Publications

Found 27 results
Filters: Author is J. Xu  [Clear All Filters]
2016
J. Jian, Li, C., Xu, J., Qiao, D., Mi, G., Chen, X., Tang, M., Jian, J., Li, C., Xu, J., Qiao, D., Mi, G., Chen, X., and Tang, M., Associations of serotonin receptor gene HTR3A, HTR3B, and HTR3A haplotypes with bipolar disorder in Chinese patients, vol. 15, p. -, 2016.
J. Jian, Li, C., Xu, J., Qiao, D., Mi, G., Chen, X., Tang, M., Jian, J., Li, C., Xu, J., Qiao, D., Mi, G., Chen, X., and Tang, M., Associations of serotonin receptor gene HTR3A, HTR3B, and HTR3A haplotypes with bipolar disorder in Chinese patients, vol. 15, p. -, 2016.
X. Qi, Xu, A., Gao, Y., Shi, Y., Sun, X., Xu, J., Liu, J., Lan, Q., Chang, L., Zhang, C., Yu, H., Qi, X., Xu, A., Gao, Y., Shi, Y., Sun, X., Xu, J., Liu, J., Lan, Q., Chang, L., Zhang, C., and Yu, H., Cardiac damage and dysfunction in diabetic cardiomyopathy are ameliorated by Grx1, vol. 15, p. -, 2016.
X. Qi, Xu, A., Gao, Y., Shi, Y., Sun, X., Xu, J., Liu, J., Lan, Q., Chang, L., Zhang, C., Yu, H., Qi, X., Xu, A., Gao, Y., Shi, Y., Sun, X., Xu, J., Liu, J., Lan, Q., Chang, L., Zhang, C., and Yu, H., Cardiac damage and dysfunction in diabetic cardiomyopathy are ameliorated by Grx1, vol. 15, p. -, 2016.
K. Zhao, Xu, J., Tian, H., Zhao, K., Xu, J., and Tian, H., Correlation analysis between an IL-6 genetic polymorphism and non-small cell lung cancer prognosis, vol. 15. p. -, 2016.
K. Zhao, Xu, J., Tian, H., Zhao, K., Xu, J., and Tian, H., Correlation analysis between an IL-6 genetic polymorphism and non-small cell lung cancer prognosis, vol. 15. p. -, 2016.
X. Li, Liu, C. Y., Li, Y. S., Xu, J., Li, D. G., Han, D., Li, X., Liu, C. Y., Li, Y. S., Xu, J., Li, D. G., Han, D., Li, X., Liu, C. Y., Li, Y. S., Xu, J., Li, D. G., and Han, D., Deep RNA sequencing elucidates microRNA-regulated molecular pathways in ischemic cardiomyopathy and nonischemic cardiomyopathy, vol. 15, p. -, 2016.
X. Li, Liu, C. Y., Li, Y. S., Xu, J., Li, D. G., Han, D., Li, X., Liu, C. Y., Li, Y. S., Xu, J., Li, D. G., Han, D., Li, X., Liu, C. Y., Li, Y. S., Xu, J., Li, D. G., and Han, D., Deep RNA sequencing elucidates microRNA-regulated molecular pathways in ischemic cardiomyopathy and nonischemic cardiomyopathy, vol. 15, p. -, 2016.
X. Li, Liu, C. Y., Li, Y. S., Xu, J., Li, D. G., Han, D., Li, X., Liu, C. Y., Li, Y. S., Xu, J., Li, D. G., Han, D., Li, X., Liu, C. Y., Li, Y. S., Xu, J., Li, D. G., and Han, D., Deep RNA sequencing elucidates microRNA-regulated molecular pathways in ischemic cardiomyopathy and nonischemic cardiomyopathy, vol. 15, p. -, 2016.
J. B. Ma, Chen, L., Gao, B., and Xu, J., Effect of polymorphisms in interleukin-18 gene on the susceptibility to coronary artery disease in a Chinese population, vol. 15, no. 4, p. -, 2016.
