Publications
Found 21 results
Filters: Author is X. Huang [Clear All Filters]
“A functional insertion/deletion polymorphism in the IL1A gene is associated with decreased risk of breast cancer”, vol. 15, p. -, 2016.
, “A functional insertion/deletion polymorphism in the IL1A gene is associated with decreased risk of breast cancer”, vol. 15, p. -, 2016.
, “Orthogonal design in the optimization of a start codon targeted (SCoT) PCR system in Roegneria kamoji Ohwi”, vol. 15, no. 4, p. -, 2016.
,
Conflicts of interest
The authors declare no conflict of interest.
ACKNOWLEDGMENTS
Research supported by the Youth Project Foundation of Rongchang Campus, Southwest University, “The germplasm resources of Dactylis glomerata in rust resistance evaluation and development of rust-resistant gene SNP marker” (#20700431); the Major Projects of Guizhou Province Science and Technology, “Guizhou Mountain Pasture Industrialization Production Technology Research and Application” (#6017; 2014); the Funding Project of 2016 Chongqing Universities Innovation Team Building Plan “Modern Technology in Beef Cattle Production”; Goat Industry Technology System Construction Project in Chongqing; and Development and Demonstration of Green Prevention and Control Technology of Plant Diseases and Pests in Grass Field System (#2014BAD23B03-03).
REFERENCES
Baum BR, Yen C, Yang JL, et al (1991). Roegneria: its generic limits and justification for its recognition. Can. J. Bot. 69: 282-294. http://dx.doi.org/10.1139/b91-038
Bhattacharyya P, Kumaria S, Kumar S, Tandon P, et al (2013). Start Codon Targeted (SCoT) marker reveals genetic diversity of Dendrobium nobile Lindl., an endangered medicinal orchid species. Gene 529: 21-26. http://dx.doi.org/10.1016/j.gene.2013.07.096
Chen DX, Li LY, Zhang X, Wang Y, et al (2015). Genetic structure and genetic diversity of single-variety Lonicera macranthoides populations in China, as indicated by SCoT markers. Genet. Mol. Res. 14: 8058-8067. http://dx.doi.org/10.4238/2015.July.17.14
Collard BCY, Mackill DJ, et al (2009). Start codon targeted (SCoT) polymorphism: a simple, novel DNA marker technique for generating gene-targeted markers in plants. Plant Mol. Biol. Report. 27: 86-93. http://dx.doi.org/10.1007/s11105-008-0060-5
Guo DL, Zhang JY, Liu CH, et al (2012). Genetic diversity in some grape varieties revealed by SCoT analyses. Mol. Biol. Rep. 39: 5307-5313. http://dx.doi.org/10.1007/s11033-011-1329-6
He Z, Liu Y, Chen L, Cao M, et al. (1998). Orthogonal design-direct analysis for PCR optimization. Hunan Yi Ke Da Xue Xue Bao 23: 403-404.
Hu C, He XH, Luo C, Zhu JH, et al (2009). The optimization of SCoT-PCR system of Longan (Dimocarpus longan). Genom. Appl. Biol. 28: 970-974.
Jiang DJ, Liu JM, et al (1990). Morphology and cytogenetics of intergeneric hybrid between Roegneria kamoji and Hordeum vulgare. Acta Genet. Sin. 17: 373-376.
Joshi CP, Zhou H, Huang X, Chiang VL, et al (1997). Context sequences of translation initiation codon in plants. Plant Mol. Biol. 35: 993-1001. http://dx.doi.org/10.1023/A:1005816823636
Luo C, He XH, Chen H, Ou SJ, et al (2011). Genetic diversity of mango cultivars estimated using SCoT and ISSR markers. Biochem. Syst. Ecol. 39: 676-684. http://dx.doi.org/10.1016/j.bse.2011.05.023
Luo C, He XH, Hu Y, Yu HX, et al (2014). Oligo-dT anchored cDNA-SCoT: a novel differential display method for analyzing differential gene expression in response to several stress treatments in mango (Mangifera indica L.). Gene 548: 182-189. http://dx.doi.org/10.1016/j.gene.2014.07.024
Marson EP, Ferraz JB, Meirelles FV, Balieiro JC, et al (2005). Genetic characterization of European-Zebu composite bovine using RFLP markers. Genet. Mol. Res. 4: 496-505.
