Publications

Found 5 results
Filters: Author is F. Prosdocimi  [Clear All Filters]
2012
D. Bittencourt, Oliveira, P. F., Prosdocimi, F., and Rech, E. L., Protein families, natural history and biotechnological aspects of spider silk, vol. 11. pp. 2360-2380, 2012.
Ayoub NA and Hayashi CY (2008). Multiple recombining loci encode MaSp1, the primary constituent of dragline silk, in widow spiders (Latrodectus: Theridiidae). Mol. Biol. Evol. 25: 277-286. http://dx.doi.org/10.1093/molbev/msm246 PMid:18048404   Bittencourt DMC (2007). Caracterização Molecular de Proteínas de Sedas de Aranhas da Biodiversidade Brasileira. Doctoral thesis, Universidade de Brasília, UNB, Brasília.   Bittencourt D, Souto BM, Verza NC, Vinecky F, et al. (2007). Spidroins from the Brazilian spider Nephilengys cruentata (Araneae: Nephilidae). Comp. Biochem. Physiol. B Biochem. Mol. Biol. 147: 597-606. http://dx.doi.org/10.1016/j.cbpb.2007.03.013 PMid:17490908   Bittencourt D, Dittmar K, Lewis RV and Rech EL (2010). A MaSp2-like gene found in the Amazon mygalomorph spider Avicularia juruensis. Comp. Biochem. Physiol. B Biochem. Mol. Biol. 155: 419-426. http://dx.doi.org/10.1016/j.cbpb.2010.01.005 PMid:20096801   Blackledge TA and Hayashi CY (2006). Silken toolkits: biomechanics of silk fibers spun by the orb web spider Argiope argentata (Fabricius 1775). J. Exp. Biol. 209: 2452-2461. http://dx.doi.org/10.1242/jeb.02275 PMid:16788028   Blackledge TA, Scharff N, Coddington JA, Szuts T, et al. (2009). Reconstructing web evolution and spider diversification in the molecular era. Proc. Natl. Acad. Sci. U. S. A. 106: 5229-5234. http://dx.doi.org/10.1073/pnas.0901377106 PMid:19289848 PMCid:2656561   Bogush VG, Sokolova OS, Davydova LI, Klinov DV, et al. (2009). A novel model system for design of biomaterials based on recombinant analogs of spider silk proteins. J. Neuroimmune Pharmacol. 4: 17-27. http://dx.doi.org/10.1007/s11481-008-9129-z PMid:18839314   Bram A, Brändén CI, Craig C, Snigireva I, et al. (1997). X-ray scattering of spider dragline silk. J. Appl. Crystallogr. 30: 390-392. http://dx.doi.org/10.1107/S0021889896012344   Brooks AE, Stricker SM, Joshi SB, Kamerzell TJ, et al. (2008). Properties of synthetic spider silk fibers based on Argiope aurantia MaSp2. Biomacromolecules 9: 1506-1510. http://dx.doi.org/10.1021/bm701124p PMid:18457450   Coddington JA and Levi HW (1991). Systematics and evolution of spiders (Araneae). Annu. Rev. Ecol. Syst. 22: 565-592. http://dx.doi.org/10.1146/annurev.es.22.110191.003025   Collin MA, Garb JE, Edgerly JS and Hayashi CY (2009). Characterization of silk spun by the embiopteran, Antipaluria urichi. Insect Biochem. Mol. Biol. 39: 75-82. http://dx.doi.org/10.1016/j.ibmb.2008.10.004 PMid:18996196   Coyle FA (1986). The Role of Silk in Prey Capture by Nonaraneomorph Spiders. In: Spiders: Webs, Behavior and Evolution (Shear WA, ed.). Stanford University Press, Stanford, 269-305.   Dong Z, Lewis RV and Middaugh CR (1991). Molecular mechanism of spider silk elasticity. Arch. Biochem. Biophys. 