Publications

Found 10 results
Filters: Author is J. Han  [Clear All Filters]
2016
X. Q. Wang, Han, J., Wen, Y., Jiang, W. B., Fang, J. G., Zhang, B. B., Ma, R. J., Wang, X. Q., Han, J., Wen, Y., Jiang, W. B., Fang, J. G., Zhang, B. B., and Ma, R. J., Cloning and bioinformatic analysis of transcription factor MYB10 from the red-leaf peach, vol. 15, no. 4, p. -, 2016.
Conflicts of interestThe authors declare no conflict of interest.ACKNOWLEDGMENTSResearch supported by the National Natural Science Foundation of China (#31101517) and the Science and Technology Innovation Foundation of Nanjing Agricultural University Young Teachers (#KJ09010).REFERENCESAharoni A, De Vos CH, Wein M, Sun Z, et al (2001). The strawberry FaMYB1 transcription factor suppresses anthocyanin and flavonol accumulation in transgenic tobacco. Plant J. 28: 319-332. http://dx.doi.org/10.1046/j.1365-313X.2001.01154.x Ban Y, Honda C, Hatsuyama Y, Igarashi M, et al (2007). Isolation and functional analysis of a MYB transcription factor gene that is a key regulator for the development of red coloration in apple skin. Plant Cell Physiol. 48: 958-970. http://dx.doi.org/10.1093/pcp/pcm066 Boase MR, Brendolise C, Wang L, Ngo H, et al (2015). Failure to launch: the self-regulating Md-MYB10 R6 gene from apple is active in flowers but not leaves of Petunia. Plant Cell Rep. 34: 1817-1823. http://dx.doi.org/10.1007/s00299-015-1827-4 Borevitz JO, Xia Y, Blount J, Dixon RA, et al (2000). Activation tagging identifies a conserved MYB regulator of phenylpropanoid biosynthesis. Plant Cell 12: 2383-2394. http://dx.doi.org/10.1105/tpc.12.12.2383 Butelli E, Titta L, Giorgio M, Mock HP, et al (2008). Enrichment of tomato fruit with health-promoting anthocyanins by expression of select transcription factors. Nat. Biotechnol. 26: 1301-1308. http://dx.doi.org/10.1038/nbt.1506 Chagné D, Lin-Wang K, Espley RV, Volz RK, et al (2013). An ancient duplication of apple MYB transcription factors is responsible for novel red fruit-flesh phenotypes. Plant Physiol. 161: 225-239. http://dx.doi.org/10.1104/pp.112.206771 Deluc L, Barrieu F, Marchive C, Lauvergeat V, et al (2006). Characterization of a grapevine R2R3-MYB transcription factor that regulates the phenylpropanoid pathway. Plant Physiol. 140: 499-511. http://dx.doi.org/10.1104/pp.105.067231 Dong ZD, Chen J, Li T, Chen F, et al (2015). Molecular survey of Tamyb10-1 genes and their association with grain colour and germinability in Chinese wheat and Aegilops tauschii. J. Genet. 94: 453-459. http://dx.doi.org/10.1007/s12041-015-0559-0 Grotewold E, Chamberlin M, Snook M, Siame B, et al (1998). Engineering secondary metabolism in maize cells by ectopic expression of transcription factors. Plant Cell 10: 721-740. Ivanova V, Stefova M, Vojnoski B, Dornyei A, et al (2011). Identification of polyphenolic compounds in red and white grape varieties grown in R. Macedonia and changes of their content during ripening. Food Res. Int. 44: 2851-2860. http://dx.doi.org/10.1016/j.foodres.2011.06.046 Kobayashi S, Ishimaru M, Hiraoka K, Honda C, et al (2002). Myb-related genes of the Kyoho grape ( Vitis labruscana) regulate anthocyanin biosynthesis. Planta 215: 924-933. http://dx.doi.org/10.1007/s00425-002-0830-5 Li P, Zhang Y, Einhorn TC, Cheng L, et al (2014). Comparison of phenolic metabolism and primary metabolism between green ‘Anjou’ pear and its bud mutation, red ‘Anjou’. Physiol. Plant. 