Peng C, Liu QL, Wang HG, Yan XB, et al (2012). Optimization and testing for SSR-PCR system of Roegneria shandongensis. J. Biol. 29: 91-94.
Xiao S, Zhang XQ, Ma X, Zhang JB, et al (2008). Genetic diversity of gliadin in wild germplasm of Roegneria kamoji. Acta Pratacul. Sin. 17: 138-144.
Xiong F, Zhong R, Han Z, Jiang J, et al (2011). Start codon targeted polymorphism for evaluation of functional genetic variation and relationships in cultivated peanut (Arachis hypogaea L.) genotypes. Mol. Biol. Rep. 38: 3487-3494. http://dx.doi.org/10.1007/s11033-010-0459-6
Yang RW, Zhou YH, Zheng YL, et al (2001). Analysis on chromosome C-banding of Roegneria kamoji. Guangxi Sci. 9: 138-141.
Yang TT, Mu LQ, Wang J, et al (2007). Optimizing SSR-PCR system of Panax ginseng by orthogonal design. J. For. Res. 18: 31-34. http://dx.doi.org/10.1007/s11676-007-0006-z
Yang ZJ, Peng ZS and Yang H (2016). Identification of novel and useful EST-SSR markers from de novo transcriptome sequence of wheat (Triticum aestivum L.). Genet. Mol. Res. 15: gmr.15017509.
Zeng B, Huang X, Huang LK, Zhang J, et al (2015). Optimization of SCoT-PCR reaction system in Dactylis glomerata by orthogonal design. Genet. Mol. Res. 14: 3052-3061. http://dx.doi.org/10.4238/2015.April.10.15
Zhang Y, Zhou YH, Zhang L, Zhang HQ, et al (2005). Phylogenetic relationships among species of Roegneria, Elymus, Hystrix and Kengyilia (Poaceae: Triticeae) based on RAMP marker. Xibei Zhiwu Xuebao 25: 368-375.
Zhang Y, Zhou YH, Zhang L, Zhang HQ, et al (2006). [PCR-RFLP analysis on Roegneria, Elymus, Hystrix and Kengyilia in Triticeae (Poaceae)]. Yi Chuan 28: 449-457.
Zheng YQ, Wang ZY, Guo HL, Xue DD, et al (2008). Optimization of SRAP-PCR system on centipedegrass (Eremochloa ophiuroides) using orthogonal design and selection of primers. Acta Pratacul. Sin. 17: 110-117.
“Orthogonal design in the optimization of a start codon targeted (SCoT) PCR system in Roegneria kamoji Ohwi”, vol. 15, no. 4, p. -, 2016.
,
Conflicts of interest
The authors declare no conflict of interest.
ACKNOWLEDGMENTS
Research supported by the Youth Project Foundation of Rongchang Campus, Southwest University, “The germplasm resources of Dactylis glomerata in rust resistance evaluation and development of rust-resistant gene SNP marker” (#20700431); the Major Projects of Guizhou Province Science and Technology, “Guizhou Mountain Pasture Industrialization Production Technology Research and Application” (#6017; 2014); the Funding Project of 2016 Chongqing Universities Innovation Team Building Plan “Modern Technology in Beef Cattle Production”; Goat Industry Technology System Construction Project in Chongqing; and Development and Demonstration of Green Prevention and Control Technology of Plant Diseases and Pests in Grass Field System (#2014BAD23B03-03).
