Publications

Found 1 results
Filters: Author is E.C. Miranda  [Clear All Filters]
2013
C. B. Queiroz, Miranda, E. C., Hanada, R. E., Sousa, N. R., Gasparotto, L., Soares, M. A., and Silva, G. F., Distribution of mating-type alleles and M13 PCR markers in the black leaf spot fungus Mycosphaerella fijiensis of bananas in Brazil, vol. 12, pp. 443-452, 2013.
Arzanlou M, Crous PW and Zwiers LH (2010). Evolutionary dynamics of mating-type loci of Mycosphaerella spp. occurring on banana. Eukaryot. Cell 9: 164-172. http://dx.doi.org/10.1128/EC.00194-09 PMid:19915079 PMCid:2805284   Bui T, Lin X, Malik R, Heitman J, et al. (2008). Isolates of Cryptococcus neoformans from infected animals reveal genetic exchange in unisexual, alpha mating type populations. Eukaryot. Cell 7: 1771-1780. http://dx.doi.org/10.1128/EC.00097-08 PMid:18552280 PMCid:2568071   Carlier J, Mourichon X, Gonzalez-de-Leon D, Zapater MF, et al. (1994). DNA restriction fragment length polymorphisms in Mycosphaerella species that cause banana leaf spot diseases. Phytopathology 84: 751-756. http://dx.doi.org/10.1094/Phyto-84-751   Carlier J, Lebrun MH, Zapater MF, Dubois C, et al. (1996). Genetic structure of the global population of banana black leaf streak fungus, Mycosphaerella fijiensis. Mol. Ecol. 5: 499-510. http://dx.doi.org/10.1111/j.1365-294X.1996.tb00342.x   Conde-Ferráez L, Waalwijk C, Canto-Canche BB, Kema GH, et al. (2007). Isolation and characterization of the mating type locus of Mycosphaerella fijiensis, the causal agent of black leaf streak disease of banana. Mol. Plant Pathol. 8: 111-120. http://dx.doi.org/10.1111/j.1364-3703.2006.00376.x PMid:20507483   Conde-Ferráez L, Grijalva-Arango R, Canto-Canché BB, Manzo-Sánchez G, et al. (2010). The development of mating type-specific primers for Mycosphaerella fijiensis, the causal agent of black Sigatoka of banana, and analysis of the frequency of idiomorph types in Mexican populations. Australas. Plant Pathol. 39: 217-225. http://dx.doi.org/10.1071/AP09086   Degen B, Ziegenhagen B, Gillet E and Scholz F (1995). Computer-aided search for codominant markers in complex haploid DNA banding patterns: A case study in Abies alba MILL. Silvae Genet. 44: 274-282.   Fahleson J, Nakyanzi M, Okori P, Seal S, et al. (2009). Genetic analysis of Mycosphaerella fijiensis in the Ugandan Lake Victoria region. Plant Pathol. 58: 888-897. http://dx.doi.org/10.1111/j.1365-3059.2009.02099.x   FAO (2010). Food and Agricultural Organization. FAOSTAT. Available at [http://faostat.fao.org/site/567/default.aspx]. Accessed July 3, 2012.   Gasparotto L, Pereira JCR, Hanada RE and Montarroyos AVV (2006). Sigatoka-Negra da Bananeira. [Black Sigatoka in Banana Trees]. Embrapa, Brasília. PMCid:2100334   Gordon JL, Armisen D, Proux-Wera E, OhEigeartaigh SS, et al. (2011). Evolutionary erosion of yeast sex chromosomes by mating-type switching accidents. Proc. Natl. Acad. Sci. U. S. A. 108: 20024-20029. http://dx.doi.org/10.1073/pnas.1112808108 PMid:22123960 PMCid:3250169   Gräser Y, El FM, Presber W, Sterry W, et al. (1998). Identification of common dermatophytes (Trichophyton, Microsporum, Epidermophyton) using polymerase chain reactions. Br. J. Dermatol. 