dx.doi.org/10.1038/nm.2357 PMid:21602801 PMCid:3176504   Lackner AA and Veazey RS (2007). Current concepts in AIDS pathogenesis: insights from the SIV/macaque model. Annu.Rev. Med. 58: 461-476. http://dx.doi.org/10.1146/annurev.med.58.082405.094316 PMid:17217334   Liu C, Xu Z, Gupta D and Dziarski R (2001). Peptidoglycan recognition proteins: a novel family of four human innate immunity pattern recognition molecules. J. Biol. Chem. 276: 34686-34694. http://dx.doi.org/10.1074/jbc.M105566200 PMid:11461926   McCarthy C (1998). Chromas 1.45. School of Health Science. Griffith University, Southport, Queensland.   Mellroth P and Steiner H (2006). PGRP-SB1: an N-acetylmuramoyl L-alanine amidase with antibacterial activity. Biochem. Biophys. Res. Commun. 350: 994-999. http://dx.doi.org/10.1016/j.bbrc.2006.09.139 PMid:17046713   Rehman A, Taishi P, Fang J, Majde JA, et al. (2001). The cloning of a rat peptidoglycan recognition protein (PGRP) and its induction in brain by sleep deprivation. Cytokine 13: 8-17. http://dx.doi.org/10.1006/cyto.2000.0800 PMid:11145837   Schleifer KH and Kandler O (1972). Peptidoglycan types of bacterial cell walls and their taxonomic implications. Bacteriol. Rev. 36: 407-477. PMid:4568761 PMCid:408328   Seggewiss R, Lore K, Guenaga FJ, Pittaluga S, et al. (2007). Keratinocyte growth factor augments immune reconstitution after autologous hematopoietic progenitor cell transplantation in rhesus macaques. Blood 110: 441-449. http://dx.doi.org/10.1182/blood-2006-12-065623 PMid:17374737 PMCid:1975851   Sharma P, Singh N, Sinha M, Sharma S, et al. (2008). Crystal structure of the peptidoglycan recognition protein at 1.8 Å resolution reveals dual strategy to combat infection through two independent functional homodimers. J. Mol. Biol. 378: 923-932. http://dx.doi.org/10.1016/j.jmb.2008.03.018 PMid:18395744   Shi J, Xi H, Wang Y, Zhang C, et al. (2003). Divergence of the genes on human chromosome 21 between human and other hominoids and variation of substitution rates among transcription units. Proc. Natl. Acad. Sci. U. S. A. 100: 8331-8336. http://dx.doi.org/10.1073/pnas.1332748100 PMid:12826612 PMCid:166229   Takeda K and Akira S (2005). Toll-like receptors in innate immunity. Int. Immunol. 17: 1-14. http://dx.doi.org/10.1093/intimm/dxh186 PMid:15585605   Tamura K, Peterson D, Peterson N, Stecher G, et al. (2011). MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol. Biol. Evol. 28: 2731-2739. http://dx.doi.org/10.1093/molbev/msr121 PMid:21546353 PMCid:3203626   Tydell CC, Yount N, Tran D, Yuan J, et al. (2002). Isolation, characterization, and antimicrobial properties of bovine oligosaccharide-binding protein. A microbicidal granule protein of eosinophils and neutrophils. J. Biol. Chem. 277: 19658-19664. http://dx.doi.org/10.1074/jbc.M200659200 PMid:11880375   Tydell CC, Yuan J, Tran P and Selsted ME (2006). Bovine peptidoglycan recognition protein-S: antimicrobial activity, localization, secretion, and binding properties. J. Immunol. 176: 1154-1162. PMid:16394004   Wang ZM, Li X, Cocklin RR, Wang M, et al. (2003). Human peptidoglycan recognition protein-L is an N-acetylmuramoyl- L-alanine amidase. J. Biol. Chem. 278: 49044-49052. http://dx.doi.org/10.1074/jbc.M307758200 PMid:14506276   Werner T, Liu G, Kang D, Ekengren S, et al. (2000). A family of peptidoglycan recognition proteins in the fruit fly Drosophila melanogaster. Proc. Natl. Acad. Sci. U. S. A. 97: 13772-13777. http://dx.doi.org/10.1073/pnas.97.25.13772 PMid:11106397 PMCid:17651   Wooding S (2011). Signatures of natural selection in a primate bitter taste receptor. J. Mol. Evol. 73: 257-265. http://dx.doi.org/10.1007/s00239-011-9481-0 PMid:22218679   Xu HL and Su B (2005). Genetic evidence of a strong functional constraint of neurotrypsin during primate evolution. Cytogenet. Genome Res. 108: 303-309. http://dx.doi.org/10.1159/000081523 PMid:15627749   Yang Z (2007). PAML 4: phylogenetic analysis by maximum likelihood. Mol. Biol. Evol. 24: 1586-1591. http://dx.doi.org/10.1093/molbev/msm088 PMid:17483113   Yoshida H, Kinoshita K and Ashida M (1996). Purification of a peptidoglycan recognition protein from hemolymph of the silkworm, Bombyx mori. J. Biol. Chem. 271: 13854-13860. http://dx.doi.org/10.1074/jbc.271.23.13854 PMid:8662762   Zhang YW, Ryder OA and Zhang YP (1999). Sequence evolution of the CCR5 chemokine receptor gene in primates. Mol. Biol. Evol. 16: 1145-1154. http://dx.doi.org/10.1093/oxfordjournals.molbev.a026205 PMid:10486970
Q. - A. Qi, Yang, Z. - Y., Ma, K. - S., Lu, Q., Wang, S. - G., Li, X. - W., Xia, F., Liu, W., and Bie, P., Impact of cold ischemia on cytokines after partial liver transplantation in rats, vol. 12, pp. 4003-4008, 2013.