REFERENCES
Baum BR, Yen C, Yang JL, et al (1991). Roegneria: its generic limits and justification for its recognition. Can. J. Bot. 69: 282-294. http://dx.doi.org/10.1139/b91-038
Bhattacharyya P, Kumaria S, Kumar S, Tandon P, et al (2013). Start Codon Targeted (SCoT) marker reveals genetic diversity of Dendrobium nobile Lindl., an endangered medicinal orchid species. Gene 529: 21-26. http://dx.doi.org/10.1016/j.gene.2013.07.096
Chen DX, Li LY, Zhang X, Wang Y, et al (2015). Genetic structure and genetic diversity of single-variety Lonicera macranthoides populations in China, as indicated by SCoT markers. Genet. Mol. Res. 14: 8058-8067. http://dx.doi.org/10.4238/2015.July.17.14
Collard BCY, Mackill DJ, et al (2009). Start codon targeted (SCoT) polymorphism: a simple, novel DNA marker technique for generating gene-targeted markers in plants. Plant Mol. Biol. Report. 27: 86-93. http://dx.doi.org/10.1007/s11105-008-0060-5
Guo DL, Zhang JY, Liu CH, et al (2012). Genetic diversity in some grape varieties revealed by SCoT analyses. Mol. Biol. Rep. 39: 5307-5313. http://dx.doi.org/10.1007/s11033-011-1329-6
He Z, Liu Y, Chen L, Cao M, et al. (1998). Orthogonal design-direct analysis for PCR optimization. Hunan Yi Ke Da Xue Xue Bao 23: 403-404.
Hu C, He XH, Luo C, Zhu JH, et al (2009). The optimization of SCoT-PCR system of Longan (Dimocarpus longan). Genom. Appl. Biol. 28: 970-974.
Jiang DJ, Liu JM, et al (1990). Morphology and cytogenetics of intergeneric hybrid between Roegneria kamoji and Hordeum vulgare. Acta Genet. Sin. 17: 373-376.
Joshi CP, Zhou H, Huang X, Chiang VL, et al (1997). Context sequences of translation initiation codon in plants. Plant Mol. Biol. 35: 993-1001. http://dx.doi.org/10.1023/A:1005816823636
Luo C, He XH, Chen H, Ou SJ, et al (2011). Genetic diversity of mango cultivars estimated using SCoT and ISSR markers. Biochem. Syst. Ecol. 39: 676-684. http://dx.doi.org/10.1016/j.bse.2011.05.023
Luo C, He XH, Hu Y, Yu HX, et al (2014). Oligo-dT anchored cDNA-SCoT: a novel differential display method for analyzing differential gene expression in response to several stress treatments in mango (Mangifera indica L.). Gene 548: 182-189. http://dx.doi.org/10.1016/j.gene.2014.07.024
Marson EP, Ferraz JB, Meirelles FV, Balieiro JC, et al (2005). Genetic characterization of European-Zebu composite bovine using RFLP markers. Genet. Mol. Res. 4: 496-505.
Peng C, Liu QL, Wang HG, Yan XB, et al (2012). Optimization and testing for SSR-PCR system of Roegneria shandongensis. J. Biol. 29: 91-94.
Xiao S, Zhang XQ, Ma X, Zhang JB, et al (2008). Genetic diversity of gliadin in wild germplasm of Roegneria kamoji. Acta Pratacul. Sin. 17: 138-144.
Xiong F, Zhong R, Han Z, Jiang J, et al (2011). Start codon targeted polymorphism for evaluation of functional genetic variation and relationships in cultivated peanut (Arachis hypogaea L.) genotypes. Mol. Biol. Rep. 38: 3487-3494. http://dx.doi.org/10.1007/s11033-010-0459-6
Yang RW, Zhou YH, Zheng YL, et al (2001). Analysis on chromosome C-banding of Roegneria kamoji. Guangxi Sci. 9: 138-141.
