Publications

Found 9 results
Filters: Author is J.M. Liu  [Clear All Filters]
2016
D. W. Feng, Ma, R. L., Guo, H., He, J., Yan, Y. Z., Muratbek,, Niu, Q., Li, S. G., Rui, D. S., Sun, F., Zhang, M., Zhang, J. Y., Ding, Y. S., Liu, J. M., Wang, K., Guo, S. X., Feng, D. W., Ma, R. L., Guo, H., He, J., Yan, Y. Z., Muratbek,, Niu, Q., Li, S. G., Rui, D. S., Sun, F., Zhang, M., Zhang, J. Y., Ding, Y. S., Liu, J. M., Wang, K., Guo, S. X., Feng, D. W., Ma, R. L., Guo, H., He, J., Yan, Y. Z., Muratbek,, Niu, Q., Li, S. G., Rui, D. S., Sun, F., Zhang, M., Zhang, J. Y., Ding, Y. S., Liu, J. M., Wang, K., and Guo, S. X., Association of APOA1 gene polymorphisms (rs670, rs5069, and rs2070665) with dyslipidemia in the Kazakhs of Xinjiang, vol. 15, p. -, 2016.
D. W. Feng, Ma, R. L., Guo, H., He, J., Yan, Y. Z., Muratbek,, Niu, Q., Li, S. G., Rui, D. S., Sun, F., Zhang, M., Zhang, J. Y., Ding, Y. S., Liu, J. M., Wang, K., Guo, S. X., Feng, D. W., Ma, R. L., Guo, H., He, J., Yan, Y. Z., Muratbek,, Niu, Q., Li, S. G., Rui, D. S., Sun, F., Zhang, M., Zhang, J. Y., Ding, Y. S., Liu, J. M., Wang, K., Guo, S. X., Feng, D. W., Ma, R. L., Guo, H., He, J., Yan, Y. Z., Muratbek,, Niu, Q., Li, S. G., Rui, D. S., Sun, F., Zhang, M., Zhang, J. Y., Ding, Y. S., Liu, J. M., Wang, K., and Guo, S. X., Association of APOA1 gene polymorphisms (rs670, rs5069, and rs2070665) with dyslipidemia in the Kazakhs of Xinjiang, vol. 15, p. -, 2016.
D. W. Feng, Ma, R. L., Guo, H., He, J., Yan, Y. Z., Muratbek,, Niu, Q., Li, S. G., Rui, D. S., Sun, F., Zhang, M., Zhang, J. Y., Ding, Y. S., Liu, J. M., Wang, K., Guo, S. X., Feng, D. W., Ma, R. L., Guo, H., He, J., Yan, Y. Z., Muratbek,, Niu, Q., Li, S. G., Rui, D. S., Sun, F., Zhang, M., Zhang, J. Y., Ding, Y. S., Liu, J. M., Wang, K., Guo, S. X., Feng, D. W., Ma, R. L., Guo, H., He, J., Yan, Y. Z., Muratbek,, Niu, Q., Li, S. G., Rui, D. S., Sun, F., Zhang, M., Zhang, J. Y., Ding, Y. S., Liu, J. M., Wang, K., and Guo, S. X., Association of APOA1 gene polymorphisms (rs670, rs5069, and rs2070665) with dyslipidemia in the Kazakhs of Xinjiang, vol. 15, p. -, 2016.
2013
J. M. Liu, Liu, J. N., Wei, M. T., He, Y. Z., Zhou, Y., Song, X. B., Ying, B. W., and Huang, J., Effect of IL-18 gene promoter polymorphisms on prostate cancer occurrence and prognosis in Han Chinese population, vol. 12, pp. 820-829, 2013.