284: 53-57. http://dx.doi.org/10.1016/0003-9861(91)90262-H   Garb JE and Hayashi CY (2005). Modular evolution of egg case silk genes across orb-weaving spider superfamilies. Proc. Natl. Acad. Sci. U. S. A. 102: 11379-11384. http://dx.doi.org/10.1073/pnas.0502473102 PMid:16061817 PMCid:1183556   Garb JE, DiMauro T, Lewis RV and Hayashi CY (2007). Expansion and intragenic homogenization of spider silk genes since the Triassic: evidence from Mygalomorphae (tarantulas and their kin) spidroins. Mol. Biol. Evol. 24: 2454-2464. http://dx.doi.org/10.1093/molbev/msm179 PMid:17728281   Garb JE, Ayoub NA and Hayashi CY (2010). Untangling spider silk evolution with spidroin terminal domains. BMC Evol. Biol. 10: 243. http://dx.doi.org/10.1186/1471-2148-10-243 PMid:20696068 PMCid:2928236   Gatesy J, Hayashi C, Motriuk D, Woods J, et al. (2001). Extreme diversity, conservation, and convergence of spider silk fibroin sequences. Science 291: 2603-2605. http://dx.doi.org/10.1126/science.1057561 PMid:11283372   Gellynck K, Verdonk P, Forsyth R, Almqvist KF, et al. (2008). Biocompatibility and biodegradability of spider egg sac silk. J. Mater. Sci. Mater. Med. 19: 2963-2970. http://dx.doi.org/10.1007/s10856-007-3330-0 PMid:18360800   Gosline JM, Guerette PA, Ortlepp CS and Savage KN (1999). The mechanical design of spider silks: from fibroin sequence to mechanical function. J. Exp. Biol. 202: 3295-3303. PMid:10562512   Hagn F, Eisoldt L, Hardy JG, Vendrely C, et al. (2010). A conserved spider silk domain acts as a molecular switch that controls fibre assembly. Nature 465: 239-242. http://dx.doi.org/10.1038/nature08936 PMid:20463741   Hayashi CY and Lewis RV (1998). Evidence from flagelliform silk cDNA for the structural basis of elasticity and modular nature of spider silks. J. Mol. Biol. 275: 773-784. http://dx.doi.org/10.1006/jmbi.1997.1478 PMid:9480768   Hayashi CY and Lewis RV (2000). Molecular architecture and evolution of a modular spider silk protein gene. Science 287: 1477-1479. http://dx.doi.org/10.1126/science.287.5457.1477 PMid:10688794   Hayashi CY and Lewis RV (2001). Spider flagelliform silk: lessons in protein design, gene structure, and molecular evolution. Bioessays 23: 750-756. http://dx.doi.org/10.1002/bies.1105 PMid:11494324   Hayashi CY, Shipley NH and Lewis RV (1999). Hypotheses that correlate the sequence, structure, and mechanical properties of spider silk proteins. Int. J. Biol. Macromol. 24: 271-275. http://dx.doi.org/10.1016/S0141-8130(98)00089-0   Hayashi CY, Blackledge TA and Lewis RV (2004). Molecular and mechanical characterization of aciniform silk: uniformity of iterated sequence modules in a novel member of the spider silk fibroin gene family. Mol. Biol. Evol. 21: 1950-1959. http://dx.doi.org/10.1093/molbev/msh204 PMid:15240839   Hedin M and Bond JE (2006). Molecular phylogenetics of the spider infraorder Mygalomorphae using nuclear rRNA genes (18S and 28S): conflict and agreement with the current system of classification. Mol. Phylogenet. Evol. 41: 454-471. http://dx.doi.org/10.1016/j.ympev.2006.05.017 PMid:16815045   Hinman MB and Lewis RV (1992). Isolation of a clone encoding a second dragline silk fibroin. Nephila clavipes dragline silk is a two-protein fiber. J. Biol. Chem. 267: 19320-19324. PMid:1527052   Hinman MB, Jones JA and Lewis RV (2000). Synthetic spider silk: a modular fiber. Trends Biotechnol. 