Publications

Found 4 results
Filters: Author is Y.F. Yao  [Clear All Filters]
2013
W. Liu, Yao, Y. F., Zhou, L., Ni, Q. Y., and Xu, H. L., Evolutionary analysis of the short-type peptidoglycan-recognition protein gene (PGLYRP1) in primates, vol. 12, pp. 453-462, 2013.
Dimopoulos G, Christophides GK, Meister S, Schultz J, et al. (2002). Genome expression analysis of Anopheles gambiae: responses to injury, bacterial challenge, and malaria infection. Proc. Natl. Acad. Sci. U. S. A. 99: 8814-8819. http://dx.doi.org/10.1073/pnas.092274999 PMid:12077297 PMCid:124381   Dziarski R (2003). Recognition of bacterial peptidoglycan by the innate immune system. Cell Mol. Life Sci. 60: 1793-1804. http://dx.doi.org/10.1007/s00018-003-3019-6 PMid:14523544   Dziarski R (2004). Peptidoglycan recognition proteins (PGRPs). Mol. Immunol. 40: 877-886. http://dx.doi.org/10.1016/j.molimm.2003.10.011 PMid:14698226   Fornhem C, Peterson CG and Alving K (1996). Isolation and characterization of porcine cationic eosinophil granule proteins. Int. Arch. Allergy Immunol. 110: 132-142. http://dx.doi.org/10.1159/000237277 PMid:8645990   Garver LS, Wu J and Wu LP (2006). The peptidoglycan recognition protein PGRP-SC1a is essential for Toll signaling and phagocytosis of Staphylococcus aureus in Drosophila. Proc. Natl. Acad. Sci. U. S. A. 103: 660-665. http://dx.doi.org/10.1073/pnas.0506182103 PMid:16407137 PMCid:1334640   Gelius E, Persson C, Karlsson J and Steiner H (2003). A mammalian peptidoglycan recognition protein with N-acetylmuramoyl-L-alanine amidase activity. Biochem. Biophys. Res. Commun. 306: 988-994. http://dx.doi.org/10.1016/S0006-291X(03)01096-9   Ghosh A, Lee S, Dziarski R and Chakravarti S (2009). A novel antimicrobial peptidoglycan recognition protein in the cornea. Invest. Ophthalmol. Vis. Sci. 50: 4185-4191. http://dx.doi.org/10.1167/iovs.08-3040 PMid:19387073 PMCid:3052780   Girardin SE and Philpott DJ (2004). Mini-review: the role of peptidoglycan recognition in innate immunity. Eur. J. Immunol. 34: 1777-1782. http://dx.doi.org/10.1002/eji.200425095 PMid:15214025   Goodman M, Porter CA, Czelusniak J, Page SL, et al. (1998). Toward a phylogenetic classification of Primates based on DNA evidence complemented by fossil evidence. Mol. Phylogenet. Evol. 9: 585-598. http://dx.doi.org/10.1006/mpev.1998.0495 PMid:9668008   Guan R, Malchiodi EL, Wang Q, Schuck P, et al. (2004). Crystal structure of the C-terminal peptidoglycan-binding domain of human peptidoglycan recognition protein Iα. J. Biol. Chem. 279: 31873-31882. http://dx.doi.org/10.1074/jbc.M404920200 PMid:15140887   Guan R, Wang Q, Sundberg EJ and Mariuzza RA (2005). Crystal structure of human peptidoglycan recognition protein S (PGRP-S) at 1.70 Å resolution. J. Mol. Biol. 347: 683-691. http://dx.doi.org/10.1016/j.jmb.2005.01.070 PMid:15769462   Hasegawa M, Kishino H and Yano T (1985). Dating of the human-ape splitting by a molecular clock of mitochondrial DNA. J. Mol. Evol. 22: 160-174. http://dx.doi.org/10.1007/BF02101694 PMid:3934395   Hoffmann JA and Reichhart JM (2002). Drosophila innate immunity: an evolutionary perspective. Nat. Immunol. 3: 121-126. http://dx.doi.org/10.1038/ni0202-121 PMid:11812988   Janeway CA Jr and Medzhitov R (2002). Innate immune recognition. Annu. Rev. Immunol. 20: 197-216. http://dx.doi.org/10.1146/annurev.immunol.20.083001.084359 PMid:11861602   Kaneko T, Golenbock D and Silverman N (2005). Peptidoglycan recognition by the Drosophila Imd pathway. J. Endotoxin. Res. 11: 383-389. PMid:16303095   Kang D, Liu G, Lundstrom A, Gelius E, et al. (1998). A peptidoglycan recognition protein in innate immunity conserved from insects to humans. Proc. Natl. Acad. Sci. U. S. A. 95: 10078-10082. http://dx.doi.org/10.1073/pnas.95.17.10078 PMid:9707603 PMCid:21464   Kashyap DR, Wang M, Liu LH, Boons GJ, et al. (2011). Peptidoglycan recognition proteins kill bacteria by activating protein-sensing two-component systems. Nat. Med. 17: 676-683. http://dx.doi.org/10.1038/nm.2357 PMid:21602801 PMCid:3176504   Lackner AA and Veazey RS (2007). Current concepts in AIDS pathogenesis: insights from the SIV/macaque model. Annu.Rev. Med. 58: 461-476. http://dx.doi.org/10.1146/annurev.med.58.082405.094316 PMid:17217334   Liu C, Xu Z, Gupta D and Dziarski R (2001). Peptidoglycan recognition proteins: a novel family of four human innate immunity pattern recognition molecules. J. Biol. Chem. 276: 34686-34694. http://dx.doi.org/10.1074/jbc.M105566200 PMid:11461926   McCarthy C (1998). Chromas 1.45. School of Health Science. Griffith University, Southport, Queensland.   