Alexandrakis MG, Passam FH, Sfiridaki K, Moschandrea J, et al. (2004). Interleukin-18 in multiple myeloma patients: serum levels in relation to response to treatment and survival. Leuk. Res. 28: 259-266. http://dx.doi.org/10.1016/S0145-2126(03)00261-3   Amin MA, Mansfield PJ, Pakozdi A, Campbell PL, et al. (2007). Interleukin-18 induces angiogenic factors in rheumatoid arthritis synovial tissue fibroblasts via distinct signaling pathways. Arthritis Rheum. 56: 1787-1797. http://dx.doi.org/10.1002/art.22705 PMid:17530707   Bushley AW, Ferrell R, McDuffie K, Terada KY, et al. (2004). Polymorphisms of interleukin (IL)-1alpha, IL-1beta, IL-6, IL-10, and IL-18 and the risk of ovarian cancer. Gynecol. Oncol. 95: 672-679. http://dx.doi.org/10.1016/j.ygyno.2004.08.024 PMid:15581980   Charles AD (1999). Interleukin-18. Methods 19: 121-132. http://dx.doi.org/10.1006/meth.1999.0837 PMid:10525448   Cho ML, Jung YO, Moon YM, Min SY, et al. (2006). Interleukin-18 induces the production of vascular endothelial growth factor (VEGF) in rheumatoid arthritis synovial fibroblasts via AP-1-dependent pathways. Immunol. Lett. 103: 159-166. http://dx.doi.org/10.1016/j.imlet.2005.10.020 PMid:16368150   Desai KV, Michalowska AM, Kondaiah P, Ward JM, et al. (2004). Gene expression profiling identifies a unique androgen-mediated inflammatory/immune signature and a PTEN (phosphatase and tensin homolog deleted on chromosome 10)-mediated apoptotic response specific to the rat ventral prostate. Mol. Endocrinol. 18: 2895-2907. http://dx.doi.org/10.1210/me.2004-0033 PMid:15358834   Dinarello CA (1999). IL-18: A TH1-inducing, proinflammatory cytokine and new member of the IL-1 family. J. Allergy Clin. Immunol. 103: 11-24. http://dx.doi.org/10.1016/S0091-6749(99)70518-X   Eissa SA, Zaki SA, El-Maghraby SM and Kadry DY (2005). Importance of serum IL-18 and RANTES as markers for breast carcinoma progression. J. Egypt. Natl. Canc. Inst. 17: 51-55. PMid:16353083   Figg WD, Franks ME, Venzon D, Duray P, et al. (2004). Gleason score and pretreatment prostate-specific antigen in survival among patients with stage D2 prostate cancer. World J. Urol. 22: 425-430. http://dx.doi.org/10.1007/s00345-004-0443-7 PMid:15592675   Fujita K, Ewing CM, Sokoll LJ, Elliott DJ, et al. (2008). Cytokine profiling of prostatic fluid from cancerous prostate glands identifies cytokines associated with extent of tumor and inflammation. Prostate 68: 872-882. http://dx.doi.org/10.1002/pros.20755 PMid:18361406 PMCid:2562260   Fujita K, Ewing CM, Isaacs WB and Pavlovich CP (2011). Immunomodulatory IL-18 binding protein is produced by prostate cancer cells and its levels in urine and serum correlate with tumor status. Int. J. Cancer 129: 424-432. http://dx.doi.org/10.1002/ijc.25705 PMid:20878981 PMCid:3040782   Giedraitis V, He B, Huang WX and Hillert J (2001). Cloning and mutation analysis of the human IL-18 promoter: a possible role of polymorphisms in expression regulation. J. Neuroimmunol. 