Conflicts of interestThe authors declare no conflict of interest.ACKNOWLEDGMENTSWe thank the nurses from the First Hospital of Yulin for helping us to collect the blood samples. REFERENCESArimitsu J, Hirano T, Higa S, Kawai M, et al (2006). IL-18 gene polymorphisms affect IL-18 production capability by monocytes. Biochem. Biophys. Res. Commun. 342: 1413-1416. http://dx.doi.org/10.1016/j.bbrc.2006.02.096 Bonfim-Silva R, Guimarães LO, Souza Santos J, Pereira JF, et al (2016). Case-control association study of polymorphisms in the angiotensinogen and angiotensin-converting enzyme genes and coronary artery disease and systemic artery hypertension in African-Brazilians and Caucasian-Brazilians. J. Genet. 95: 63-69. http://dx.doi.org/10.1007/s12041-015-0599-5 Bullock-Palmer RP, et al (2015). Prevention, detection and management of coronary artery disease in minority females. Ethn. Dis. 25: 499-506. http://dx.doi.org/10.18865/ed.25.4.499 Campbell TC, Parpia B, Chen J, et al (1998). Diet, lifestyle, and the etiology of coronary artery disease: the Cornell China study. Am. J. Cardiol. 82 (10B): 18T-21T. http://dx.doi.org/10.1016/S0002-9149(98)00718-8 Chen MC, Chen CJ, Yang CH, Wu CJ, et al (2007). Interleukin-18: a strong predictor of the extent of coronary artery disease in patients with unstable angina. Heart Vessels 22: 371-375. http://dx.doi.org/10.1007/s00380-007-0991-z Cyrus C, Vatte C, Al-Nafie A, Chathoth S, et al (2016). The impact of common polymorphisms in CETP and ABCA1 genes with the risk of coronary artery disease in Saudi Arabians. Hum. Genomics 10: 8. http://dx.doi.org/10.1186/s40246-016-0065-3 de Nooijer R, von der Thüsen JH, Verkleij CJ, Kuiper J, et al (2004). Overexpression of IL-18 decreases intimal collagen content and promotes a vulnerable plaque phenotype in apolipoprotein-E-deficient mice. Arterioscler. Thromb. Vasc. Biol. 24: 2313-2319. http://dx.doi.org/10.1161/01.ATV.0000147126.99529.0a Erbel R, Görge G, et al (2014). [New insights in pathogenesis and etiology of coronary artery disease]. Dtsch. Med. Wochenschr. 139 (Suppl 1): S4-S8. Gao Y, Tong GX, Zhang XW, Leng JH, et al (2010). Interleukin-18 levels on admission are associated with mid-term adverse clinical events in patients with ST-segment elevation acute myocardial infarction undergoing percutaneous coronary intervention. Int. Heart J. 51: 75-81. http://dx.doi.org/10.1536/ihj.51.75 Giedraitis V, He B, Huang WX, Hillert J, et al (2001). Cloning and mutation analysis of the human IL-18 promoter: a possible role of polymorphisms in expression regulation. J. Neuroimmunol. 112: 146-152. http://dx.doi.org/10.1016/S0165-5728(00)00407-0 Hazzaa HH, Rashwan WA, Attia EA, et al (2014). IL-18 gene polymorphisms in aphthous stomatitis vs. Behçet’s disease in a cohort of Egyptian patients. J. Oral Pathol. Med. 43: 746-753. http://dx.doi.org/10.1111/jop.12200 He J, Gu D, Wu X, Reynolds K, et al (2005). Major causes of death among men and women in China. N. Engl. J. Med. 353: 1124-1134. http://dx.doi.org/10.1056/NEJMsa050467 Hernesniemi JA, Heikkilä A, Raitakari OT, Kähönen M, et al (2010a). Interleukin-18 gene polymorphism and markers of subclinical atherosclerosis. The Cardiovascular Risk in Young Finns Study. Ann. Med. 42: 223-230. http://dx.doi.org/10.3109/07853891003769940 Hernesniemi JA, Anttila K, Nieminen T, Kähönen M, et al (2010b). IL-18 gene polymorphism, cardiovascular mortality and coronary artery disease. Eur. J. Clin. Invest. 