138: 576-582. http://dx.doi.org/10.1046/j.1365-2133.1998.02165.x PMid:9640360   Hayden HL, Carlier J and Aitken EAB (2003). Genetic structure of Mycosphaerella fijiensis populations from Australia, Papua New Guinea and the Pacific Islands. Plant Pathol. 52: -703.   Hsueh YP and Heitman J (2008). Orchestration of sexual reproduction and virulence by the fungal mating-type locus. Curr. Opin. Microbiol. 11: 517-524. http://dx.doi.org/10.1016/j.mib.2008.09.014 PMid:18935978 PMCid:2622727   Kerenyi Z, Zeller K, Hornok L and Leslie JF (1999). Molecular standardization of mating type terminology in the Gibberella fujikuroi species complex. Appl. Environ. Microbiol. 65: 4071-4076. PMid:10473418 PMCid:99743   Kure CF, Abeln ECA, Holst-Jensen A and Skaar I (2002). Differentiation of Penicillium commune and Penicillium palitans isolates from cheese and indoor environments of cheese factories using M13 fingerprinting. Food Microbiol. 19: 151-157. http://dx.doi.org/10.1006/fmic.2001.0473   Lee SC, Ni M, Li W, Shertz C, et al. (2010). The evolution of sex: a perspective from the fungal kingdom. Microbiol. Mol. Biol. Rev. 74: 298-340. http://dx.doi.org/10.1128/MMBR.00005-10 PMid:20508251 PMCid:2884414   Liaw SJ, Wu HC and Hsueh PR (2010). Microbiological characteristics of clinical isolates of Cryptococcus neoformans in Taiwan: serotypes, mating types, molecular types, virulence factors, and antifungal susceptibility. Clin. Microbiol. Infect. 16: 696-703. http://dx.doi.org/10.1111/j.1469-0691.2009.02930.x PMid:19694765   Linde CC, Zala M, Ceccarelli S and McDonald BA (2003). Further evidence for sexual reproduction in Rhynchosporium secalis based on distribution and frequency of mating-type alleles. Fungal Genet. Biol. 40: 115-125. http://dx.doi.org/10.1016/S1087-1845(03)00110-5   Markell SG and Milus EA (2008). Emergence of a novel population of Puccinia striiformis f. sp. tritici in Eastern United States. Phytopathology 98: 632-639. http://dx.doi.org/10.1094/PHYTO-98-6-0632 PMid:18944286   McDonald BA and Linde C (2002). Pathogen population genetics, evolutionary potential, and durable resistance. Annu. Rev. Phytopathol. 40: 349-379. http://dx.doi.org/10.1146/annurev.phyto.40.120501.101443 PMid:12147764   Mercanti DJ, Carminati D, Reinheimer JA and Quiberoni A (2011). Widely distributed lysogeny in probiotic lactobacilli represents a potentially high risk for the fermentative dairy industry. Int. J. Food Microbiol. 144: 503-510. http://dx.doi.org/10.1016/j.ijfoodmicro.2010.11.009 PMid:21131090   Milus EA, Kristensen K and Hovmoller MS (2009). Evidence for increased aggressiveness in a recent widespread strain of Puccinia striiformis f. sp. tritici causing stripe rust of wheat. Phytopathology 99: 89-94. http://dx.doi.org/10.1094/PHYTO-99-1-0089 PMid:19055439   Muniz MM, Morais E Silva Tavares, Meyer W, Nosanchuk JD, et al. (2010). Comparison of different DNA-based methods for molecular typing of Histoplasma capsulatum. Appl. Environ. Microbiol. 76: 4438-4447. http://dx.doi.org/10.1128/AEM.02004-09 PMid:20453140 PMCid:2897411   Müller R, Pasberg-Gauhl C, Gauhl F, Ramser J, et al. (1997). Oligonucleotide fingerprinting detects genetic variability at different levels in Nigerian Mycosphaerella fijiensis. J. Phytopathol. 