18: 374-379. http://dx.doi.org/10.1016/S0167-7799(00)01481-5   Huang H and Sun XS (2010). Rational design of responsive self-assembling peptides from native protein sequences. Biomacromolecules 11: 3390-3394. http://dx.doi.org/10.1021/bm100894j PMid:21080625   Kaessmann H (2010). Origins, evolution, and phenotypic impact of new genes. Genome Res. 20: 1313-1326. http://dx.doi.org/10.1101/gr.101386.109 PMid:20651121 PMCid:2945180   Krishnaji ST, Huang W, Rabotyagova O, Kharlampieva E, et al. (2011). Thin film assembly of spider silk-like block copolymers. Langmuir 27: 1000-1008. http://dx.doi.org/10.1021/la102638j PMid:21207952   Lammel A, Schwab M, Hofer M, Winter G, et al. (2011). Recombinant spider silk particles as drug delivery vehicles. Biomaterials 32: 2233-2240. http://dx.doi.org/10.1016/j.biomaterials.2010.11.060 PMid:21186052   Lefevre T, Rousseau ME and Pezolet M (2007). Protein secondary structure and orientation in silk as revealed by Raman spectromicroscopy. Biophys. J. 92: 2885-2895. http://dx.doi.org/10.1529/biophysj.106.100339 PMid:17277183 PMCid:1831708   Levasseur A and Pontarotti P (2011). The role of duplications in the evolution of genomes highlights the need for evolutionary-based approaches in comparative genomics. Biol. Direct. 6: 11. http://dx.doi.org/10.1186/1745-6150-6-11 PMid:21333002 PMCid:3052240   Margulies M, Egholm M, Altman WE, Attiya S, et al. (2005). Genome sequencing in microfabricated high-density picolitre reactors. Nature 437: 376-380. PMid:16056220 PMCid:1464427   Motriuk-Smith D and Lewis RV (2004). Brown Widow (Latrodectus geometricus) major ampullate silk protein and its material properties. Biomed. Sci. Instrum. 40: 64-69. PMid:15133936   Nova A, Keten S, Pugno NM, Redaelli A, et al. (2010). Molecular and nanostructural mechanisms of deformation, strength and toughness of spider silk fibrils. Nano Lett. 10: 2626-2634. http://dx.doi.org/10.1021/nl101341w PMid:20518518   Ohno S (1970). Evolution by Gene Duplication. Springer Verlag, New York. PMCid:1712841   Omenetto FG and Kaplan DL (2010). New opportunities for an ancient material. Science 329: 528-531. http://dx.doi.org/10.1126/science.1188936 PMid:20671180 PMCid:3136811   Palmer JM (1985). The silk and silk production system of the funnel-web mygalomorph spider Euagrus (Araneae, Diplurudae). J. Morphol. 186: 195-207. http://dx.doi.org/10.1002/jmor.1051860205   Parkhe AD, Seeley SK, Gardner K, Thompson L, et al. (1997). Structural studies of spider silk proteins in the fiber. J. Mol. Recognit. 10: 1-6. http://dx.doi.org/10.1002/(SICI)1099-1352(199701/02)10:1<1::AID-JMR338>3.0.CO;2-7   Perry DJ, Bittencourt D, Siltberg-Liberles J, Rech EL, et al. (2010). Pyriform spider silk sequences reveal unique repetitive elements. Biomacromolecules 11: 3000-3006. http://dx.doi.org/10.1021/bm1007585 PMid:20954740 PMCid:3037428   Platnick NI (2012). The world spider catalog, version 13.0. American Museum of Natural History. Available at [http://research.amnh.org/iz/spiders/catalog]. Accessed March 2, 2012.   Prosdocimi F, Bittencourt D, da Silva FR, Kirst M, et al. (2011). Spinning gland transcriptomics from two main clades of spiders (order: Araneae) - insights on their molecular, anatomical and behavioral evolution. PLoS One 6: e21634. http://dx.doi.org/10.1371/journal.pone.0021634 PMid:21738742 PMCid:3126850   Rech EL (2011). Genomics and Synthetic Biology as a Viable Option to Intensify Sustainable use of Biodiversity. Available from Nature Precedings at [http://dx.doi.org/10.1038/npre.2011.5759.1]. Accessed March 15, 2012. http://dx.doi.org/10.1038/npre.2011.5759.1   Rising A, Nimmervoll