40: 994-1001. http://dx.doi.org/10.1111/j.1365-2362.2010.02356.x Kishore Kumar G, Rajesh Kumar G, Mrudula Spurthi K, Nivas S, et al (2016). Polymorphisms of extrinsic death receptor apoptotic genes (FAS -670 G>A, FASL -844 T>C) in coronary artery disease. Apoptosis 21: 558-565. http://dx.doi.org/10.1007/s10495-016-1232-7 Li Q, Li Z, Zhang X, Ruan Y, et al (2014). Evaluated plasma interleukin-18/interleukin-10 ratio is a risk factor for acute coronary syndromes in patients with stable angina pectoris. Cardiol. J. 21: 83-88. http://dx.doi.org/10.5603/CJ.a2013.0057 Liang XH, Cheung W, Heng CK, Wang DY, et al (2005). Reduced transcriptional activity in individuals with IL-18 gene variants detected from functional but not association study. Biochem. Biophys. Res. Commun. 338: 736-741. http://dx.doi.org/10.1016/j.bbrc.2005.10.012 Libby P, Ridker PM, Maseri A, et al (2002). Inflammation and atherosclerosis. Circulation 105: 1135-1143. http://dx.doi.org/10.1161/hc0902.104353 Liu W, Tang Q, Jiang H, Ding X, et al (2009). Promoter polymorphism of interleukin-18 in angiographically proven coronary artery disease. Angiology 60: 180-185. Liu W, Liu Y, Jiang H, Ding X, et al (2013). Plasma levels of interleukin 18, interleukin 10, and matrix metalloproteinase-9 and -137G/C polymorphism of interleukin 18 are associated with incidence of in-stent restenosis after percutaneous coronary intervention. Inflammation 36: 1129-1135. http://dx.doi.org/10.1007/s10753-013-9647-6 Lu JX, Lu ZQ, Zhang SL, Zhi J, et al (2013). Correlation between interleukin-18 promoter -607C/A polymorphism and susceptibility to ischemic stroke. Braz. J. Med. Biol. Res. 46: 502-506. http://dx.doi.org/10.1590/1414-431X20132850 Mohammadzadeh G, Ghaffari MA, Bazyar M, Kheirollah A, et al (2016). Association between two common polymorphisms (single nucleotide polymorphism -250G/A and -514C/T) of the hepatic lipase gene and coronary artery disease in type 2 diabetic patients. Adv. Biomed. Res. 5: 27. http://dx.doi.org/10.4103/2277-9175.176366 Opstad TB, Pettersen AÅ, Arnesen H, Seljeflot I, et al (2011). Circulating levels of IL-18 are significantly influenced by the IL-18 +183 A/G polymorphism in coronary artery disease patients with diabetes type 2 and the metabolic syndrome: an observational study. Cardiovasc. Diabetol. 10: 110. http://dx.doi.org/10.1186/1475-2840-10-110 Opstad TB, Pettersen AÅ, Arnesen H, Seljeflot I, et al (2013). The co-existence of the IL-18+183 A/G and MMP-9 -1562 C/T polymorphisms is associated with clinical events in coronary artery disease patients. PLoS One 8: e74498. http://dx.doi.org/10.1371/journal.pone.0074498 Pei F, Han Y, Zhang X, Yan C, et al (2009). Association of interleukin-18 gene promoter polymorphisms with risk of acute myocardial infarction in northern Chinese Han population. Clin. Chem. Lab. Med. 47: 523-529. http://dx.doi.org/10.1515/CCLM.2009.130 Thompson SR, Sanders J, Stephens JW, Miller GJ, et al (2007). A common interleukin 18 haplotype is associated with higher body mass index in subjects with diabetes and