150: 339-354. http://dx.doi.org/10.1111/ppl.12105 Lin-Wang K, McGhie TK, Wang M, Liu Y, et al (2014). Engineering the anthocyanin regulatory complex of strawberry (Fragaria vesca). Front. Plant Sci. 5: 651. http://dx.doi.org/10.3389/fpls.2014.00651 Liu YZ, Luo WL, Huang CH, Chen LK, et al (2013). Characterization of the regulatory dene hrd1(t) involved in anthocyanin biosynthesis. Zhongguo Nong Ye Ke Xue 46: 3955-3964. Medina-Puche L, Cumplido-Laso G, Amil-Ruiz F, Hoffmann T, et al (2014). MYB10 plays a major role in the regulation of flavonoid/phenylpropanoid metabolism during ripening of Fragaria x ananassa fruits. J. Exp. Bot. 65: 401-417. http://dx.doi.org/10.1093/jxb/ert377 Nesi N, Jond C, Debeaujon I, Caboche M, et al (2001). The Arabidopsis TT2 gene encodes an R2R3 MYB domain protein that acts as a key determinant for proanthocyanidin accumulation in developing seed. Plant Cell 13: 2099-2114. Palmer CM, Hindt MN, Schmidt H, Clemens S, et al (2013). MYB10 and MYB72 are required for growth under iron-limiting conditions. PLoS Genet. 9: e1003953. http://dx.doi.org/10.1371/journal.pgen.1003953 Poovaiah CR, Bewg WP, Lan W, Ralph J, et al (2016). Sugarcane transgenics expressing MYB transcription factors show improved glucose release. Biotechnol. Biofuels 9: 143. http://dx.doi.org/10.1186/s13068-016-0559-1 Quattrocchio F, Verweij W, Kroon A, Spelt C, et al (2006). PH4 of Petunia is an R2R3 MYB protein that activates vacuolar acidification through interactions with basic-helix-loop-helix transcription factors of the anthocyanin pathway. Plant Cell 18: 1274-1291. http://dx.doi.org/10.1105/tpc.105.034041 Schwinn K, Venail J, Shang Y, Mackay S, et al (2006). A small family of MYB-regulatory genes controls floral pigmentation intensity and patterning in the genus Antirrhinum. Plant Cell 18: 831-851. http://dx.doi.org/10.1105/tpc.105.039255 Shan T, Rong W, Xu H, Du L, et al (2016). The wheat R2R3-MYB transcription factor TaRIM1 participates in resistance response against the pathogen Rhizoctonia cerealis infection through regulating defense genes. Sci. Rep. 6: 28777. http://dx.doi.org/10.1038/srep28777 Shimada S, Otsuki H, Sakuta M, et al (2007). Transcriptional control of anthocyanin biosynthetic genes in the Caryophyllales. J. Exp. Bot. 58: 957-967. http://dx.doi.org/10.1093/jxb/erl256 Starkevič P, Paukštytė J, Kazanavičiūtė V, Denkovskienė E, et al (2015). Expression and anthocyanin biosynthesis-modulating potential of sweet cherry (Prunus avium L.) MYB10 and bHLH genes. PLoS One 10: e0126991. http://dx.doi.org/10.1371/journal.pone.0126991 Tuan PA, Bai S, Yaegaki H, Tamura T, et al (2015). The crucial role of PpMYB10.1 in anthocyanin accumulation in peach and relationships between its allelic type and skin color phenotype. BMC Plant Biol. 15: 280. http://dx.doi.org/10.1186/s12870-015-0664-5 Wan H, Zhang J, Song T, Tian J, et al (2015). Promotion of flavonoid biosynthesis in leaves and calli of ornamental crabapple (Malus sp.) by high carbon to nitrogen ratios. Front. Plant Sci. 6: 673. http://dx.doi.org/10.3389/fpls.2015.00673 Wang ZW, Qu SC, Zhang Z, Zhang JY, et al (2004). A fast method for total RNA extraction from the tissue culture material of Malus sp. Guoshu Xuebao 21: 385-387. Xu LL, Jiang WB, Han J, Weng ML, et al (2011). Effects of foliage spray of KH2PO4 and sucrose solution on changes of pigments and net photosynthetic rate in leaves of red-leaf peach in early summer. Sci. Silvae Sin. 47: 170-174. Yang YN, Yao GF, Zheng D, Zhang SL, et al (2015). Expression differences of anthocyanin biosynthesis genes reveal regulation patterns for red pear coloration. Plant Cell Rep. 34: 189-198. http://dx.doi.org/10.1007/s00299-014-1698-0 Zhang YZ, Xu SZ, Cheng YW, Ya HY, et al (2016). Transcriptome analysis and anthocyanin-related genes in red leaf lettuce. Genet. Mol. Res. 15: .http://dx.doi.org/10.4238/gmr.15017023 Zhou MJ, Hu SL, Cao Y, Lu XQ, et al (2012). Cloning and bioinformation analysis of C3H gene in Neosinocalamus affinis. Bull. Bot. Res. 32: 38-46.    