Yang TT, Mu LQ, Wang J, et al (2007). Optimizing SSR-PCR system of Panax ginseng by orthogonal design. J. For. Res. 18: 31-34. http://dx.doi.org/10.1007/s11676-007-0006-z
Yang ZJ, Peng ZS and Yang H (2016). Identification of novel and useful EST-SSR markers from de novo transcriptome sequence of wheat (Triticum aestivum L.). Genet. Mol. Res. 15: gmr.15017509.
Zeng B, Huang X, Huang LK, Zhang J, et al (2015). Optimization of SCoT-PCR reaction system in Dactylis glomerata by orthogonal design. Genet. Mol. Res. 14: 3052-3061. http://dx.doi.org/10.4238/2015.April.10.15
Zhang Y, Zhou YH, Zhang L, Zhang HQ, et al (2005). Phylogenetic relationships among species of Roegneria, Elymus, Hystrix and Kengyilia (Poaceae: Triticeae) based on RAMP marker. Xibei Zhiwu Xuebao 25: 368-375.
Zhang Y, Zhou YH, Zhang L, Zhang HQ, et al (2006). [PCR-RFLP analysis on Roegneria, Elymus, Hystrix and Kengyilia in Triticeae (Poaceae)]. Yi Chuan 28: 449-457.
Zheng YQ, Wang ZY, Guo HL, Xue DD, et al (2008). Optimization of SRAP-PCR system on centipedegrass (Eremochloa ophiuroides) using orthogonal design and selection of primers. Acta Pratacul. Sin. 17: 110-117.
“Orthogonal design in the optimization of a start codon targeted (SCoT) PCR system in Roegneria kamoji Ohwi”, vol. 15, no. 4, p. -, 2016.
,
Conflicts of interest
The authors declare no conflict of interest.
ACKNOWLEDGMENTS
Research supported by the Youth Project Foundation of Rongchang Campus, Southwest University, “The germplasm resources of Dactylis glomerata in rust resistance evaluation and development of rust-resistant gene SNP marker” (#20700431); the Major Projects of Guizhou Province Science and Technology, “Guizhou Mountain Pasture Industrialization Production Technology Research and Application” (#6017; 2014); the Funding Project of 2016 Chongqing Universities Innovation Team Building Plan “Modern Technology in Beef Cattle Production”; Goat Industry Technology System Construction Project in Chongqing; and Development and Demonstration of Green Prevention and Control Technology of Plant Diseases and Pests in Grass Field System (#2014BAD23B03-03).
REFERENCES
Baum BR, Yen C, Yang JL, et al (1991). Roegneria: its generic limits and justification for its recognition. Can. J. Bot. 69: 282-294. http://dx.doi.org/10.1139/b91-038
Bhattacharyya P, Kumaria S, Kumar S, Tandon P, et al (2013). Start Codon Targeted (SCoT) marker reveals genetic diversity of Dendrobium nobile Lindl., an endangered medicinal orchid species. Gene 529: 21-26. http://dx.doi.org/10.1016/j.gene.2013.07.096
Chen DX, Li LY, Zhang X, Wang Y, et al (2015). Genetic structure and genetic diversity of single-variety Lonicera macranthoides populations in China, as indicated by SCoT markers. Genet. Mol. Res. 14: 8058-8067. http://dx.doi.org/10.4238/2015.July.17.14
Collard BCY, Mackill DJ, et al (2009). Start codon targeted (SCoT) polymorphism: a simple, novel DNA marker technique for generating gene-targeted markers in plants. Plant Mol. Biol. Report. 27: 86-93. http://dx.doi.org/10.1007/s11105-008-0060-5
Guo DL, Zhang JY, Liu CH, et al (2012). Genetic diversity in some grape varieties revealed by SCoT analyses. Mol. Biol. Rep. 39: 5307-5313. http://dx.doi.org/10.1007/s11033-011-1329-6
He Z, Liu Y, Chen L, Cao M, et al. (1998). Orthogonal design-direct analysis for PCR optimization. Hunan Yi Ke Da Xue Xue Bao 23: 403-404.