2012
Y. Ling, Zhang, X. - Q., Ma, X., Chen, S. - Y., Chen, T. - T., and Liu, W., Analysis of genetic diversity among wild bermudagrass germplasm from southwest China using SSR markers, vol. 11, pp. 4598-4608, 2012.
Caetano-Anollés G (1998). Genetic instability of bermudagrass (Cynodon) cultivars 'Tifgreen' and 'Tifdrawf' detected by DAF and ASAP analysis of accession and off-types. Euphytica 101: 165-173. http://dx.doi.org/10.1023/A:1018392623408   Caetano-Anollés G, Callahan LM and Gresshoff PM (1997). The origin of bermudagrass (Cynodon) offTypes inferred by DNA amplification fingerprinting. Crop Sci. 37: 81-87. http://dx.doi.org/10.2135/cropsci1997.0011183X003700010013x   Dong KH and Shen YX (2003). Forage Production Science. China Agricultural Press, Beijing.   Ellegren H (2004). Microsatellites: simple sequences with complex evolution. Nat. Rev. Genet. 5: 435-445. http://dx.doi.org/10.1038/nrg1348 PMid:15153996   Guo HL, Liu JX, Gao H, He Q, et al. (2007). Establishment of DNA fingerprint for eleven new strains of Zoysia japonica by SSR. Acta Pratacult. Sin. 16: 53-59.   Harlan JR and De Wet JMJ (1968). Sources of variation in Cynodon dactylon (L.) Pers. Crop Sci. 9: 774-778. http://dx.doi.org/10.2135/cropsci1969.0011183X000900060031x   Liu W (2006). Genetic Diversity of Wild Cynodon dactylon Germplasm in Southwest of China and Lawny Value Study. Sichuan Agricultural University, Yaan.   Liu W, Zhang XQ, Li F, Ma X, et al. (2007). Genetic diversity of bermudagrass accessions in south-west China by ISSR molecular markers and geographic provenance. Acta Pratacult. Sin. 16: 55-61.   Liu W, Zhang XQ, Li F and Ma X (2008). Genetic Diversity of Cynodon dactylon accessions based on RAMP markers in hengduan mountains from southwest of China. Seed 27: 56-59.   Lu J, Lu YY, Li JQ, Zhan QW, et al. (2009). Simple sequence repeat (SSR) primer designing and construction of a genetic map of Sorghum bicolor x S. sudanense. Chin. J. Grassland 31: 28-33.   Mehmet K, Sukumar S, Allan Z, Johnie NJ, et al. (2002). Genetic diversity among forage bermudagrass (Cynodon spp.): evidence from chloroplast and nuclear DNA fingerprinting. Crop Sci. 42: 2118-2127. http://dx.doi.org/10.2135/cropsci2002.2118   Nei M and Li WH (1979). Mathematical model for studying genetic variation in terms of restriction endonucleases. Proc. Natl. Acad. Sci. U. S. A. 76: 5269-5273. http://dx.doi.org/10.1073/pnas.76.10.5269 PMid:291943 PMCid:413122   Oliveira ED, Pádua JG, Zucchi MI, Vencovsky R, et al. (2006). Origin, evolution and genome distribution of microsatellites. Genet. Mol. Biol. 29: 294-307. http://dx.doi.org/10.1590/S1415-47572006000200018   Persson K, Diaz O and von Bothmer R (2001). Extent and patterns of RAPD variation in landraces and cultivars of rye (Secale cereale L.) from northern Europe. Hereditas 134: 237-243. http://dx.doi.org/10.1111/j.1601-5223.2001.00237.x