X. Q. Wang, Han, J., Wen, Y., Jiang, W. B., Fang, J. G., Zhang, B. B., Ma, R. J., Wang, X. Q., Han, J., Wen, Y., Jiang, W. B., Fang, J. G., Zhang, B. B., and Ma, R. J., Cloning and bioinformatic analysis of transcription factor MYB10 from the red-leaf peach, vol. 15, no. 4, p. -, 2016.
Conflicts of interestThe authors declare no conflict of interest.ACKNOWLEDGMENTSResearch supported by the National Natural Science Foundation of China (#31101517) and the Science and Technology Innovation Foundation of Nanjing Agricultural University Young Teachers (#KJ09010).REFERENCESAharoni A, De Vos CH, Wein M, Sun Z, et al (2001). The strawberry FaMYB1 transcription factor suppresses anthocyanin and flavonol accumulation in transgenic tobacco. Plant J. 28: 319-332. http://dx.doi.org/10.1046/j.1365-313X.2001.01154.x Ban Y, Honda C, Hatsuyama Y, Igarashi M, et al (2007). Isolation and functional analysis of a MYB transcription factor gene that is a key regulator for the development of red coloration in apple skin. Plant Cell Physiol. 48: 958-970. http://dx.doi.org/10.1093/pcp/pcm066 Boase MR, Brendolise C, Wang L, Ngo H, et al (2015). Failure to launch: the self-regulating Md-MYB10 R6 gene from apple is active in flowers but not leaves of Petunia. Plant Cell Rep. 34: 1817-1823. http://dx.doi.org/10.1007/s00299-015-1827-4 Borevitz JO, Xia Y, Blount J, Dixon RA, et al (2000). Activation tagging identifies a conserved MYB regulator of phenylpropanoid biosynthesis. Plant Cell 12: 2383-2394. http://dx.doi.org/10.1105/tpc.12.12.2383 Butelli E, Titta L, Giorgio M, Mock HP, et al (2008). Enrichment of tomato fruit with health-promoting anthocyanins by expression of select transcription factors. Nat. Biotechnol. 26: 1301-1308. http://dx.doi.org/10.1038/nbt.1506 Chagné D, Lin-Wang K, Espley RV, Volz RK, et al (2013). An ancient duplication of apple MYB transcription factors is responsible for novel red fruit-flesh phenotypes. Plant Physiol. 161: 225-239. http://dx.doi.org/10.1104/pp.112.206771 Deluc L, Barrieu F, Marchive C, Lauvergeat V, et al (2006). Characterization of a grapevine R2R3-MYB transcription factor that regulates the phenylpropanoid pathway. Plant Physiol. 140: 499-511. http://dx.doi.org/10.1104/pp.105.067231 Dong ZD, Chen J, Li T, Chen F, et al (2015). Molecular survey of Tamyb10-1 genes and their association with grain colour and germinability in Chinese wheat and Aegilops tauschii. J. Genet. 94: 453-459. http://dx.doi.org/10.1007/s12041-015-0559-0 Grotewold E, Chamberlin M, Snook M, Siame B, et al (1998). Engineering secondary metabolism in maize cells by ectopic expression of transcription factors. Plant Cell 10: 721-740. Ivanova V, Stefova M, Vojnoski B, Dornyei A, et al (2011). Identification of polyphenolic compounds in red and white grape varieties grown in R. Macedonia and changes of their content during ripening. Food Res. Int. 44: 2851-2860. http://dx.doi.org/10.1016/j.foodres.2011.06.046 Kobayashi S, Ishimaru M, Hiraoka K, Honda C, et al (2002). Myb-related genes of the Kyoho grape ( Vitis labruscana) regulate anthocyanin biosynthesis. Planta 215: 924-933. http://dx.doi.org/10.1007/s00425-002-0830-5 Li P, Zhang Y, Einhorn TC, Cheng L, et al (2014). Comparison of phenolic metabolism and primary metabolism between green ‘Anjou’ pear and its bud mutation, red ‘Anjou’. Physiol. Plant. 