Hu C, He XH, Luo C, Zhu JH, et al (2009). The optimization of SCoT-PCR system of Longan (Dimocarpus longan). Genom. Appl. Biol. 28: 970-974.
Jiang DJ, Liu JM, et al (1990). Morphology and cytogenetics of intergeneric hybrid between Roegneria kamoji and Hordeum vulgare. Acta Genet. Sin. 17: 373-376.
Joshi CP, Zhou H, Huang X, Chiang VL, et al (1997). Context sequences of translation initiation codon in plants. Plant Mol. Biol. 35: 993-1001. http://dx.doi.org/10.1023/A:1005816823636
Luo C, He XH, Chen H, Ou SJ, et al (2011). Genetic diversity of mango cultivars estimated using SCoT and ISSR markers. Biochem. Syst. Ecol. 39: 676-684. http://dx.doi.org/10.1016/j.bse.2011.05.023
Luo C, He XH, Hu Y, Yu HX, et al (2014). Oligo-dT anchored cDNA-SCoT: a novel differential display method for analyzing differential gene expression in response to several stress treatments in mango (Mangifera indica L.). Gene 548: 182-189. http://dx.doi.org/10.1016/j.gene.2014.07.024
Marson EP, Ferraz JB, Meirelles FV, Balieiro JC, et al (2005). Genetic characterization of European-Zebu composite bovine using RFLP markers. Genet. Mol. Res. 4: 496-505.
Peng C, Liu QL, Wang HG, Yan XB, et al (2012). Optimization and testing for SSR-PCR system of Roegneria shandongensis. J. Biol. 29: 91-94.
Xiao S, Zhang XQ, Ma X, Zhang JB, et al (2008). Genetic diversity of gliadin in wild germplasm of Roegneria kamoji. Acta Pratacul. Sin. 17: 138-144.
Xiong F, Zhong R, Han Z, Jiang J, et al (2011). Start codon targeted polymorphism for evaluation of functional genetic variation and relationships in cultivated peanut (Arachis hypogaea L.) genotypes. Mol. Biol. Rep. 38: 3487-3494. http://dx.doi.org/10.1007/s11033-010-0459-6
Yang RW, Zhou YH, Zheng YL, et al (2001). Analysis on chromosome C-banding of Roegneria kamoji. Guangxi Sci. 9: 138-141.
Yang TT, Mu LQ, Wang J, et al (2007). Optimizing SSR-PCR system of Panax ginseng by orthogonal design. J. For. Res. 18: 31-34. http://dx.doi.org/10.1007/s11676-007-0006-z
Yang ZJ, Peng ZS and Yang H (2016). Identification of novel and useful EST-SSR markers from de novo transcriptome sequence of wheat (Triticum aestivum L.). Genet. Mol. Res. 15: gmr.15017509.
Zeng B, Huang X, Huang LK, Zhang J, et al (2015). Optimization of SCoT-PCR reaction system in Dactylis glomerata by orthogonal design. Genet. Mol. Res. 14: 3052-3061. http://dx.doi.org/10.4238/2015.April.10.15
Zhang Y, Zhou YH, Zhang L, Zhang HQ, et al (2005). Phylogenetic relationships among species of Roegneria, Elymus, Hystrix and Kengyilia (Poaceae: Triticeae) based on RAMP marker. Xibei Zhiwu Xuebao 25: 368-375.
Zhang Y, Zhou YH, Zhang L, Zhang HQ, et al (2006). [PCR-RFLP analysis on Roegneria, Elymus, Hystrix and Kengyilia in Triticeae (Poaceae)]. Yi Chuan 28: 449-457.
Zheng YQ, Wang ZY, Guo HL, Xue DD, et al (2008). Optimization of SRAP-PCR system on centipedegrass (Eremochloa ophiuroides) using orthogonal design and selection of primers. Acta Pratacul. Sin. 17: 110-117.