PMid:11833287   Reichardt M and Rogers S (1997). Preparation of Genomic DNA From Plant Tissue. In: Current Protocols in Molecular Biology (Ausubel FM, Brent R, Kingston RE and Moore DD, eds.). JohnWiley & Sons, New York, 233-237. PMid:16535489 PMCid:1389103   Richardson WL, Taliaferro CM and Ahring RM (1978). Fertility of eight bermudagrass clones and open-pollinated progeny from them. Crop Sci. 18: 332-334. http://dx.doi.org/10.2135/cropsci1978.0011183X001800020035x   Rohlf FJ (2000). NTSYSpc: Numerical Taxonomy and Multivariate Analysis System. Version 2.11x. Exeter Software, Setauket, New York.   Roldán-Ruiz I, Dendauw J, Van Bockstaele E, Depicker A, et al. (2000). AFLP markers reveal high polymorphic rates in ryegrasses (Lolium spp.). Mol. Breed. 6: 125-134. http://dx.doi.org/10.1023/A:1009680614564   Roodt R, Spies JJ and Burger TH (2002). Preliminary DNA fingerprinting of the turfgrass Cynodon dactylon (Poaceae: Chloridoideae). Bothalia 32: 117-122.   Taliaferro CM (1995). Diversity and vulnerability of bermuda turfgrass species. Crop Sci. 35: 327-332. http://dx.doi.org/10.2135/cropsci1995.0011183X003500020006x   Tan JQ (1993). Chinese Ground Covers of Lawn. Science and Technology Literature Press, Beijing.   Wachira FN, Waugh R, Hackett CA and Powell W (1995). Detection of genetic diversity in tea (Camellia sinensis) using RAPD markers. Genome 38: 201-210. http://dx.doi.org/10.1139/g95-025 PMid:7774794   Wang ML, Barkley NA, Yu JK, Dean RE, et al. (2005). Transfer of simple sequence repeat (SSR) markers from major cereal crops to minor grass species for germplasm characterization and evaluation. Plant Genet. Res. 3: 45-57. http://dx.doi.org/10.1079/PGR200461   Wu YQ, Taliaferro CM, Bai GH and Anderson MP (2004). AFLP analysis of Cynodon dactylon (L.) Pers. var. dactylon genetic variation. Genome 47: 689-696. http://dx.doi.org/10.1139/g04-032 PMid:15284873   Xu SB, Tao YF, Yang ZQ and Chu JY (2002). A simple and rapid methods used for silver staining and gel preservation. Yi Chuan 24: 335-336. PMid:16126695   Yi YJ, Zhang XQ, Huang LK, Ling Y, et al. (2008). Genetic diversity of wild Cynodon dactylon germplasm detected by SRAP markers. Yi. Chuan 30: 94-100. http://dx.doi.org/10.3724/SP.J.1005.2008.00094 PMid:18244909   Zhan QW, Li JQ, Wang BH and Li YF (2008). Establishment of DNA fingerprinting for 42 sorghum and sudangrass accessions and 2 sorghum-sudangrass hybrids. Acta Pratacult. Sin. 17: 85-92.   Zhao RZ (1997). A study of the physico-geographical regionalization in southwest region. J. Southwest China Normal Univ. 22: 193-198.
S. Y. Su, Dong, Z. J., Qu, J. Q., Liang, Z. Y., Zhang, J. Q., Ma, L. X., Liu, W., Xu, P., and Yuan, X. H., Molecular cloning and single nucleotide polymorphism analysis of IGF2a genes in the common carp (Cyprinus carpio), vol. 11, pp. 1327-1340, 2012.
