Publications

Found 8 results
Filters: Author is P. Xiao  [Clear All Filters]
2016
R. J. Li, Li, M., Liu, G. J., Guo, Y. W., Bai, H., Xiao, P., Mei, J. Z., Li, R. J., Li, M., Liu, G. J., Guo, Y. W., Bai, H., Xiao, P., Mei, J. Z., Li, R. J., Li, M., Liu, G. J., Guo, Y. W., Bai, H., Xiao, P., and Mei, J. Z., Association between ERCC5 gene polymorphisms and gastric cancer risk in a Chinese population, vol. 15, p. -, 2016.
R. J. Li, Li, M., Liu, G. J., Guo, Y. W., Bai, H., Xiao, P., Mei, J. Z., Li, R. J., Li, M., Liu, G. J., Guo, Y. W., Bai, H., Xiao, P., Mei, J. Z., Li, R. J., Li, M., Liu, G. J., Guo, Y. W., Bai, H., Xiao, P., and Mei, J. Z., Association between ERCC5 gene polymorphisms and gastric cancer risk in a Chinese population, vol. 15, p. -, 2016.
R. J. Li, Li, M., Liu, G. J., Guo, Y. W., Bai, H., Xiao, P., Mei, J. Z., Li, R. J., Li, M., Liu, G. J., Guo, Y. W., Bai, H., Xiao, P., Mei, J. Z., Li, R. J., Li, M., Liu, G. J., Guo, Y. W., Bai, H., Xiao, P., and Mei, J. Z., Association between ERCC5 gene polymorphisms and gastric cancer risk in a Chinese population, vol. 15, p. -, 2016.
M. Li, Li, R. J., Bai, H., Xiao, P., Liu, G. J., Guo, Y. W., Mei, J. Z., Li, M., Li, R. J., Bai, H., Xiao, P., Liu, G. J., Guo, Y. W., Mei, J. Z., Li, M., Li, R. J., Bai, H., Xiao, P., Liu, G. J., Guo, Y. W., and Mei, J. Z., Association between the pre-miR-196a2 rs11614913 polymorphism and gastric cancer susceptibility in a Chinese population, vol. 15, p. -, 2016.
M. Li, Li, R. J., Bai, H., Xiao, P., Liu, G. J., Guo, Y. W., Mei, J. Z., Li, M., Li, R. J., Bai, H., Xiao, P., Liu, G. J., Guo, Y. W., Mei, J. Z., Li, M., Li, R. J., Bai, H., Xiao, P., Liu, G. J., Guo, Y. W., and Mei, J. Z., Association between the pre-miR-196a2 rs11614913 polymorphism and gastric cancer susceptibility in a Chinese population, vol. 15, p. -, 2016.
M. Li, Li, R. J., Bai, H., Xiao, P., Liu, G. J., Guo, Y. W., Mei, J. Z., Li, M., Li, R. J., Bai, H., Xiao, P., Liu, G. J., Guo, Y. W., Mei, J. Z., Li, M., Li, R. J., Bai, H., Xiao, P., Liu, G. J., Guo, Y. W., and Mei, J. Z., Association between the pre-miR-196a2 rs11614913 polymorphism and gastric cancer susceptibility in a Chinese population, vol. 15, p. -, 2016.
2012
N. Ally, Zou, X. L., Jiang, B. C., Qin, L., Zhai, L., Xiao, P., and Liu, H. L., Inhibition of vascular endothelial growth factor A expression in mouse granulosa cells by lentivector-mediated RNAi, vol. 11, pp. 4019-4033, 2012.