“Paclitaxel induces apoptosis in leukemia cells through a JNK activation-dependent pathway”, vol. 15, p. -, 2016.
, “Paclitaxel induces apoptosis in leukemia cells through a JNK activation-dependent pathway”, vol. 15, p. -, 2016.
, “Relationship between the expression of Notch1 and EZH2 and the prognosis of breast invasive ductal carcinoma”, vol. 15, p. -, 2016.
, “Relationship between the expression of Notch1 and EZH2 and the prognosis of breast invasive ductal carcinoma”, vol. 15, p. -, 2016.
, “Relationship between the expression of Notch1 and EZH2 and the prognosis of breast invasive ductal carcinoma”, vol. 15, p. -, 2016.
, “Whole-transcriptome sequencing of Pinellia ternata using the Illumina platform”, vol. 15, p. -, 2016.
, “Whole-transcriptome sequencing of Pinellia ternata using the Illumina platform”, vol. 15, p. -, 2016.
, “Association of a let-7 KRAS rs712 polymorphism with the risk of breast cancer”, vol. 14, pp. 16913-16920, 2015.
, “Characterization of OsPM19L1 encoding an AWPM-19-like family protein that is dramatically induced by osmotic stress in rice”, vol. 14, pp. 11994-12005, 2015.
, “Mangiferin induces cell cycle arrest at G2/M phase through ATR-Chk1 pathway in HL-60 leukemia cells”, vol. 14, pp. 4989-5002, 2015.
, “Optimization of SCoT-PCR reaction system in Dactylis glomerata by orthogonal design”, vol. 14, pp. 3052-3061, 2015.
, “Characterization of a novel anther-specific gene encoding a leucine-rich repeat protein in petunia”, vol. 13, pp. 9889-9898, 2014.
, “Comprehensive gene expression analysis of the DNA (cytosine-5) methyltransferase family in rice (Oryza sativa L.)”, vol. 13, pp. 5159-5172, 2014.
, “Protection against Taenia pisiformis larval infection induced by a recombinant oncosphere antigen vaccine”, vol. 13, pp. 6148-6159, 2014.
, , “Synonymous codon usage patterns in different parasitic platyhelminth mitochondrial genomes”, vol. 12, pp. 587-596, 2013.
, Brown WM, George M Jr and Wilson AC (1979). Rapid evolution of animal mitochondrial DNA. Proc. Natl. Acad. Sci. U. S. A. 76: 1967-1971.
http://dx.doi.org/10.1073/pnas.76.4.1967
PMid:109836 PMCid:383514
Bulmer M (1991). The selection-mutation-drift theory of synonymous codon usage. Genetics 129: 897-907.
PMid:1752426 PMCid:1204756
Chiapello H, Lisacek F, Caboche M and Henaut A (1998). Codon usage and gene function are related in sequences of Arabidopsis thaliana. Gene 209: GC1-GC38.
http://dx.doi.org/10.1016/S0378-1119(97)00671-9
Duret L and Mouchiroud D (1999). Expression pattern and, surprisingly, gene length shape codon usage in Caenorhabditis, Drosophila, and Arabidopsis. Proc. Natl. Acad. Sci. U. S. A. 96: 4482-4487.
http://dx.doi.org/10.1073/pnas.96.8.4482
PMid:10200288 PMCid:16358
Fadiel A, Lithwick S, Wanas MQ and Cuticchia AJ (2001). Influence of intercodon and base frequencies on codon usage in filarial parasites. Genomics 74: 197-210.
http://dx.doi.org/10.1006/geno.2001.6531
PMid:11386756
Fadiel AA, Lithwick S and Gamra MM (2002). Codon usage analysis of Ascaris species influence of base and intercodon frequencies on the synonymous codon usage. J. Egypt. Soc. Parasitol. 32: 625-638.