112: 146-152. http://dx.doi.org/10.1016/S0165-5728(00)00407-0   Gillies SD, Young D, Lo KM and Roberts S (1993). Biological activity and in vivo clearance of antitumor antibody/ cytokine fusion proteins. Bioconjug. Chem. 4: 230-235. http://dx.doi.org/10.1021/bc00021a008 PMid:8324014   Han MY, Zheng S, Yu JM, Peng JP, et al. (2004). Study on interleukin-18 gene transfer into human breast cancer cells to prevent tumorigenicity. J. Zhejiang Univ. Sci. 5: 472-476. http://dx.doi.org/10.1631/jzus.2004.0472 PMid:14994440   Jung MK, Song HK, Kim KE, Hur DY, et al. (2006). IL-18 enhances the migration ability of murine melanoma cells through the generation of ROI and the MAPK pathway. Immunol. Lett. 107: 125-130. http://dx.doi.org/10.1016/j.imlet.2006.08.004 PMid:17014914   Kalina U, Ballas K, Koyama N, Kauschat D, et al. (2000). Genomic organization and regulation of the human interleukin-18 gene. Scand. J. Immunol. 52: 525-530. http://dx.doi.org/10.1046/j.1365-3083.2000.00836.x PMid:11119255   Kim KE, Song H, Kim TS, Yoon D, et al. (2007). Interleukin-18 is a critical factor for vascular endothelial growth factor-enhanced migration in human gastric cancer cell lines. Oncogene 26: 1468-1476. http://dx.doi.org/10.1038/sj.onc.1209926 PMid:17001321   Lebel-Binay S, Thiounn N, De PG, Vieillefond A, et al. (2003). IL-18 is produced by prostate cancer cells and secreted in response to interferons. Int. J. Cancer 106: 827-835. http://dx.doi.org/10.1002/ijc.11285 PMid:12918059   Li Z, Zhang Z, He Z, Tang W, et al. (2009). A partition-ligation-combination-subdivision EM algorithm for haplotype inference with multiallelic markers: update of the SHEsis (http://analysis.bio-x.cn). Cell Res. 19: 519-523. http://dx.doi.org/10.1038/cr.2009.33 PMid:19290020   Liu J, Liu J, Zhou Y, Li S, et al. (2011). Association between promoter variants of interleukin-18 and schizophrenia in a Han Chinese population. DNA Cell Biol. 30: 913-917. http://dx.doi.org/10.1089/dna.2011.1221 PMid:21510800   Liu Y, Lin N, Huang L, Xu Q, et al. (2007). Genetic polymorphisms of the interleukin-18 gene and risk of prostate cancer. DNA Cell Biol. 26: 613-618. http://dx.doi.org/10.1089/dna.2007.0600 PMid:17688413   Marshall DJ, Rudnick KA, McCarthy SG, Mateo LR, et al. (2006). Interleukin-18 enhances Th1 immunity and tumor protection of a DNA vaccine. Vaccine 24: 244-253. http://dx.doi.org/10.1016/j.vaccine.2005.07.087 PMid:16135392   Merendino RA, Gangemi S, Ruello A, Bene A, et al. (2001). Serum levels of interleukin-18 and sICAM-1 in patients affected by breast cancer: preliminary considerations. Int. J. Biol. Markers 16: 126-129. PMid:11471895   Okamura H, Tsutsi H, Komatsu T, Yutsudo M, et al. (1995). Cloning of a new cytokine that induces IFN-gamma production by T cells. Nature 378: 88-91. http://dx.doi.org/10.1038/378088a0 PMid:7477296   Park H, Byun D, Kim TS, Kim YI, et al. (2001). Enhanced IL-18 expression in common skin tumors. Immunol. Lett. 79: 215-219. http://dx.doi.org/10.1016/S0165-2478(01)00278-4   Pratesi C, Bortolin MT, Bidoli E, Tedeschi R, et al. (2006). Interleukin-10 and interleukin-18 promoter polymorphisms in an Italian cohort of patients with undifferentiated carcinoma of nasopharyngeal type. Cancer Immunol. Immunother. 