145: 25-30. http://dx.doi.org/10.1111/j.1439-0434.1997.tb00337.x   Neal CO, Richardson AO, Hurst SF, Tortorano AM, et al. (2011). Global population structure of Aspergillus terreus inferred by ISSR typing reveals geographical subclustering. BMC Microbiol. 11: 203. http://dx.doi.org/10.1186/1471-2180-11-203 PMid:21923908 PMCid:3197500   Nusaibah SA, Latiffah Z and Hassaan AR (2011). ITS-PCR-RFLP analysis of Ganoderma sp. infecting industrial crops. Pertanika J. Trop. Agric. Sci. 34: 83-91.   Pereira JCR, Gasparotto L, Coelho AFS and Urben AF (1998). Ocorrência da Sigatoka-negra no Brasil. Fitopatol. Bras. 23: 295.   Reis RS, Almeida-Paes R, Muniz MM, Tavares PM, et al. (2009). Molecular characterisation of Sporothrix schenckii isolates from humans and cats involved in the sporotrichosis epidemic in Rio de Janeiro, Brazil. Mem. Inst. Oswaldo Cruz 104: 769-774. http://dx.doi.org/10.1590/S0074-02762009000500018 PMid:19820840   Rieux A, Halkett F, de Lapeyre de BL, Zapater MF, et al. (2011). Inferences on pathogenic fungus population structures from microsatellite data: new insights from spatial genetics approaches. Mol. Ecol. 20: 1661-1674. http://dx.doi.org/10.1111/j.1365-294X.2011.05053.x PMid:21410575   Rivas GG, Zapater MF, Abadie C and Carlier J (2004). Founder effects and stochastic dispersal at the continental scale of the fungal pathogen of bananas Mycosphaerella fijiensis. Mol Ecol 13: 471-482. http://dx.doi.org/10.1046/j.1365-294X.2003.02043.x PMid:14717901   Rossetti L and Giraffa G (2005). Rapid identification of dairy lactic acid bacteria by M13-generated, RAPD-PCR fingerprint databases. J. Microbiol. Methods 63: 135-144. http://dx.doi.org/10.1016/j.mimet.2005.03.001 PMid:15893395   Ryskov AP, Jincharadze AG, Prosnyak MI, Ivanov PL, et al. (1988). M13 phage DNA as a universal marker for DNA fingerprinting of animals, plants and microorganisms. FEBS Lett. 233: 388-392. http://dx.doi.org/10.1016/0014-5793(88)80467-8   Specht CA, DiRusso CC, Novotny CP and Ullrich RC (1982). A method for extracting high-molecular-weight deoxyribonucleic acid from fungi. Anal. Biochem. 119: 158-163. http://dx.doi.org/10.1016/0003-2697(82)90680-7   Ulrich K, Ngamskulrungroj P and Meyer W (2009). M13 PCR fingerprinting detects genetic instability of Cryptococcus gattii after passage through a rat model of infection. Aust. Mycol. 28: 20-23.   Vassart G, Georges M, Monsieur R, Brocas H, et al. (1987). A sequence in M13 phage detects hypervariable minisatellites in human and animal DNA. Science 235: 683-684. http://dx.doi.org/10.1126/science.2880398 PMid:2880398   Zamponi L, Paffetti D, Tegli S, Lakomy P, et al. (2007). Genetic variation in Heterobasidion abietinum populations detected with the M13 minisatellite marker. Forest Pathol. 37: 321-328. http://dx.doi.org/10.1111/j.1439-0329.2007.00511.x   Zein I, Jawhar M and Arabi MI (2010). Efficiency of IRAP and ITS-RFLP marker systems in accessing genetic variation of Pyrenophora graminea. Genet. Mol. Biol. 33: 328-332. http://dx.doi.org/10.1590/S1415-47572010005000041 PMid:21637490 PMCid:3036860   Zhan J, Mundt CC and McDonald BA (2007). Sexual reproduction facilitates the adaptation of parasites to antagonistic host environments: Evidence from empirical study in the wheat-Mycosphaerella graminicola system. Int. J. Parasitol. 37: 861-870. http://dx.doi.org/10.1016/j.ijpara.2007.03.003 PMid:17451717