PMid:12214939
Fickett JW (1982). Recognition of protein coding regions in DNA sequences. Nucleic Acids Res. 10: 5303-5318.
http://dx.doi.org/10.1093/nar/10.17.5303
PMid:7145702 PMCid:320873
Grantham R, Gautier C, Gouy M, Mercier R, et al. (1980). Codon catalog usage and the genome hypothesis. Nucleic Acids Res. 8: r49-r62.
http://dx.doi.org/10.1093/nar/8.1.197-c
PMid:6986610 PMCid:327256
Hua J and Lee RW (2012). Factors affecting codon bias in the mitochondrial genomes of the streptophyte Mesostigma viride and the chlorophyte Chlamydomonas reinhardtii. J. Eukaryot. Microbiol. 59: 287-289.
http://dx.doi.org/10.1111/j.1550-7408.2011.00613.x
PMid:22340021
Ikemura T (1981). Correlation between the abundance of Escherichia coli transfer RNAs and the occurrence of the respective codons in its protein genes: a proposal for a synonymous codon choice that is optimal for the E. coli translational system. J. Mol. Biol. 151: 389-409.
http://dx.doi.org/10.1016/0022-2836(81)90003-6
Jia W and Higgs PG (2008). Codon usage in mitochondrial genomes: distinguishing context-dependent mutation from translational selection. Mol. Biol. Evol. 25: 339-351.
http://dx.doi.org/10.1093/molbev/msm259
PMid:18048402
Karlin S and Mrazek J (1996). What drives codon choices in human genes? J. Mol. Biol. 262: 459-472.
http://dx.doi.org/10.1006/jmbi.1996.0528
PMid:8893856
Liu H, He R, Zhang H, Huang Y, et al. (2010). Analysis of synonymous codon usage in Zea mays. Mol. Biol. Rep. 37: 677-684.
http://dx.doi.org/10.1007/s11033-009-9521-7
PMid:19330534
Liu Q, Feng Y and Xue Q (2004). Analysis of factors shaping codon usage in the mitochondrion genome of Oryza sativa. Mitochondrion 4: 313-320.
http://dx.doi.org/10.1016/j.mito.2004.06.003
PMid:16120394
Lloyd AT and Sharp PM (1992). Evolution of codon usage patterns: the extent and nature of divergence between Candida albicans and Saccharomyces cerevisiae. Nucleic Acids Res. 20: 5289-5295.
http://dx.doi.org/10.1093/nar/20.20.5289
PMid:1437548 PMCid:334333
Luo XL, Xu JG and Ye CY (2011). Analysis of synonymous codon usage in Shigella flexneri 2a strain 301 and other Shigella and Escherichia coli strains. Can. J. Microbiol. 57: 1016-1023.
http://dx.doi.org/10.1139/w11-095
PMid:22112197
Ma J, Zhou T, Gu W, Sun X, et al. (2002). Cluster analysis of the codon use frequency of MHC genes from different species. Biosystems 65: 199-207.
http://dx.doi.org/10.1016/S0303-2647(02)00016-3
Martin AP, Naylor GJ and Palumbi SR (1992). Rates of mitochondrial DNA evolution in sharks are slow compared with mammals. Nature 357: 153-155.
http://dx.doi.org/10.1038/357153a0
PMid:1579163
Moriyama EN and Powell JR (1998). Gene length and codon usage bias in Drosophila melanogaster, Saccharomyces cerevisiae and Escherichia coli. Nucleic Acids Res. 26: 3188-3193.
http://dx.doi.org/10.1093/nar/26.13.3188
PMid:9628917 PMCid:147681
Musto H, Cruveiller S, D'Onofrio G, Romero H, et al. (2001). Translational selection on codon usage in Xenopus laevis. Mol. Biol. Evol. 18: 1703-1707.
http://dx.doi.org/10.1093/oxfordjournals.molbev.a003958
PMid:11504850
Oresic M and Shalloway D (1998). Specific correlations between relative synonymous codon usage and protein secondary structure. J. Mol. Biol. 281: 31-48.