Aegerter S, Jalabert B and Bobe J (2004). Messenger RNA stockpile of cyclin B, insulin-like growth factor I, insulin-like growth factor II, insulin-like growth factor receptor Ib, and p53 in the rainbow trout oocyte in relation with developmental competence. Mol. Reprod. Dev. 67: 127-135. http://dx.doi.org/10.1002/mrd.10384 PMid:14694427   Ayson FG, de Jesus EG, Moriyama S, Hyodo S, et al. (2002). Differential expression of insulin-like growth factor I and II mRNAs during embryogenesis and early larval development in rabbitfish, Siganus guttatus. Gen. Comp. Endocrinol. 126: 165-174. http://dx.doi.org/10.1006/gcen.2002.7788 PMid:12030772   Bobe J, Maugars G, Nguyen T, Rime H, et al. (2003). Rainbow trout follicular maturational competence acquisition is associated with an increased expression of follicle stimulating hormone receptor and insulin-like growth factor 2 messenger RNAs. Mol. Reprod. Dev. 66: 46-53. http://dx.doi.org/10.1002/mrd.10334 PMid:12874798   Bondy CA, Werner H, Roberts CT Jr and LeRoith D (1990). Cellular pattern of insulin-like growth factor-I (IGF-I) and type I IGF receptor gene expression in early organogenesis: comparison with IGF-II gene expression. Mol. Endocrinol. 4: 1386-1398. http://dx.doi.org/10.1210/mend-4-9-1386 PMid:2172801   Braunschweig MH, Van Laere AS, Buys N, Andersson L, et al. (2004). IGF2 antisense transcript expression in porcine postnatal muscle is affected by a quantitative trait nucleotide in intron 3. Genomics 84: 1021-1029. http://dx.doi.org/10.1016/j.ygeno.2004.09.006 PMid:15533719   Burgos C, Carrodeguas JA, Moreno C, Altarriba J, et al. (2006). Allelic incidence in several pig breeds of a missense variant of pig melanocortin-4 receptor (MC4R) gene associated with carcass and productive traits; its relation to IGF2 genotype. Meat Sci. 73: 144-150. http://dx.doi.org/10.1016/j.meatsci.2005.11.007 PMid:22062063   Caelers A, Schmid AC, Hrusovsky A and Reinecke M (2003). Insulin-like growth factor II mRNA is expressed in neurones of the brain of the bony fish Oreochromis mossambicus, the tilapia. Eur. J. Neurosci. 18: 355-363. http://dx.doi.org/10.1046/j.1460-9568.2003.02761.x PMid:12887417   Carrodeguas JA, Burgos C, Moreno C, Sánchez AC, et al. (2005). Incidence in diverse pig populations of an IGF2 mutation with potential influence on meat quality and quantity: An assay based on real time PCR (RT-PCR). Meat Sci. 71: 577-582. http://dx.doi.org/10.1016/j.meatsci.2005.05.002 PMid:22060936   Chauvigne F, Gabillard JC, Weil C and Rescan PY (2003). Effect of refeeding on IGFI, IGFII, IGF receptors, FGF2, FGF6, and myostatin mRNA expression in rainbow trout myotomal muscle. Gen. Comp. Endocrinol. 132: 209-215. http://dx.doi.org/10.1016/S0016-6480(03)00081-9   Chen JY, Chang CY, Chen JC, Shen SC, et al. (1997). Production of biologically active recombinant tilapia insulin-like growth factor-II polypeptides in Escherichia coli cells and characterization of the genomic structure of the coding region. DNA Cell Biol. 16: 883-892. http://dx.doi.org/10.1089/dna.1997.16.883 PMid:9260931   Collet C, Candy J, Richardson N and Sara V (1997). Organization, sequence, and expression of the gene encoding IGFII from barramundi (Teleosteii; Lates calcarifer). Biochem. Genet. 35: 211-224. http://dx.doi.org/10.1023/A:1021840931297 PMid:9435942   Dubnovitsky AP, Duck Z, Kersley JE, Hard T, et al. (2010). Conserved hydrophobic clusters on the surface of the Caf1A usher C-terminal domain are important for F1 antigen assembly. J. Mol. Biol. 403: 243-259. http://dx.doi.org/10.1016/j.jmb.2010.08.034 PMid:20797400   Duguay SJ, Lai-Zhang J, Steiner DF, Funkenstein B, et al. (1996). Developmental and tissue-regulated expression of IGF-I and IGF-II mRNAs in Sparus aurata. J. Mol. Endocrinol. 16: 123-132. http://dx.doi.org/10.1677/jme.0.0160123 PMid:9156515   Gabillard JC, Weil C, Rescan PY, Navarro I, et al. (2003). Effects of environmental temperature on IGF1, IGF2, and IGF type I receptor expression in rainbow trout (Oncorhynchus mykiss). Gen. Comp. Endocrinol. 