coronary heart disease. Metabolism 56: 662-669. http://dx.doi.org/10.1016/j.metabol.2006.12.015 Vatte C, Cyrus C, Al Shehri AM, Chathoth S, et al (2016). Investigation of KIF6 Trp719Arg gene polymorphism in a case-control study of coronary artery disease and non-fatal myocardial infarction in the Eastern Province of Saudi Arabia. Ann. Saudi Med. 36: 105-111. Yang HT, Wang SL, Yan LJ, Qian P, et al (2015). Association of interleukin gene polymorphisms with the risk of coronary artery disease. Genet. Mol. Res. 14: 12489-12496. http://dx.doi.org/10.4238/2015.October.16.16 Zernecke A, Shagdarsuren E, Weber C, et al (2008). Chemokines in atherosclerosis: an update. Arterioscler. Thromb. Vasc. Biol. 28: 1897-1908. http://dx.doi.org/10.1161/ATVBAHA.107.161174 Zhang D, Zhang X, Liu D, Liu T, et al (2016). Association between insulin receptor substrate-1 polymorphisms and high platelet reactivity with clopidogrel therapy in coronary artery disease patients with type 2 diabetes mellitus. Cardiovasc. Diabetol. 15: 50. http://dx.doi.org/10.1186/s12933-016-0362-0 Zhang N, Yu JT, Yu NN, Lu RC, et al (2010). Interleukin-18 promoter polymorphisms and risk of ischemic stroke. Brain Res. Bull. 81: 590-594. http://dx.doi.org/10.1016/j.brainresbull.2010.01.008 Zheng XS, Wang S, Ni M, et al (2016). Association between interleukin 17A gene polymorphisms and risk of coronary artery disease. Genet. Mol. Res. 15.http://dx.doi.org/10.4238/gmr.15017074  
K. Zhao, Xu, J., and Tian, H., RETRACTION of “Correlation analysis between an IL-6 genetic polymorphism and non-small cell lung cancer prognosis”, by Zhao K, Xu J, Tian H published in Genetics and Molecular Research 15 (1): 15017021 (2016) DOI: 10.4238/gmr.15017021, vol. 15, no. 4, p. -, 2016.
2015
Y. G. Yang, Zhang, M., Jiang, N., Song, L. X., Xu, X. T., Di, X. H., Xu, L., Xu, J., and Zhao, G. T., Bioequivalence of clopidogrel hydrogen sulfate tablets in healthy Chinese volunteers, vol. 14, pp. 16736-16743, 2015.
J. X. Wang, Xu, J., Han, Y. F., Zhu, Y. B., and Zhang, W. J., Diagnostic values of microRNA-31 in peripheral blood mononuclear cells for pediatric pulmonary tuberculosis in Chinese patients, vol. 14, pp. 17235-17243, 2015.
J. R. Fu, Zhu, L. X., Sun, X. T., Zhou, D. H., Ouyang, L. J., Bian, J. M., He, H. H., and Xu, J., Genetic analysis of grain shape and weight after cutting rice husk, vol. 14, pp. 17739-17748, 2015.
J. Wu, Hou, S. S., Wang, W., Yin, M., Cheng, N., Ge, L. L., Yin, J. J., and Xu, J., Hepatic phosphoenolpyruvate carboxykinase expression after gastric bypass surgery in rats with type 2 diabetes mellitus, vol. 14, pp. 16938-16947, 2015.
J. Xu, Wang, G., Fu, D., Su, N., Wang, L., Gao, F., and Guo, N., High-resolution color doppler ultrasound examination and related risk factor analysis of lower extremity vasculopathy in type 2 diabetes patients, vol. 14, pp. 3939-3947, 2015.
J. Xu, Xu, L., Li, L. T., You, Q., and Cha, L. S., IGFBP-3 A-202C and C2133G polymorphisms and colorectal cancer risk: a meta-analysis of case-control studies, vol. 14, pp. 3370-3386, 2015.
Y. Song, Li, M. F., Xu, J., Zhao, Z., and Chen, N. Z., Polymorphic microsatellite markers in the traditional Chinese medicinal plant Paris polyphylla var. yunnanensis, vol. 14, pp. 9939-9942, 2015.