55: 23-30. http://dx.doi.org/10.1007/s00262-005-0688-z PMid:16059673   Shi YY and He L (2005). SHEsis, a powerful software platform for analyses of linkage disequilibrium, haplotype construction, and genetic association at polymorphism loci. Cell Res. 15: 97-98. http://dx.doi.org/10.1038/sj.cr.7290272 PMid:15740637   Stacey SN, Sulem P, Jonasdottir A, Masson G, et al. (2011). A germline variant in the TP53 polyadenylation signal confers cancer susceptibility. Nat. Genet. 43: 1098-1103. http://dx.doi.org/10.1038/ng.926 PMid:21946351 PMCid:3263694   Takagawa T, Tamura K, Takeda N, Tomita T, et al. (2005). Association between IL-18 gene promoter polymorphisms and inflammatory bowel disease in a Japanese population. Inflamm. Bowel. Dis. 11: 1038-1043. http://dx.doi.org/10.1097/01.MIB.0000182868.67025.b9 PMid:16306765   Tse BW, Russell PJ, Lochner M, Förster I, et al. (2011). IL-18 inhibits growth of murine orthotopic prostate carcinomas via both adaptive and innate immune mechanisms. PLoS One 6: e24241. http://dx.doi.org/10.1371/journal.pone.0024241 PMid:21935389 PMCid:3174151   Wang F, Zou YF, Feng XL, Su H, et al. (2011). CYP17 gene polymorphisms and prostate cancer risk: a meta-analysis based on 38 independent studies. Prostate 71: 1167-1177. http://dx.doi.org/10.1002/pros.21332   Wentzensen N, Black A, Jacobs K, Yang HP, et al. (2011). Genetic variation on 9p22 is associated with abnormal ovarian ultrasound results in the prostate, lung, colorectal, and ovarian cancer screening trial. PLoS One 6: e21731. http://dx.doi.org/10.1371/journal.pone.0021731 PMid:21750727 PMCid:3131287   Xia D, Li F and Xiang J (2004). Engineered fusion hybrid vaccine of IL-18 gene-modified tumor cells and dendritic cells induces enhanced antitumor immunity. Cancer Biother. Radiopharm. 19: 322-330. http://dx.doi.org/10.1089/1084978041424990 PMid:15285878   Ye ZB, Ma T, Li H, Jin XL, et al. (2007). Expression and significance of intratumoral interleukin-12 and interleukin-18 in human gastric carcinoma. World J. Gastroenterol. 13: 1747-1751. PMid:17461482   Yoon- DY, Cho YS, Park JW, Kim SH, et al. (2004). Up-regulation of reactive oxygen species (ROS) and resistance to Fas-mediated apoptosis in the C33A cervical cancer cell line transfected with IL-18 receptor. Clin. Chem. Lab. Med. 42: 499-506. PMid:15202785   Zeegers MP, Khan HS, Schouten LJ, van Dijk BA, et al. (2011). Genetic marker polymorphisms on chromosome 8q24 and prostate cancer in the Dutch population: DG8S737 may not be the causative variant. Eur. J. Hum. Genet. 19: 118-120. http://dx.doi.org/10.1038/ejhg.2010.133 PMid:20700145 PMCid:3039500   Zhou W, Chen Z, Hu W, Shen M, et al. (2011). Association of short tandem repeat polymorphism in the promoter of prostate cancer antigen 3 gene with the risk of prostate cancer. PLoS One 6: e20378. http://dx.doi.org/10.1371/journal.pone.0020378 PMid:21655300 PMCid:3105025
2012
G. F. Zhang, Guan, J. M., Lai, X. P., Lin, J., Liu, J. M., and Xu, H. H., RAPD fingerprint construction and genetic similarity of Mesona chinensis (Lamiaceae) in China, vol. 11, pp. 3649-3657, 2012.