150: 339-354. http://dx.doi.org/10.1111/ppl.12105 Lin-Wang K, McGhie TK, Wang M, Liu Y, et al (2014). Engineering the anthocyanin regulatory complex of strawberry (Fragaria vesca). Front. Plant Sci. 5: 651. http://dx.doi.org/10.3389/fpls.2014.00651 Liu YZ, Luo WL, Huang CH, Chen LK, et al (2013). Characterization of the regulatory dene hrd1(t) involved in anthocyanin biosynthesis. Zhongguo Nong Ye Ke Xue 46: 3955-3964. Medina-Puche L, Cumplido-Laso G, Amil-Ruiz F, Hoffmann T, et al (2014). MYB10 plays a major role in the regulation of flavonoid/phenylpropanoid metabolism during ripening of Fragaria x ananassa fruits. J. Exp. Bot. 65: 401-417. http://dx.doi.org/10.1093/jxb/ert377 Nesi N, Jond C, Debeaujon I, Caboche M, et al (2001). The Arabidopsis TT2 gene encodes an R2R3 MYB domain protein that acts as a key determinant for proanthocyanidin accumulation in developing seed. Plant Cell 13: 2099-2114. Palmer CM, Hindt MN, Schmidt H, Clemens S, et al (2013). MYB10 and MYB72 are required for growth under iron-limiting conditions. PLoS Genet. 9: e1003953. http://dx.doi.org/10.1371/journal.pgen.1003953 Poovaiah CR, Bewg WP, Lan W, Ralph J, et al (2016). Sugarcane transgenics expressing MYB transcription factors show improved glucose release. Biotechnol. Biofuels 9: 143. http://dx.doi.org/10.1186/s13068-016-0559-1 Quattrocchio F, Verweij W, Kroon A, Spelt C, et al (2006). PH4 of Petunia is an R2R3 MYB protein that activates vacuolar acidification through interactions with basic-helix-loop-helix transcription factors of the anthocyanin pathway. Plant Cell 18: 1274-1291. http://dx.doi.org/10.1105/tpc.105.034041 Schwinn K, Venail J, Shang Y, Mackay S, et al (2006). A small family of MYB-regulatory genes controls floral pigmentation intensity and patterning in the genus Antirrhinum. Plant Cell 18: 831-851. http://dx.doi.org/10.1105/tpc.105.039255 Shan T, Rong W, Xu H, Du L, et al (2016). The wheat R2R3-MYB transcription factor TaRIM1 participates in resistance response against the pathogen Rhizoctonia cerealis infection through regulating defense genes. Sci. Rep. 6: 28777. http://dx.doi.org/10.1038/srep28777 Shimada S, Otsuki H, Sakuta M, et al (2007). Transcriptional control of anthocyanin biosynthetic genes in the Caryophyllales. J. Exp. Bot. 58: 957-967. http://dx.doi.org/10.1093/jxb/erl256 Starkevič P, Paukštytė J, Kazanavičiūtė V, Denkovskienė E, et al (2015). Expression and anthocyanin biosynthesis-modulating potential of sweet cherry (Prunus avium L.) MYB10 and bHLH genes. PLoS One 10: e0126991. http://dx.doi.org/10.1371/journal.pone.0126991 Tuan PA, Bai S, Yaegaki H, Tamura T, et al (2015). The crucial role of PpMYB10.1 in anthocyanin accumulation in peach and relationships between its allelic type and skin color phenotype. BMC Plant Biol. 15: 280. http://dx.doi.org/10.1186/s12870-015-0664-5 Wan H, Zhang J, Song T, Tian J, et al (2015). Promotion of flavonoid biosynthesis in leaves and calli of ornamental crabapple (Malus sp.) by high carbon to nitrogen ratios. Front. Plant Sci. 6: 673. http://dx.doi.org/10.3389/fpls.2015.00673 Wang ZW, Qu SC, Zhang Z, Zhang JY, et al (2004). A fast method for total RNA extraction from the tissue culture material of Malus sp. Guoshu Xuebao 21: 385-387. Xu LL, Jiang WB, Han J, Weng ML, et al (2011). Effects of foliage spray of KH2PO4 and sucrose solution on changes of pigments and net photosynthetic rate in leaves of red-leaf peach in early summer. Sci. Silvae Sin. 47: 170-174. Yang YN, Yao GF, Zheng D, Zhang SL, et al (2015). Expression differences of anthocyanin biosynthesis genes reveal regulation patterns for red pear coloration. Plant Cell Rep. 34: 189-198. http://dx.doi.org/10.1007/s00299-014-1698-0 Zhang YZ, Xu SZ, Cheng YW, Ya HY, et al (2016). Transcriptome analysis and anthocyanin-related genes in red leaf lettuce. Genet. Mol. Res. 15: .http://dx.doi.org/10.4238/gmr.15017023 Zhou MJ, Hu SL, Cao Y, Lu XQ, et al (2012). Cloning and bioinformation analysis of C3H gene in Neosinocalamus affinis. Bull. Bot. Res. 32: 38-46.    
2013
A. J. Ge, Han, J., Li, X. D., Zhao, M. Z., Liu, H., Dong, Q. H., and Fang, J. G., Characterization of SNPs in strawberry cultivars in China, vol. 12, pp. 639-645, 2013.
Bhattramakki D and Rafalski A (2001). Discovery and Application of Single Nucleotide Polymorphism Markers in Plants. In: Plant Genotyping: The DNA Fingerprinting of Plants (Henry RJ, ed.). CABI Publishing, Oxon, 179-191. http://dx.doi.org/10.1079/9780851995151.0179   Bhattramakki D, Dolan M, Hanafey M, Wineland R, et al. (2002). Insertion-deletion polymorphisms in 3' regions of maize genes occur frequently and can be used as highly informative genetic markers. Plant Mol. Biol. 48: 539-547. http://dx.doi.org/10.1023/A:1014841612043 PMid:12004893   Brookes AJ (1999). The essence of SNPs. Gene 234: 177-186. http://dx.doi.org/10.1016/S0378-1119(99)00219-X   Cargill M, Altshuler D, Ireland J, Sklar P, et al. (1999). Characterization of single-nucleotide polymorphisms in coding regions of human genes. Nat. Genet. 22: 231-238. http://dx.doi.org/10.1038/10290 PMid:10391209   Cho RJ, Mindrinos M, Richards DR, Sapolsky RJ, et al. (1999). Genome-wide mapping with biallelic markers in Arabidopsis thaliana. Nat. Genet. 23: 203-207. http://dx.doi.org/10.1038/13833 PMid:10508518   Gupta PK, Roy JK and Prasad M (2001). Single nucleotide polymorphism: A new paradigm for molecular marker technology and DNA polymorphism detection with emphasis on their use in plants. Curr. Sci. 80: 524-535.   Hoskins RA, Phan AC, Naeemuddin M, Mapa FA, et al. (2001). Single nucleotide polymorphism markers for genetic mapping in Drosophila melanogaster. Genome Res. 11: 1100-1113. http://dx.doi.org/10.1101/gr.GR-1780R PMid:11381036 PMCid:311062   Jander G, Norris SR, Rounsley SD, Bush DF, et al. (2002). Arabidopsis map-based cloning in the post-genome era. Plant Physiol. 129: 440-450. http://dx.doi.org/10.1104/pp.003533 PMid:12068090 PMCid:1540230   Khlestkina EK and Salina EA (2006). SNP markers: methods of analysis, ways of development, and comparison on an example of common wheat. Genetika 42: 725-736. PMid:16871776   Marth GT, Korf I, Yandell MD, Yeh RT, et al. (1999). A general approach to single-nucleotide polymorphism discovery. Nat. Genet. 