133: 233-242. http://dx.doi.org/10.1016/S0016-6480(03)00167-9   Loffing-Cueni D, Schmid AC and Reinecke M (1999). Molecular cloning and tissue expression of the insulin-like growth factor II prohormone in the bony fish Cottus scorpius. Gen. Comp. Endocrinol. 113: 32-37. http://dx.doi.org/10.1006/gcen.1998.7178 PMid:9882541   Maures T, Chan SJ, Xu B, Sun H, et al. (2002). Structural, biochemical, and expression analysis of two distinct insulin-like growth factor I receptors and their ligands in zebrafish. Endocrinology 143: 1858-1871. http://dx.doi.org/10.1210/en.143.5.1858 PMid:11956169   Nilsson C, Hultberg BM and Gammeltoft S (1996). Autocrine role of insulin-like growth factor II secretion by the rat choroid plexus. Eur. J. Neurosci. 8: 629-635. http://dx.doi.org/10.1111/j.1460-9568.1996.tb01248.x PMid:8963455   Palamarchuk A, Gritsenko O, Holthuizen E, Sussenbach J, et al. (2002). Complete nucleotide sequence of the chum salmon insulin-like growth factor II gene. Gene 295: 223-230. http://dx.doi.org/10.1016/S0378-1119(02)00731-X   Perrot V, Moiseeva EB, Gozes Y, Chan SJ, et al. (2000). Insulin-like growth factor receptors and their ligands in gonads of a hermaphroditic species, the gilthead seabream (Sparus aurata): expression and cellular localization. Biol. Reprod. 63: 229-241. http://dx.doi.org/10.1095/biolreprod63.1.229 PMid:10859264   Radaelli G, Patruno M, Maccatrozzo L and Funkenstein B (2003). Expression and cellular localization of insulin-like growth factor-II protein and mRNA in Sparus aurata during development. J. Endocrinol. 178: 285-299. http://dx.doi.org/10.1677/joe.0.1780285 PMid:12904176   Rotwein P (1991). Structure, evolution, expression and regulation of insulin-like growth factors I and II. Growth Factors 5: 3-18. http://dx.doi.org/10.3109/08977199109000267 PMid:1772660   Shamblott MJ and Chen TT (1992). Identification of a second insulin-like growth factor in a fish species. Proc. Natl. Acad. Sci. U. S. A. 89: 8913-8917. http://dx.doi.org/10.1073/pnas.89.19.8913 PMid:1409585 PMCid:50034   Shamblott MJ, Cheng CM, Bolt D and Chen TT (1995). Appearance of insulin-like growth factor mRNA in the liver and pyloric ceca of a teleost in response to exogenous growth hormone. Proc. Natl. Acad. Sci. U. S. A. 92: 6943-6946. http://dx.doi.org/10.1073/pnas.92.15.6943 PMid:7624349 PMCid:41447   Steigen SE, Schaeffer DF, West RB and Nielsen TO (2009). Expression of insulin-like growth factor 2 in mesenchymal neoplasms. Mod. Pathol. 22: 914-921. http://dx.doi.org/10.1038/modpathol.2009.48 PMid:19407853   Stinckens A, Mathur P, Janssens S, Bruggeman V, et al. (2010). Indirect effect of IGF2 intron3 g.3072G>A mutation on prolificacy in sows. Anim. Genet. 41: 493-498. http://dx.doi.org/10.1111/j.1365-2052.2010.02040.x PMid:20394605   Tse MC, Vong QP, Cheng CH and Chan KM (2002). PCR-cloning and gene expression studies in common carp (Cyprinus carpio) insulin-like growth factor-II. Biochim. Biophys. Acta 1575: 63-74. http://dx.doi.org/10.1016/S0167-4781(02)00244-0   Vong QP, Chan KM and Cheng CH (2003). Quantification of common carp (Cyprinus carpio) IGF-I and IGF-II mRNA by real-time PCR: differential regulation of expression by GH. J. Endocrinol. 178: 513-521. http://dx.doi.org/10.1677/joe.0.1780513 PMid:12967342   Yu J, Chen X, Li J, Tang Y, et al. (2010). Isolation of IGF2 and association of IGF2 polymorphism with growth trait in genetically improved farmed tilapias, Oreochromis niloticus L. Aquaculture Res. 41: e743-e750. http://dx.doi.org/10.1111/j.1365-2109.2010.02540.x   Zou S, Kamei H, Modi Z and Duan C (2009). Zebrafish IGF genes: gene duplication, conservation and divergence, and novel roles in midline and notochord development. PLoS One 4: e7026. http://dx.doi.org/10.1371/journal.pone.0007026 PMid:19759899 PMCid:2738950