http://dx.doi.org/10.1006/jmbi.1998.1921
PMid:9680473
Osawa S, Ohama T, Yamao F, Muto A, et al. (1988). Directional mutation pressure and transfer RNA in choice of the third nucleotide of synonymous two-codon sets. Proc. Natl. Acad. Sci. U. S. A. 85: 1124-1128.
http://dx.doi.org/10.1073/pnas.85.4.1124
PMid:2448791 PMCid:279718
Powell JR and Moriyama EN (1997). Evolution of codon usage bias in Drosophila. Proc. Natl. Acad. Sci. U. S. A. 94: 7784-7790.
http://dx.doi.org/10.1073/pnas.94.15.7784
PMid:9223264 PMCid:33704
Ramirez V, Savoie P and Morais R (1993). Molecular characterization and evolution of a duck mitochondrial genome. J. Mol. Evol. 37: 296-310.
http://dx.doi.org/10.1007/BF00175506
PMid:8230253
Romero H, Zavala A and Musto H (2000). Codon usage in Chlamydia trachomatis is the result of strand-specific mutational biases and a complex pattern of selective forces. Nucleic Acids Res. 28: 2084-2090.
http://dx.doi.org/10.1093/nar/28.10.2084
PMid:10773076 PMCid:105376
Sau K and Deb A (2009). Temperature influences synonymous codon and amino acid usage biases in the phages infecting extremely thermophilic prokaryotes. In Silico Biol. 9: 1-9.
PMid:19537157
Sharp PM and Li WH (1986). Codon usage in regulatory genes in Escherichia coli does not reflect selection for 'rare' codons. Nucleic Acids Res. 14: 7737-7749.
http://dx.doi.org/10.1093/nar/14.19.7737
PMid:3534792 PMCid:311793
Sloan DB and Taylor DR (2010). Testing for selection on synonymous sites in plant mitochondrial DNA: the role of codon bias and RNA editing. J. Mol. Evol. 70: 479-491.
http://dx.doi.org/10.1007/s00239-010-9346-y
PMid:20424833
Wang B, Liu J, Jin L, Feng XY, et al. (2010). Complex mutation and weak selection together determined the codon usage bias in bryophyte mitochondrial genomes. J. Integr. Plant Biol. 52: 1100-1108.
http://dx.doi.org/10.1111/j.1744-7909.2010.00998.x
PMid:21106008
Wang B, Yuan J, Liu J, Jin L, et al. (2011). Codon usage bias and determining forces in green plant mitochondrial genomes. J. Integr. Plant Biol. 53: 324-334.
http://dx.doi.org/10.1111/j.1744-7909.2011.01033.x
PMid:21332641
Whittle CA, Sun Y and Johannesson H (2011). Evolution of synonymous codon usage in Neurospora tetrasperma and Neurospora discreta. Genome Biol. Evol. 3: 332-343.
http://dx.doi.org/10.1093/gbe/evr018
PMid:21402862 PMCid:3089379
Wright F (1990). The 'effective number of codons' used in a gene. Gene 87: 23-29.
http://dx.doi.org/10.1016/0378-1119(90)90491-9
Xie T and Ding D (1998). The relationship between synonymous codon usage and protein structure. FEBS Lett. 434: 93-96.
http://dx.doi.org/10.1016/S0014-5793(98)00955-7
Zhang Y, Liu Y, Liu W, Zhou J, et al. (2011). Analysis of synonymous codon usage in hepatitis A virus. Virol. J. 8: 174.
http://dx.doi.org/10.1186/1743-422X-8-174
PMid:21496278 PMCid:3087699
Zhou M and Li X (2009). Analysis of synonymous codon usage patterns in different plant mitochondrial genomes. Mol. Biol. Rep. 36: 2039-2046.
http://dx.doi.org/10.1007/s11033-008-9414-1
PMid:19005776