23: 452-456. http://dx.doi.org/10.1038/70570 PMid:10581034   Picoult-Newberg L, Ideker TE, Pohl MG, Taylor SL, et al. (1999). Mining SNPs from EST databases. Genome Res. 9: 167-174. PMid:10022981 PMCid:310719   Primmer CR, Borge T, Lindell J and Saetre GP (2002). Single-nucleotide polymorphism characterization in species with limited available sequence information: high nucleotide diversity revealed in the avian genome. Mol. Ecol. 11: 603-612. http://dx.doi.org/10.1046/j.0962-1083.2001.01452.x PMid:11918793   Rafalski A (2002). Applications of single nucleotide polymorphisms in crop genetics. Curr. Opin. Plant Biol. 5: 94-100. http://dx.doi.org/10.1016/S1369-5266(02)00240-6   Rozen S and Skaletsky H (2000). Primer3 on the WWW for general users and for biologist programmers. Methods Mol. Biol. 132: 365-386. PMid:10547847   Saghai-Maroof MA, Soliman KM, Jorgensen RA and Allard RW (1984). Ribosomal DNA spacer-length polymorphisms in barley: mendelian inheritance, chromosomal location, and population dynamics. Proc. Natl. Acad. Sci. U. S. A. 81: 8014-8018. http://dx.doi.org/10.1073/pnas.81.24.8014 PMid:6096873 PMCid:392284   Salmaso M, Faes G, Segala C, Stefanini M, et al. (2004). Genome diversity and gene haplotypes in the grapevine (Vitis vinifera L.), as revealed by single nucleotide polymorphisms. Mol. Breed. 14: 385-395. http://dx.doi.org/10.1007/s11032-004-0261-z   Shamay A, Fang J, Pollak N, Yonash N, et al. (2006). Discovery of c-SNPs in Anemone coronaria and assessment of genetic variation. Genet. Resour. Crop Evol. 53: 821-829. http://dx.doi.org/10.1007/s10722-004-6377-5   Stoneking M (2001). Single nucleotide polymorphisms. From the evolutionary past. Nature 409: 821-822. http://dx.doi.org/10.1038/35057279 PMid:11236996   Twito T, Weigend S, Blum S, Granevitze Z, et al. (2007). Biodiversity of 20 chicken breeds assessed by SNPs located in gene regions. Cytogenet. Genome Res. 117: 319-326. http://dx.doi.org/10.1159/000103194 PMid:17675874   Vignal A, Milan D, SanCristobal M and Eggen A (2002). A review on SNP and other types of molecular markers and their use in animal genetics. Genet. Sel. Evol. 34: 275-305. http://dx.doi.org/10.1186/1297-9686-34-3-275 PMid:12081799 PMCid:2705447   Wang DG, Fan JB, Siao CJ, Berno A, et al. (1998). Large-scale identification, mapping, and genotyping of single-nucleotide polymorphisms in the human genome. Science 280: 1077-1082. http://dx.doi.org/10.1126/science.280.5366.1077 PMid:9582121   Wolters P, Powell W, Lagudah E, Snape J, et al (2000). Nucleotide Diversity at Homologous Loci in Wheat. In: Plant and Animal Genome VIII Conference, San Diego, 9-12.   Xiong M and Jin L (1999). Comparison of the power and accuracy of biallelic and microsatellite markers in population-based gene-mapping methods. Am. J. Hum. Genet. 64: 629-640. http://dx.doi.org/10.1086/302231 PMid:9973302 PMCid:1377774   Yang W, Bai X, Kabelka E, Eaton C, et al. (2004). Discovery of single nucleotide polymorphisms in Lycopersicon esculentum by computer aided analysis of expressed sequence tags. Mol. Breed. 14: 21-34. http://dx.doi.org/10.1023/B:MOLB.0000037992.03731.a5
J. Han, Kong, M. L., Xie, H., Sun, Q. P., Nan, Z. J., Zhang, Q. Z., and Pan, J. B., Identification of miRNAs and their targets in wheat (Triticum aestivum L.) by EST analysis, vol. 12, pp. 3793-3805, 2013.