Abramovich D, Irusta G, Parborell F and Tesone M (2010). Intrabursal injection of vascular endothelial growth factor trap in eCG-treated prepubertal rats inhibits proliferation and increases apoptosis of follicular cells involving the PI3K/ AKT signaling pathway. Fertil. Steril. 93: 1369-1377. http://dx.doi.org/10.1016/j.fertnstert.2009.01.127 PMid:19328472   Accili D and Arden KC (2004). FoxOs at the crossroads of cellular metabolism, differentiation, and transformation. Cell 117: 421-426. http://dx.doi.org/10.1016/S0092-8674(04)00452-0   Barboni B, Turriani M, Galeati G, Spinaci M, et al. (2000). Vascular endothelial growth factor production in growing pig antral follicles. Biol. Reprod. 63: 858-864. http://dx.doi.org/10.1095/biolreprod63.3.858 PMid:10952932   Brummelkamp TR, Bernards R and Agami R (2002). A system for stable expression of short interfering RNAs in mammalian cells. Science 296: 550-553. http://dx.doi.org/10.1126/science.1068999 PMid:11910072   Bruno JB, Celestino JJ, Lima-Verde IB, Lima LF, et al. (2009). Expression of vascular endothelial growth factor (VEGF) receptor in goat ovaries and improvement of in vitro caprine preantral follicle survival and growth with VEGF. Reprod. Fertil. Dev. 21: 679-687. http://dx.doi.org/10.1071/RD08181 PMid:19486605   Celik-Ozenci C, Akkoyunlu G, Kayisli UA, Arici A, et al. (2003). Localization of vascular endothelial growth factor in the zona pellucida of developing ovarian follicles in the rat: a possible role in destiny of follicles. Histochem. Cell Biol. 120: 383-390. http://dx.doi.org/10.1007/s00418-003-0586-4 PMid:14605899   Chang HY, Nishitoh H, Yang X, Ichijo H, et al. (1998). Activation of apoptosis signal-regulating kinase 1 (ASK1) by the adapter protein Daxx. Science 281: 1860-1863. http://dx.doi.org/10.1126/science.281.5384.1860 PMid:9743501   Danforth DR, Arbogast LK, Ghosh S, Dickerman A, et al. (2003). Vascular endothelial growth factor stimulates preantral follicle growth in the rat ovary. Biol. Reprod. 68: 1736-1741. http://dx.doi.org/10.1095/biolreprod.101.000679 PMid:12606430   Doyle LK, Walker CA and Donadeu FX (2010). VEGF modulates the effects of gonadotropins in granulosa cells. Domest. Anim. Endocrinol. 38: 127-137. http://dx.doi.org/10.1016/j.domaniend.2009.08.008 PMid:19815366   Einspanier R, Schonfelder M, Muller K, Stojkovic M, et al. (2002). Expression of the vascular endothelial growth factor and its receptors and effects of VEGF during in vitro maturation of bovine cumulus-oocyte complexes (COC). Mol. Reprod. Dev. 62: 29-36. http://dx.doi.org/10.1002/mrd.10068 PMid:11933158   Elbashir SM, Harborth J, Lendeckel W, Yalcin A, et al. (2001). Duplexes of 21-nucleotide RNAs mediate RNA interference in cultured mammalian cells. Nature 411: 494-498. http://dx.doi.org/10.1038/35078107 PMid:11373684   Elbashir SM, Harborth J, Weber K and Tuschl T (2002). Analysis of gene function in somatic mammalian cells using small interfering RNAs. Methods 26: 199-213. http://dx.doi.org/10.1016/S1046-2023(02)00023-3   Ferrara N (2002). VEGF and the quest for tumour angiogenesis factors. Nat. Rev. Cancer 2: 795-803. http://dx.doi.org/10.1038/nrc909 PMid:12360282   Giering JC, Grimm D, Storm TA and Kay MA (2008). Expression of shRNA from a tissue-specific pol II promoter is an effective and safe RNAi therapeutic. Mol. Ther. 16: 1630-1636. http://dx.doi.org/10.1038/mt.2008.144 PMid:18665161   Greenaway J, Connor K, Pedersen HG, Coomber BL, et al. (2004). Vascular endothelial growth factor and its receptor, Flk- 1/KDR, are cytoprotective in the extravascular compartment of the ovarian follicle. Endocrinology 145: 2896-2905. http://dx.doi.org/10.1210/en.2003-1620 PMid:14988387   Hannon GJ (2002). RNA interference. Nature 418: 244-251. http://dx.doi.org/10.1038/418244a PMid:12110901   Hicklin DJ and Ellis LM (2005). Role of the vascular endothelial growth factor pathway in tumor growth and angiogenesis. J. Clin. Oncol. 23: 1011-1027. http://dx.doi.org/10.1200/JCO.2005.06.081 PMid:15585754   Irusta G, Abramovich D, Parborell F and Tesone M (2010). Direct survival role of vascular endothelial growth factor (VEGF) on rat ovarian follicular cells. Mol. Cell Endocrinol. 