Mellroth P and Steiner H (2006). PGRP-SB1: an N-acetylmuramoyl L-alanine amidase with antibacterial activity. Biochem. Biophys. Res. Commun. 350: 994-999. http://dx.doi.org/10.1016/j.bbrc.2006.09.139 PMid:17046713   Rehman A, Taishi P, Fang J, Majde JA, et al. (2001). The cloning of a rat peptidoglycan recognition protein (PGRP) and its induction in brain by sleep deprivation. Cytokine 13: 8-17. http://dx.doi.org/10.1006/cyto.2000.0800 PMid:11145837   Schleifer KH and Kandler O (1972). Peptidoglycan types of bacterial cell walls and their taxonomic implications. Bacteriol. Rev. 36: 407-477. PMid:4568761 PMCid:408328   Seggewiss R, Lore K, Guenaga FJ, Pittaluga S, et al. (2007). Keratinocyte growth factor augments immune reconstitution after autologous hematopoietic progenitor cell transplantation in rhesus macaques. Blood 110: 441-449. http://dx.doi.org/10.1182/blood-2006-12-065623 PMid:17374737 PMCid:1975851   Sharma P, Singh N, Sinha M, Sharma S, et al. (2008). Crystal structure of the peptidoglycan recognition protein at 1.8 Å resolution reveals dual strategy to combat infection through two independent functional homodimers. J. Mol. Biol. 378: 923-932. http://dx.doi.org/10.1016/j.jmb.2008.03.018 PMid:18395744   Shi J, Xi H, Wang Y, Zhang C, et al. (2003). Divergence of the genes on human chromosome 21 between human and other hominoids and variation of substitution rates among transcription units. Proc. Natl. Acad. Sci. U. S. A. 100: 8331-8336. http://dx.doi.org/10.1073/pnas.1332748100 PMid:12826612 PMCid:166229   Takeda K and Akira S (2005). Toll-like receptors in innate immunity. Int. Immunol. 17: 1-14. http://dx.doi.org/10.1093/intimm/dxh186 PMid:15585605   Tamura K, Peterson D, Peterson N, Stecher G, et al. (2011). MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol. Biol. Evol. 28: 2731-2739. http://dx.doi.org/10.1093/molbev/msr121 PMid:21546353 PMCid:3203626   Tydell CC, Yount N, Tran D, Yuan J, et al. (2002). Isolation, characterization, and antimicrobial properties of bovine oligosaccharide-binding protein. A microbicidal granule protein of eosinophils and neutrophils. J. Biol. Chem. 277: 19658-19664. http://dx.doi.org/10.1074/jbc.M200659200 PMid:11880375   Tydell CC, Yuan J, Tran P and Selsted ME (2006). Bovine peptidoglycan recognition protein-S: antimicrobial activity, localization, secretion, and binding properties. J. Immunol. 176: 1154-1162. PMid:16394004   Wang ZM, Li X, Cocklin RR, Wang M, et al. (2003). Human peptidoglycan recognition protein-L is an N-acetylmuramoyl- L-alanine amidase. J. Biol. Chem. 278: 49044-49052. http://dx.doi.org/10.1074/jbc.M307758200 PMid:14506276   Werner T, Liu G, Kang D, Ekengren S, et al. (2000). A family of peptidoglycan recognition proteins in the fruit fly Drosophila melanogaster. Proc. Natl. Acad. Sci. U. S. A. 97: 13772-13777. http://dx.doi.org/10.1073/pnas.97.25.13772 PMid:11106397 PMCid:17651   Wooding S (2011). Signatures of natural selection in a primate bitter taste receptor. J. Mol. Evol. 73: 257-265. http://dx.doi.org/10.1007/s00239-011-9481-0 PMid:22218679   Xu HL and Su B (2005). Genetic evidence of a strong functional constraint of neurotrypsin during primate evolution. Cytogenet. Genome Res. 108: 303-309. http://dx.doi.org/10.1159/000081523 PMid:15627749   Yang Z (2007). PAML 4: phylogenetic analysis by maximum likelihood. Mol. Biol. Evol. 24: 1586-1591. http://dx.doi.org/10.1093/molbev/msm088 PMid:17483113   Yoshida H, Kinoshita K and Ashida M (1996). Purification of a peptidoglycan recognition protein from hemolymph of the silkworm, Bombyx mori. J. Biol. Chem. 271: 13854-13860. http://dx.doi.org/10.1074/jbc.271.23.13854 PMid:8662762   Zhang YW, Ryder OA and Zhang YP (1999). Sequence evolution of the CCR5 chemokine receptor gene in primates. Mol. Biol. Evol. 16: 1145-1154. http://dx.doi.org/10.1093/oxfordjournals.molbev.a026205 PMid:10486970