2013
Q. Liu, Qi, X. F., Ye, F., Yao, J., and Xu, J., Lack of mutations of G4.5 in three families from China with noncompaction of the ventricular myocardium, vol. 12, pp. 53-58, 2013.
Bleyl SB, Mumford BR, Thompson V, Carey JC, et al. (1997). Neonatal, lethal noncompaction of the left ventricular myocardium is allelic with Barth syndrome. Am. J. Hum. Genet. 61: 868-872. http://dx.doi.org/10.1086/514879 PMid:9382097 PMCid:1715997   Chen R, Tsuji T, Ichida F, Bowles KR, et al. (2002). Mutation analysis of the G4.5 gene in patients with isolated left ventricular noncompaction. Mol. Genet. Metab. 77: 319-325. http://dx.doi.org/10.1016/S1096-7192(02)00195-6   Chin TK, Perloff JK, Williams RG, Jue K, et al. (1990). Isolated noncompaction of left ventricular myocardium. A study of eight cases. Circulation 82: 507-513. http://dx.doi.org/10.1161/01.CIR.82.2.507 PMid:2372897   Ichida F, Tsubata S, Bowles KR, Haneda N, et al. (2001). Novel gene mutations in patients with left ventricular noncompaction or Barth syndrome. Circulation 103: 1256-1263. http://dx.doi.org/10.1161/01.CIR.103.9.1256 PMid:11238270   Jenni R, Oechslin E, Schneider J, Attenhofer JC, et al. (2001). Echocardiographic and pathoanatomical characteristics of isolated left ventricular non-compaction: a step towards classification as a distinct cardiomyopathy. Heart 86: 666-671. http://dx.doi.org/10.1136/heart.86.6.666 PMid:11711464 PMCid:1730012   Kasifoglu T, Cavusoglu Y, Korkmaz C and Birdane A (2007). Noncompaction of the ventricular myocardium in a patient with Behcet's disease showing multiple thrombus formations in the right atrium, inferior vena cava and right iliac vein: A case report. Int. J. Angiol. 16: 69-72. http://dx.doi.org/10.1055/s-0031-1278252 PMid:22477276 PMCid:2733008   Kenton AB, Sanchez X, Coveler KJ, Makar KA, et al. (2004). Isolated left ventricular noncompaction is rarely caused by mutations in G4.5, alpha-dystrobrevin and FK Binding Protein-12. Mol. Genet. Metab. 82: 162-166. http://dx.doi.org/10.1016/j.ymgme.2004.02.009 PMid:15172004   Klaassen S, Probst S, Oechslin E, Gerull B, et al. (2008). Mutations in sarcomere protein genes in left ventricular noncompaction. Circulation 117: 2893-2901. http://dx.doi.org/10.1161/CIRCULATIONAHA.107.746164 PMid:18506004   Maron BJ, Towbin JA, Thiene G, Antzelevitch C, et al. (2006). Contemporary definitions and classification of the cardiomyopathies: an American Heart Association Scientific Statement from the Council on Clinical Cardiology, Heart Failure and Transplantation Committee; Quality of Care and Outcomes Research and Functional Genomics and Translational Biology Interdisciplinary Working Groups; and Council on Epidemiology and Prevention. Circulation 113: 1807-1816. http://dx.doi.org/10.1161/CIRCULATIONAHA.106.174287 PMid:16567565   Richardson P, McKenna W, Bristow M, Maisch B, et al. (1996). Report of the 1995 World Health Organization/International Society and Federation of Cardiology Task Force on the Definition and Classification of cardiomyopathies. Circulation 93: 841-842. http://dx.doi.org/10.1161/01.CIR.93.5.841 PMid:8598070   Sasse-Klaassen S, Gerull B, Oechslin E, Jenni R, et al. (2003). Isolated noncompaction of the left ventricular myocardium in the adult is an autosomal dominant disorder in the majority of patients. Am. J. Med. Genet. A 119A: 162-167. http://dx.doi.org/10.1002/ajmg.a.20075 PMid:12749056   Weiford BC, Subbarao VD and Mulhern KM (2004). Noncompaction of the ventricular myocardium. Circulation 109: 2965-2971. http://dx.doi.org/10.1161/01.CIR.0000132478.60674.D0 PMid:15210614   Zambrano E, Marshalko SJ, Jaffe CC and Hui P (2002). Isolated noncompaction of the ventricular myocardium: clinical and molecular aspects of a rare cardiomyopathy. Lab Invest 82: 117-122. http://dx.doi.org/10.1038/labinvest.3780404 PMid:11850525
2012
J. Xu, Wang, J., and Chen, B., SLC30A8 (ZnT8) variations and type 2 diabetes in the Chinese Han population, vol. 11, pp. 1592-1598, 2012.
