Found 2 results
Filters: Author is F. Pang  [Clear All Filters]
Y. L. Hu, Zhong, D., Pang, F., Ning, Q. Y., Zhang, Y. Y., Li, G., Wu, J. Z., and Mo, Z. N., HNF1b is involved in prostate cancer risk via modulating androgenic hormone effects and coordination with other genes, vol. 12, pp. 1327-1335, 2013.
Cappello F, Rappa F, David S, Anzalone R, et al. (2003). Immunohistochemical evaluation of PCNA, p53, HSP60, HSP10 and MUC-2 presence and expression in prostate carcinogenesis. Anticancer Res. 23: 1325-1331. PMid:12820390   Castilla C, Congregado B, Conde JM, Medina R, et al. (2010). Immunohistochemical expression of Hsp60 correlates with tumor progression and hormone resistance in prostate cancer. Urology 76: 1017.e1-6.   Chan J, Song CS, Matusik RJ, Chatterjee B, et al. (1998). Inhibition of androgen action by dehydroepiandrosterone sulfotransferase transfected in PC3 prostate cancer cells. Chem. Biol. Interact. 109: 267-278.   Chang C, Saltzman A, Lee HJ, Uemura H, et al. (1993). Genomic structure, chromosomal localization and expression of an androgen inducible TR3 orphan receptor: a member of the steroid receptor superfamily. Endocrine J. 1: 541-549.   Chen YZ, Gao Q, Zhao XZ, Chen YZ, et al. (2010). Systematic review of TCF2 anomalies in renal cysts and diabetes syndrome/maturity onset diabetes of the young type 5. Chin. Med. J. 123: 3326-3333.   Cornford PA, Dodson AR, Parsons KF, Desmond AD, et al. (2000). Heat shock protein expression independently predicts clinical outcome in prostate cancer. Cancer Res. 60: 7099-7105. PMid:11156417   Das K, Lorena PD, Ng LK, Lim D, et al. (2010). Differential expression of steroid 5alpha-reductase isozymes and association with disease severity and angiogenic genes predict their biological role in prostate cancer. Endocr. Relat. Cancer 17: 757-770. PMid:20519274   Denmeade SR and Isaacs JT (2004). Development of prostate cancer treatment: the good news. Prostate 58: 211-224. PMid:14743459   Eeles RA, Kote-Jarai Z, Giles GG, Olama AA, et al. (2008). Multiple newly identified loci associated with prostate cancer susceptibility. Nat. Genet. 40: 316-321. PMid:18264097   Ghosh JC, Dohi T, Kang BH and Altieri DC (2008). Hsp60 regulation of tumor cell apoptosis. J. Biol. Chem. 283: 5188- 5194. PMid:18086682   Ghosh JC, Siegelin MD, Dohi T and Altieri DC (2010). Heat shock protein 60 regulation of the mitochondrial permeability transition pore in tumor cells. Cancer Res. 70: 8988-8993. PMid:20978188 PMCid:2982903   Gudmundsson J, Sulem P, Steinthorsdottir V, Bergthorsson JT, et al. (2007). Two variants on chromosome 17 confer prostate cancer risk, and the one in TCF2 protects against type 2 diabetes. Nat. Genet. 39: 977-983. PMid:17603485   Hamid T, Malik MT, Millar RP and Kakar SS (2008). Protein kinase A serves as a primary pathway in activation of Nur77 expression by gonadotropin-releasing hormone in the LbetaT2 mouse pituitary gonadotroph tumor cell line. Int. J. Oncol. 33: 1055-1064. PMid:18949369   Harries LW, Perry JR, McCullagh P and Crundwell M (2010). Alterations in LMTK2, MSMB and HNF1B gene expression are associated with the development of prostate cancer. BMC Cancer 10: 315. PMid:20569440 PMCid:2908099   Huang da W, Sherman BT and Lempicki RA (2009). Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat. Protoc. 4: 44-57. PMid:19131956   Johnson GL and Lapadat R (2002). Mitogen-activated protein kinase pathways mediated by ERK, JNK, and p38 protein kinases. Science 298: 1911-1912. PMid:12471242   Kato N and Motoyama T (2009). Hepatocyte nuclear factor-1beta(HNF-1beta) in human urogenital organs: its expression and role in embryogenesis and tumorigenesis. Histol. Histopathol. 