Publications

Found 1 results
Filters: Author is G. Bahari  [Clear All Filters]
2013
G. Bahari, Hashemi, M., Taheri, M., Naderi, M., Moazeni-Roodi, A., Kouhpayeh, H. R., and Eskandari-Nasab, E., Association of P2X7 gene polymorphisms with susceptibility to pulmonary tuberculosis in Zahedan, Southeast Iran, vol. 12, pp. 160-166, 2013.
Ben-Selma W, Ben-Kahla I, Boukadida J and Harizi H (2011). Contribution of the P2X7 1513A/C loss-of-function polymorphism to extrapulmonary tuberculosis susceptibility in Tunisian populations. FEMS Immunol. Med. Microbiol. 63: 65-72. http://dx.doi.org/10.1111/j.1574-695X.2011.00824.x PMid:21635566   Britton WJ, Fernando SL, Saunders BM, Sluyter R, et al. (2007). The genetic control of susceptibility to Mycobacterium tuberculosis. Novartis Found. Symp. 281: 79-89. http://dx.doi.org/10.1002/9780470062128.ch8 PMid:17534067   Coutinho-Silva R, Stahl L, Raymond MN, Jungas T, et al. (2003). Inhibition of chlamydial infectious activity due to P2X7R-dependent phospholipase D activation. Immunity 19: 403-412. http://dx.doi.org/10.1016/S1074-7613(03)00235-8   Fernando SL, Saunders BM, Sluyter R, Skarratt KK, et al. (2005). Gene dosage determines the negative effects of polymorphic alleles of the P2X7 receptor on adenosine triphosphate-mediated killing of mycobacteria by human macrophages. J. Infect. Dis. 192: 149-155. http://dx.doi.org/10.1086/430622 PMid:15942904   Fernando SL, Saunders BM, Sluyter R, Skarratt KK, et al. (2007). A polymorphism in the P2X7 gene increases susceptibility to extrapulmonary tuberculosis. Am. J. Respir. Crit. Care Med. 175: 360-366. http://dx.doi.org/10.1164/rccm.200607-970OC PMid:17095747   Gu BJ, Zhang W, Worthington RA, Sluyter R, et al. (2001). A Glu-496 to Ala polymorphism leads to loss of function of the human P2X7 receptor. J. Biol. Chem. 276: 11135-11142. http://dx.doi.org/10.1074/jbc.M010353200 PMid:11150303   Gu BJ, Sluyter R, Skarratt KK, Shemon AN, et al. (2004). An Arg307 to Gln polymorphism within the ATP-binding site causes loss of function of the human P2X7 receptor. J. Biol. Chem. 279: 31287-31295. http://dx.doi.org/10.1074/jbc.M313902200 PMid:15123679   Haas SL, Ruether A, Singer MV, Schreiber S, et al. (2007). Functional P2X7 receptor polymorphisms (His155Tyr, Arg307Gln, Glu496Ala) in patients with Crohn's disease. Scand. J. Immunol. 65: 166-170. http://dx.doi.org/10.1111/j.1365-3083.2006.01876.x PMid:17257221   Hashemi M, Moazeni-Roodi AK, Fazaeli A, Sandoughi M, et al. (2010a). Lack of association between paraoxonase-1 Q192R polymorphism and rheumatoid arthritis in southeast Iran. Genet. Mol. Res. 9: 333-339. http://dx.doi.org/10.4238/vol9-1gmr728 PMid:20198589   Hashemi M, Moazeni-Roodi AK, Fazaeli A, Sandoughi M, et al. (2010b). The L55M polymorphism of paraoxonase-1 is a risk factor for rheumatoid arthritis. Genet. Mol. Res. 9: 1735-1741. http://dx.doi.org/10.4238/vol9-3gmr893 PMid:20812194   Hashemi M, Sharifi-Mood B, Nezamdoost M, Moazeni-Roodi A, et al. (2011). Functional polymorphism of interferon-gamma (IFN-gamma) gene +874T/A polymorphism is associated with pulmonary tuberculosis in Zahedan, Southeast Iran. Prague Med. Rep. 112: 38-43. PMid:21470497   Hashemi M, Moazeni-Roodi A, Bahari A and Taheri M (2012). A tetra-primer amplification refractory mutation system-polymerase chain reaction for the detection of rs8099917 IL28B genotype. Nucleosides Nucleotides Nucleic Acids 31: 55-60. http://dx.doi.org/10.1080/15257770.2011.643846 PMid:22257210   Humphreys BD, Rice J, Kertesy SB and Dubyak GR (2000). Stress-activated protein kinase/JNK activation and apoptotic induction by the macrophage P2X7 nucleotide receptor. J. Biol. Chem. 275: 26792-26798. PMid:10854431   Khakh BS and North RA (2006). P2X receptors as cell-surface ATP sensors in health and disease. Nature 442: 527-532. http://dx.doi.org/10.1038/nature04886 PMid:16885977   Kouhpayeh HR, Hashemi M, Hashemi SA, Moazeni-Roodi A, et al. (2012). R620W functional polymorphism of protein tyrosine phosphatase non-receptor type 22 is not associated with pulmonary tuberculosis in Zahedan, southeast Iran. Genet. Mol. Res. 11: 1075-1081. http://dx.doi.org/10.4238/2012.April.27.6 PMid:22614276   Kusner DJ and Barton JA (2001). ATP stimulates human macrophages to kill intracellular virulent Mycobacterium tuberculosis via calcium-dependent phagosome-lysosome fusion. J. Immunol. 