Boutayeb A and Boutayeb S (2005). The burden of non communicable diseases in developing countries. Int. J. Equity Health 4: 2. http://dx.doi.org/10.1186/1475-9276-4-2 PMid:15651987 PMCid:546417   Cauchi S, Proenca C, Choquet H, Gaget S, et al. (2008). Analysis of novel risk loci for type 2 diabetes in a general French population: the D.E.S.I.R. study. J. Mol. Med. 86: 341-348. http://dx.doi.org/10.1007/s00109-007-0295-x PMid:18210030   Chausmer AB (1998). Zinc, insulin and diabetes. J. Am. Coll. Nutr. 17: 109-115. PMid:9550453   Chimienti F, Devergnas S, Favier A and Seve M (2004). Identification and cloning of a beta-cell-specific zinc transporter, ZnT-8, localized into insulin secretory granules. Diabetes 53: 2330-2337. http://dx.doi.org/10.2337/diabetes.53.9.2330 PMid:15331542   Crawford DC and Nickerson DA (2005). Definition and clinical importance of haplotypes. Annu. Rev. Med. 56: 303-320. http://dx.doi.org/10.1146/annurev.med.56.082103.104540 PMid:15660514   Das SK and Elbein SC (2006). The genetic basis of type 2 diabetes. Cell Sci. 2: 100-131.   Frayling TM (2007a). Genome-wide association studies provide new insights into type 2 diabetes aetiology. Nat. Rev. Genet. 8: 657-662. http://dx.doi.org/10.1038/nrg2178 PMid:17703236   Frayling TM (2007b). A new era in finding type 2 diabetes genes - the unusual suspects. Diabet. Med. 24: 696-701. http://dx.doi.org/10.1111/j.1464-5491.2007.02172.x PMid:17561964   Horikoshi M, Hara K, Ito C, Shojima N, et al. (2007). Variations in the HHEX gene are associated with increased risk of type 2 diabetes in the Japanese population. Diabetologia 50: 2461-2466. http://dx.doi.org/10.1007/s00125-007-0827-5 PMid:17928989   Kirchhoff K, Machicao F, Haupt A, Schafer SA, et al. (2008). Polymorphisms in the TCF7L2, CDKAL1 and SLC30A8 genes are associated with impaired proinsulin conversion. Diabetologia 51: 597-601. http://dx.doi.org/10.1007/s00125-008-0926-y PMid:18264689   Li Z, Zhang Z, He Z, Tang W, et al. (2009). A partition-ligation-combination-subdivision EM algorithm for haplotype inference with multiallelic markers: update of the SHEsis (http://analysis.bio-x.cn). Cell Res. 19: 519-523. http://dx.doi.org/10.1038/cr.2009.33 PMid:19290020   Livak KJ, Marmaro J and Todd JA (1995). Towards fully automated genome-wide polymorphism screening. Nat. Genet. 9: 341-342. http://dx.doi.org/10.1038/ng0495-341 PMid:7795635   MacDonald PE and Rorsman P (2007). The ins and outs of secretion from pancreatic beta-cells: control of single-vesicle exo- and endocytosis. Physiology 22: 113-121. http://dx.doi.org/10.1152/physiol.00047.2006 PMid:17420302   Morris RW and Kaplan NL (2002). On the advantage of haplotype analysis in the presence of multiple disease susceptibility alleles. Genet. Epidemiol. 