325: 93-100. http://dx.doi.org/10.1016/j.mce.2010.04.018 PMid:20417686   Klagsbrun M and D'Amore PA (1996). Vascular endothelial growth factor and its receptors. Cytokine Growth Factor Rev. 7: 259-270. http://dx.doi.org/10.1016/S1359-6101(96)00027-5   Kosaka N, Sudo N, Miyamoto A and Shimizu T (2007). Vascular endothelial growth factor (VEGF) suppresses ovarian granulosa cell apoptosis in vitro. Biochem. Biophys. Res. Commun. 363: 733-737. http://dx.doi.org/10.1016/j.bbrc.2007.09.061 PMid:17904528   Lee NS, Dohjima T, Bauer G, Li H, et al. (2002). Expression of small interfering RNAs targeted against HIV-1 rev transcripts in human cells. Nat. Biotechnol. 20: 500-505. PMid:11981565   McManus MT and Sharp PA (2002). Gene silencing in mammals by small interfering RNAs. Nat. Rev. Genet. 3: 737-747. http://dx.doi.org/10.1038/nrg908 PMid:12360232   Okamura Y, Myoumoto A, Manabe N, Tanaka N, et al. (2001). Protein tyrosine kinase expression in the porcine ovary. Mol. Hum. Reprod. 7: 723-729. http://dx.doi.org/10.1093/molehr/7.8.723 PMid:11470859   Paul CP, Good PD, Winer I and Engelke DR (2002). Effective expression of small interfering RNA in human cells. Nat. Biotechnol. 20: 505-508. http://dx.doi.org/10.1038/nbt0502-505 PMid:11981566   Petersen CP, Bordeleau ME, Pelletier J and Sharp PA (2006). Short RNAs repress translation after initiation in mammalian cells. Mol. Cell 21: 533-542. http://dx.doi.org/10.1016/j.molcel.2006.01.031 PMid:16483934   Reynolds A, Leake D, Boese Q, Scaringe S, et al. (2004). Rational siRNA design for RNA interference. Nat. Biotechnol. 22: 326-330. http://dx.doi.org/10.1038/nbt936 PMid:14758366   Shen HL, Xu W, Wu ZY, Zhou LL, et al. (2007). Vector-based RNAi approach to isoform-specific downregulation of vascular endothelial growth factor (VEGF)165 expression in human leukemia cells. Leuk. Res. 31: 515-521. http://dx.doi.org/10.1016/j.leukres.2006.09.011 PMid:17034851   Shi Y (2003). Mammalian RNAi for the masses. Trends Genet. 19: 9-12. http://dx.doi.org/10.1016/S0168-9525(02)00005-7   Tamanini C and De Ambrogi M (2004). Angiogenesis in developing follicle and corpus luteum. Reprod. Domest. Anim. 39: 206-216. http://dx.doi.org/10.1111/j.1439-0531.2004.00505.x PMid:15225273   Tang TT and Lasky LA (2003). The forkhead transcription factor FOXO4 induces the down-regulation of hypoxia-inducible factor 1 alpha by a von Hippel-Lindau protein-independent mechanism. J. Biol. Chem. 278: 30125-30135. http://dx.doi.org/10.1074/jbc.M302042200 PMid:12761217   Terman BI and Dougher-Vermazen M (1996). Biological properties of VEGF/VPF receptors. Cancer Metastasis Rev. 15: 159-163. http://dx.doi.org/10.1007/BF00437468 PMid:8842487   Wolters NM and Mackeigan JP (2008). From sequence to function: using RNAi to elucidate mechanisms of human disease. Cell Death Differ. 15: 809-819. http://dx.doi.org/10.1038/sj.cdd.4402311 PMid:18202701   Wulff C, Wilson H, Wiegand SJ, Rudge JS, et al. (2002). Prevention of thecal angiogenesis, antral follicular growth, and ovulation in the primate by treatment with vascular endothelial growth factor Trap R1R2. Endocrinology 143: 2797-2807. http://dx.doi.org/10.1210/en.143.7.2797 PMid:12072415   Yoo JY, Kim JH, Kwon YG, Kim EC, et al. (2007). VEGF-specific short hairpin RNA-expressing oncolytic adenovirus elicits potent inhibition of angiogenesis and tumor growth. Mol. Ther. 15: 295-302. http://dx.doi.org/10.1038/sj.mt.6300023 PMid:17235307   Zhang GY, Yi CG, Li X, Zheng Y, et al. (2008). Inhibition of vascular endothelial growth factor expression in keloid fibroblasts by vector-mediated vascular endothelial growth factor shRNA: a therapeutic potential strategy for keloid. Arch. Dermatol. Res. 300: 177-184. http://dx.doi.org/10.1007/s00403-007-0825-y PMid:18239926   Zhang L, Yang N, Mohamed-Hadley A, Rubin SC, et al. (2003). Vector-based RNAi, a novel tool for isoform-specific knock-down of VEGF and anti-angiogenesis gene therapy of cancer. Biochem. Biophys. Res. Commun. 303: 1169-1178. http://dx.doi.org/10.1016/S0006-291X(03)00495-9