24: 1479-1486. PMid:19760597   Kelly RJ, Lopez-Chavez A, Citrin D, Janik JE, et al. (2011). Impacting tumor cell-fate by targeting the inhibitor of apoptosis protein survivin. Mol. Cancer 10: 35. PMid:21470426 PMCid:3083377   Liu F, Hsing AW, Wang X, Shao Q, et al. (2011). Systematic confirmation study of reported prostate cancer risk-associated single nucleotide polymorphisms in Chinese men. Cancer Sci. 102: 1916-1920. PMid:21756274 PMCid:3581323   Livak KJ and Schmittgen TD (2001). Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods 25: 402-408. PMid:11846609   Manolio TA, Brooks LD and Collins FS (2008). A HapMap harvest of insights into the genetics of common disease. J. Clin. Invest. 118: 1590-1605. PMid:18451988 PMCid:2336881   Maqungo M, Kaur M, Kwofie SK, Radovanovic A, et al. (2011). DDPC: Dragon Database of Genes associated with Prostate Cancer. Nucleic Acids Res. 39: D980-D985. PMid:20880996 PMCid:3013759   Min JL, Nicholson G, Halgrimsdottir I, Almstrup K, et al. (2012). Coexpression network analysis in abdominal and gluteal adipose tissue reveals regulatory genetic loci for metabolic syndrome and related phenotypes. PLoS Genet. 8: e1002505. PMid:22383892 PMCid:3285582   Ning QY, Wu JZ, Zang N, Liang J, et al. (2011). Key pathways involved in prostate cancer based on gene set enrichment analysis and meta analysis. Genet. Mol. Res. 10: 3856-3887. PMid:22194210   Pierce BL and Ahsan H (2010). Genetic susceptibility to type 2 diabetes is associated with reduced prostate cancer risk. Hum. Hered. 69: 193-201. PMid:20203524 PMCid:2866577   Setiawan VW, Haessler J, Schumacher F, Cote ML, et al. (2012). HNF1B and endometrial cancer risk: results from the PAGE study. PLoS One 7: e30390. PMid:22299039 PMCid:3267708   Skvortsov S, Schafer G, Stasyk T, Fuchsberger C, et al. (2011). Proteomics profiling of microdissected low- and high-grade prostate tumors identifies Lamin A as a discriminatory biomarker. J. Proteome. Res. 10: 259-268. PMid:20977276   Song CS, Jung MH, Kim SC, Hassan T, et al. (1998). Tissue-specific and androgen-repressible regulation of the rat dehydroepiandrosterone sulfotransferase gene promoter. J. Biol. Chem. 273: 21856-21866. PMid:9705324   Szponar A, Yusenko MV, Kuiper R, van Kessel AG, et al. (2011). Genomic profiling of papillary renal cell tumours identifies small regions of DNA alterations: a possible role of HNF1B in tumour development. Histopathology 58: 934-943. PMid:21438902   Takata R, Akamatsu S, Kubo M, Takahashi A, et al. (2010). Genome-wide association study identifies five new susceptibility loci for prostate cancer in the Japanese population. Nat. Genet. 42: 751-754. PMid:20676098   Terasawa K, Toyota M, Sagae S, Ogi K, et al. (2006). Epigenetic inactivation of TCF2 in ovarian cancer and various cancer cell lines. Br. J. Cancer 94: 914-921. PMid:16479257 PMCid:2361363   Thomas G, Jacobs KB, Yeager M, Kraft P, et al. (2008). Multiple loci identified in a genome-wide association study of prostate cancer. Nat. Genet. 40: 310-315. PMid:18264096   Tommasi S, Karm DL, Wu X, Yen Y, et al. (2009). Methylation of homeobox genes is a frequent and early epigenetic event in breast cancer. Breast Cancer Res. 11: R14. PMid:19250546 PMCid:2687719   Tronche F and Yaniv M (1992). HNF1, a homeoprotein member of the hepatic transcription regulatory network. Bioessays 14: 579-587. PMid:1365913   Uemura H and Chang C (1998). Antisense TR3 orphan receptor can increase prostate cancer cell viability with etoposide treatment. Endocrinology 139: 2329-2334. PMid:9564841   Wilhite SE and Barrett T (2012). Strategies to explore functional genomics data sets in NCBI's GEO database. Methods Mol. Biol. 802: 41-53. PMid:22130872 PMCid:3341798   Wixon J and Kell D (2000). The Kyoto Encyclopedia of Genes and Genomes - KEGG. Yeast 17: 48-55. PMid:10928937