167: 3308-3315. PMid:11544319   Li CM, Campbell SJ, Kumararatne DS, Bellamy R, et al. (2002). Association of a polymorphism in the P2X7 gene with tuberculosis in a Gambian population. J. Infect. Dis. 186: 1458-1462. http://dx.doi.org/10.1086/344351 PMid:12404161   Mokrousov I, Sapozhnikova N and Narvskaya O (2008). Mycobacterium tuberculosis co-existence with humans: making an imprint on the macrophage P2X(7) receptor gene? J. Med. Microbiol. 57: 581-584. http://dx.doi.org/10.1099/jmm.0.47455-0 PMid:18436590   Naderi M, Hashemi M, Kouhpayeh H and Ahmadi R (2009). The status of serum procalcitonin in pulmonary tuberculosis and nontuberculosis pulmonary disease. J. Pak. Med. Assoc. 59: 647-648. PMid:19750868   Naderi M, Hashemi M, Mehdizadeh A, Mehrabifar H, et al. (2010). Serum adenosine deaminase activity and the total antioxidant capacity of plasma in pulmonary tuberculosis and non-tuberculosis pulmonary disease. Turk. J. Med. Sci. 40: 701-706.   Nino-Moreno P, Portales-Perez D, Hernandez-Castro B, Portales-Cervantes L, et al. (2007). P2X7 and NRAMP1/SLC11 A1 gene polymorphisms in Mexican mestizo patients with pulmonary tuberculosis. Clin. Exp. Immunol. 148: 469-477. http://dx.doi.org/10.1111/j.1365-2249.2007.03359.x PMid:17493019 PMCid:1941940   Sambasivan V, Murthy KJ, Reddy R, Vijayalakshimi V, et al. (2010). P2X7 gene polymorphisms and risk assessment for pulmonary tuberculosis in Asian Indians. Dis. Markers 28: 43-48. PMid:20164546   Sharma S, Kumar V, Khosla R, Kajal N, et al. (2010). Association of P2X7 receptor +1513 (A→C) polymorphism with tuberculosis in a Punjabi population. Int. J. Tuberc. Lung. Dis. 14: 1159-1163. PMid:20819262   Shemon AN, Sluyter R, Fernando SL, Clarke AL, et al. (2006). A Thr357 to Ser polymorphism in homozygous and compound heterozygous subjects causes absent or reduced P2X7 function and impairs ATP-induced mycobacterial killing by macrophages. J. Biol. Chem. 281: 2079-2086. http://dx.doi.org/10.1074/jbc.M507816200 PMid:16263709   Singla N, Gupta D, Joshi A, Batra N, et al. (2012). Genetic polymorphisms in the P2X7 gene and its association with susceptibility to tuberculosis. Int. J. Tuberc. Lung. Dis. 16: 224-229. http://dx.doi.org/10.5588/ijtld.11.0076 PMid:22137490   Sluyter R and Stokes L (2011). Significance of P2X7 receptor variants to human health and disease. Recent Pat. DNA Gene Seq. 5: 41-54. http://dx.doi.org/10.2174/187221511794839219 PMid:21303345   Wang X, Xiao H, Lan H, Mao C, et al. (2011). Lack of association between the P2X7 receptor A1513C polymorphism and susceptibility to pulmonary tuberculosis: a meta-analysis. Respirology 16: 790-795. http://dx.doi.org/10.1111/j.1440-1843.2011.01976.x PMid:21470339   Wiley JS, Dao-Ung LP, Li C, Shemon AN, et al. (2003). An Ile-568 to Asn polymorphism prevents normal trafficking and function of the human P2X7 receptor. J. Biol. Chem. 278: 17108-17113. http://dx.doi.org/10.1074/jbc.M212759200 PMid:12586825   World Health Organization (2008). Global Tuberculosis Control: Surveillance, Planning, Financing. World Health Organization, Geneva.   Xiao J, Sun L, Jiao W, Li Z, et al. (2009). Lack of association between polymorphisms in the P2X7 gene and tuberculosis in a Chinese Han population. FEMS Immunol. Med. Microbiol. 55: 107-111. http://dx.doi.org/10.1111/j.1574-695X.2008.00508.x PMid:19076224   Xiao J, Sun L, Yan H, Jiao W, et al. (2010). Metaanalysis of P2X7 gene polymorphisms and tuberculosis susceptibility. FEMS Immunol. Med. Microbiol. 60: 165-170. http://dx.doi.org/10.1111/j.1574-695X.2010.00735.x PMid:20846359