Arif IA, Bakir MA, Khan HA, Al Farhan AH, et al. (2010). Application of RAPD for molecular characterization of plant species of medicinal value from an arid environment. Genet. Mol. Res. 9: 2191-2198. http://dx.doi.org/10.4238/vol9-4gmr848 PMid:21064026   Ding G, Li X, Ding X and Qian L (2009). Genetic diversity across natural populations of Dendrobium officinale, the endangered medicinal herb endemic to China, revealed by ISSR and RAPD markers. Genetika 45: 375-382. PMid:19382690   Ghosh S, Majumder PB and Sen MS (2011). Species-specific AFLP markers for identification of Zingiber officinale, Z. montanum and Z. zerumbet (Zingiberaceae). Genet. Mol. Res. 10: 218-229. http://dx.doi.org/10.4238/vol10-1gmr1154 PMid:21341214   Guan JM, Zhang GF, Lin J and Xu HH (2010). Genomic DNA extraction and analysis of Mesona chinensis Benth. J. Anhui Agric. Sci. 38: 10575-10577.   Guo X, Wang X, Su W, Zhang G, et al. (2011). DNA barcodes for discriminating the medicinal plant Scutellaria baicalensis (Lamiaceae) and its adulterants. Biol. Pharm. Bull. 34: 1198-1203. http://dx.doi.org/10.1248/bpb.34.1198 PMid:21804206   Hammad I and Qari SH (2010). Genetic diversity among Zygophyllum (Zygophyllaceae) populations based on RAPD analysis. Genet. Mol. Res. 9: 2412-2420. http://dx.doi.org/10.4238/vol9-4gmr1144 PMid:21161890   Huang GJ, Liao JC, Chiu CS, Huang SS, et al. (2012). Anti-inflammatory activities of aqueous extract of Mesona procumbens in experimental mice. J. Sci. Food Agric. 92: 1186-1193. http://dx.doi.org/10.1002/jsfa.4682 PMid:22131195   Li Y and Ding WL (2010). Genetic diversity assessment of Trollius accessions in China by RAPD markers. Biochem. Genet. 48: 34-43. http://dx.doi.org/10.1007/s10528-009-9290-y PMid:19809874   Liu XG and Fang YP (1998). The development and utilization of Mesona chinensis Benth. Resour. Chin. Wild Plant Res. 17: 27-30.   Liu XG and Chen MM (2004). Research on the exploitation and utilization of Mesona Blume in China. Food Res. Dev. 25: 109-112.   Shen GL, Sun YM, Huang XY and Wu Q (2000). The research and utilization of Mesona chinensis Benth. Agric. Prod. Dev. 6: 8.   Wang BY, SHI L, Ruan ZY and Deng J (2011). Genetic diversity and differentiation in Dalbergia sissoo (Fabaceae) as revealed by RAPD. Genet. Mol. Res. 10: 114-120. http://dx.doi.org/10.4238/vol10-1gmr995 PMid:21268781   Wang YY, Wang CX, Huang RH, Chen WS, et al. (2010). The production technology of Mesona chinensis Benth. Guangdong Agric. Sci. 37: 86-88.   Wu LP and Wang R (2009). Progress in research and application of Mesona Blume. Str. Pharm. J. 21: 88-90.   Xu ZL, Ali Z, Yi JX, He XL, et al. (2011). Expressed sequence tag-simple sequence repeat-based molecular variance in two Salicornia (Amaranthaceae) populations. Genet. Mol. Res. 10: 1262-1276. http://dx.doi.org/10.4238/vol10-2gmr1321 PMid:21732290   Zhang AS, Xu JW, Zhang LM, Xing ZF, et al. (2009). RAPD analysis of classification and genetic relationship among Northem Japonica rice. Mol. Plant Breed. 5: 885-889.   Zhao GZ, Shi YP, Huang NZ, Fu CM, et al. (2011). The research advances on Mesona chinensis Benth in China. J. South Agric. 42: 657-660.   Zhu ZH, Liu WH, Yu Q and Wan HT (2011). RAPD polymorphism of Rhizoma atractylodis macrocephalae from four natural populations. J. Zhejiang Chin. Med. Univ. 35: 575-577.