H, Grip S, Fernandez-Arias A, et al. (2005). Spider silk proteins - mechanical property and gene sequence. Zoolog. Sci. 22: 273-281. http://dx.doi.org/10.2108/zsj.22.273 PMid:15795489   Scheibel T (2004). Spider silks: recombinant synthesis, assembly, spinning, and engineering of synthetic proteins. Microb. Cell Fact. 3: 14. http://dx.doi.org/10.1186/1475-2859-3-14 PMid:15546497 PMCid:534800   Scheibel T (2005). Protein fibers as performance proteins: new technologies and applications. Curr. Opin. Biotechnol. 16: 427-433. http://dx.doi.org/10.1016/j.copbio.2005.05.005 PMid:15950453   Selden PA and Gall JC (1992). A Triassic mygalomorph spider from the northern Vosges, France. Palaeontology 35: 211-235.   Sensenig A, Agnarsson I and Blackledge TA (2010). Behavioural and biomaterial coevolution in spider orb webs. J. Evol. Biol. 23: 1839-1856. http://dx.doi.org/10.1111/j.1420-9101.2010.02048.x PMid:20629854   Silvers R, Buhr F and Schwalbe H (2010). The molecular mechanism of spider-silk formation. Angew. Chem. Int. Ed. Engl. 49: 5410-5412. http://dx.doi.org/10.1002/anie.201003033 PMid:20586091   Simmons A, Ray E and Jelinski LW (1994). Solid-state 13C NMR of Nephila clavipes dragline silk establishes structure and identity of crystalline regions. Macromolecules 27: 5235-5237. http://dx.doi.org/10.1021/ma00096a060   Simmons AH, Michal CA and Jelinski LW (1996). Molecular orientation and two-component nature of the crystalline fraction of spider dragline silk. Science 271: 84-87. http://dx.doi.org/10.1126/science.271.5245.84 PMid:8539605   Soares-Filho BS, Nepstad DC, Curran LM, Cerqueira GC, et al. (2006). Modelling conservation in the Amazon basin. Nature 440: 520-523. http://dx.doi.org/10.1038/nature04389 PMid:16554817   Soskine M and Tawfik DS (2010). Mutational effects and the evolution of new protein functions. Nat. Rev. Genet. 11: 572-582. http://dx.doi.org/10.1038/nrg2808 PMid:20634811   Spiess K, Lammel A and Scheibel T (2010). Recombinant spider silk proteins for applications in biomaterials. Macromol. Biosci. 10: 998-1007. http://dx.doi.org/10.1002/mabi.201000071 PMid:20602494   Stern DL and Orgogozo V (2009). Is genetic evolution predictable? Science 323: 746-751. http://dx.doi.org/10.1126/science.1158997 PMid:19197055 PMCid:3184636   Stradling D (1994). Distribution and behavioral ecology of an arboreal "tarantula" spider in Trinidad. Biotropica 26: 84-97. http://dx.doi.org/10.2307/2389113   Swanson BO, Blackledge TA, Summers AP and Hayashi CY (2006). Spider dragline silk: correlated and mosaic evolution in high-performance biological materials. Evolution 60: 2539-2551. PMid:17263115   Teulé F, Miao YG, Sohn BH, Kim YS, et al. (2012). Silkworms transformed with chimeric silkworm/spider silk genes spin composite silk fibers with improved mechanical properties. Proc. Natl. Acad. Sci. U. S. A. 109: 923-928. http://dx.doi.org/10.1073/pnas.1109420109 PMid:22215590 PMCid:3271896   Vollrath F (1992). Spider web and silks. Sci. Am. 266: 70-76. http://dx.doi.org/10.1038/scientificamerican0392-70   Vollrath F (2000). Strength and structure of spiders' silks. J. Biotechnol. 74: 67-83. PMid:11763504   Vollrath F and Selden P (2007). The role of behavior in the evolution of spiders, silks, and webs. Annu. Rev. Ecol. Evol. Syst. 38: 819-846. http://dx.doi.org/10.1146/annurev.ecolsys.37.091305.110221