23: 221-233. http://dx.doi.org/10.1002/gepi.10200 PMid:12384975   Omori S, Tanaka Y, Takahashi A, Hirose H, et al. (2008). Association of CDKAL1, IGF2BP2, CDKN2A/B, HHEX, SLC30A8, and KCNJ11 with susceptibility to type 2 diabetes in a Japanese population. Diabetes 57: 791-795. http://dx.doi.org/10.2337/db07-0979 PMid:18162508   Owen KR and McCarthy MI (2007). Genetics of type 2 diabetes. Curr. Opin. Genet. Dev. 17: 239-244. http://dx.doi.org/10.1016/j.gde.2007.04.003 PMid:17466512   Palmiter RD and Huang L (2004). Efflux and compartmentalization of zinc by members of the SLC30 family of solute carriers. Pflugers Arch. 447: 744-751. http://dx.doi.org/10.1007/s00424-003-1070-7 PMid:12748859   Sano M, Kuroi N, Nakayama T, Sato N, et al. (2005). Association study of calcitonin-receptor-like receptor gene in essential hypertension. Am. J. Hypertens. 18: 403-408. http://dx.doi.org/10.1016/j.amjhyper.2004.10.016 PMid:15797661   Saxena R, Voight BF, Lyssenko V, Burtt NP, et al. (2007). Genome-wide association analysis identifies loci for type 2 diabetes and triglyceride levels. Science 316: 1331-1336. http://dx.doi.org/10.1126/science.1142358 PMid:17463246   Scott LJ, Mohlke KL, Bonnycastle LL, Willer CJ, et al. (2007). A genome-wide association study of type 2 diabetes in Finns detects multiple susceptibility variants. Science 316: 1341-1345. http://dx.doi.org/10.1126/science.1142382 PMid:17463248 PMCid:3214617   Shi YY and He L (2005). SHEsis, a powerful software platform for analyses of linkage disequilibrium, haplotype construction, and genetic association at polymorphism loci. Cell Res. 15: 97-98. http://dx.doi.org/10.1038/sj.cr.7290272 PMid:15740637   Sladek R, Rocheleau G, Rung J, Dina C, et al. (2007). A genome-wide association study identifies novel risk loci for type 2 diabetes. Nature 445: 881-885. http://dx.doi.org/10.1038/nature05616 PMid:17293876   Staiger H, Machicao F, Stefan N, Tschritter O, et al. (2007). Polymorphisms within novel risk loci for type 2 diabetes determine beta-cell function. PLoS One 2: e832. http://dx.doi.org/10.1371/journal.pone.0000832 PMid:17786204 PMCid:1952072   Steinthorsdottir V, Thorleifsson G, Reynisdottir I, Benediktsson R, et al. (2007). A variant in CDKAL1 influences insulin response and risk of type 2 diabetes. Nat. Genet. 39: 770-775. http://dx.doi.org/10.1038/ng2043 PMid:17460697   Xiang X, Ma YT, Fu ZY, Yang YN, et al. (2009). Haplotype analysis of the CYP8A1 gene associated with myocardial infarction. Clin. Appl. Thromb. Hemost. 15: 574-580. http://dx.doi.org/10.1177/1076029608329581 PMid:19147528   Zeggini E (2007). A new era for type 2 diabetes genetics. Diabet. Med. 24: 1181-1186. http://dx.doi.org/10.1111/j.1464-5491.2007.02274.x PMid:17897328 PMCid:2121132   Zeggini E, Weedon MN, Lindgren CM, Frayling TM, et al. (2007). Replication of genome-wide association signals in UK samples reveals risk loci for type 2 diabetes. Science 316: 1336-1341. http://dx.doi.org/10.1126/science.1142364 PMid:17463249