Publications
Found 8 results
Filters: Author is M.L. Yu [Clear All Filters]
“Diversity, population structure, and evolution of local peach cultivars in China identified by simple sequence repeats”, vol. 14, pp. 101-117, 2015.
, “Genome-wide analysis and identification of KT/HAK/KUP potassium transporter gene family in peach (Prunus persica)”, vol. 14, pp. 774-787, 2015.
, “Isolation and expression analysis of four HD-ZIP III family genes targeted by microRNA166 in peach”, vol. 14, pp. 14151-14161, 2015.
, , “Efficient identification of ornamental peach cultivars using RAPD markers with a manual cultivar identification diagram strategy”, vol. 13, pp. 32-42, 2014.
, “Genome-wide analysis of the homeodomain-leucine zipper (HD-ZIP) gene family in peach (Prunus persica)”, vol. 13, pp. 2654-2668, 2014.
, “Genome-wide analysis of the AP2/ERF superfamily in peach (Prunus persica)”, vol. 11, pp. 4789-4809, 2013.
, Agarwal P, Agarwal PK, Joshi AJ, Sopory SK, et al. (2010). Overexpression of PgDREB2A transcription factor enhances abiotic stress tolerance and activates downstream stress-responsive genes. Mol. Biol. Rep. 37: 1125-1135.
http://dx.doi.org/10.1007/s11033-009-9885-8
PMid:19826914
Agarwal PK, Agarwal P, Reddy MK and Sopory SK (2006). Role of DREB transcription factors in abiotic and biotic stress tolerance in plants. Plant Cell Rep. 25: 1263-1274.
http://dx.doi.org/10.1007/s00299-006-0204-8
PMid:16858552
Allen MD, Yamasaki K, Ohme-Takagi M, Tateno M, et al. (1998). A novel mode of DNA recognition by a beta-sheet revealed by the solution structure of the GCC-box binding domain in complex with DNA. EMBO J. 17: 5484-5496.
http://dx.doi.org/10.1093/emboj/17.18.5484
PMid:9736626 PMCid:1170874
Alonso JM, Stepanova AN, Leisse TJ, Kim CJ, et al. (2003). Genome-wide insertional mutagenesis of Arabidopsis thaliana. Science 301: 653-657.
http://dx.doi.org/10.1126/science.1086391
PMid:12893945
Anfinsen CB (1973). Principles that govern the folding of protein chains. Science 181: 223-230.
http://dx.doi.org/10.1126/science.181.4096.223
PMid:4124164
Anfinsen CB, Haber E, Sela M and White FH Jr (1961). The kinetics of formation of native ribonuclease during oxidation of the reduced polypeptide chain. Proc. Natl. Acad. Sci. U. S. A. 47: 1309-1314.
http://dx.doi.org/10.1073/pnas.47.9.1309
PMid:13683522 PMCid:223141
Arnold K, Bordoli L, Kopp J and Schwede T (2006). The SWISS-MODEL workspace: a web-based environment for protein structure homology modelling. Bioinformatics 22: 195-201.
http://dx.doi.org/10.1093/bioinformatics/bti770
PMid:16301204
Bailey TL, Williams N, Misleh C and Li WW (2006). MEME: discovering and analyzing DNA and protein sequence motifs. Nucleic Acids Res. 34: W369-W373.
http://dx.doi.org/10.1093/nar/gkl198
PMid:16845028 PMCid:1538909
Blanc G and Wolfe KH (2004). Functional divergence of duplicated genes formed by polyploidy during Arabidopsis evolution. Plant Cell 16: 1679-1691.
http://dx.doi.org/10.1105/tpc.021410
PMid:15208398 PMCid:514153
Chuck G, Meeley RB and Hake S (1998). The control of maize spikelet meristem fate by the APETALA2-like gene indeterminate spikelet1. Genes Dev. 12: 1145-1154.
http://dx.doi.org/10.1101/gad.12.8.1145
PMid:9553044 PMCid:316712
Clifton SW and Mitreva M (2009). Strategies for undertaking expressed sequence tag (EST) projects. Methods Mol. Biol. 533: 13-32.
http://dx.doi.org/10.1007/978-1-60327-136-3_2
PMid:19277564
Goff SA, Ricke D, Lan TH, Presting G, et al. (2002). A draft sequence of the rice genome (Oryza sativa L. ssp. japonica). Science 296: 92-100.
http://dx.doi.org/10.1126/science.1068275
PMid:11935018
Guillaumot D, Lelu-Walter MA, Germot A, Meytraud F, et al. (2008). Expression patterns of LmAP2L1 and LmAP2L2 encoding two-APETALA2 domain proteins during somatic embryogenesis and germination of hybrid larch (Larix x marschlinsii). J. Plant Physiol. 165: 1003-1010.
http://dx.doi.org/10.1016/j.jplph.2007.08.009
PMid:18160178
Guo H and Ecker JR (2004). The ethylene signaling pathway: new insights. Curr. Opin. Plant Biol. 7: 40-49.
http://dx.doi.org/10.1016/j.pbi.2003.11.011
PMid:14732440
Hu LF and Liu SQ (2011). Genome-wide identification and phylogenetic analysis of the ERF gene family in cucumbers. Genet. Mol. Biol. 34: 624-633.
http://dx.doi.org/10.1590/S1415-47572011005000054
PMid:22215967 PMCid:3229118
Hu YX, Wang YX, Liu XF and Li JY (2004). Arabidopsis RAV1 is down-regulated by brassinosteroid and may act as a negative regulator during plant development. Cell Res. 14: 8-15.
http://dx.doi.org/10.1038/sj.cr.7290197
PMid:15040885
Huala E, Dickerman AW, Garcia-Hernandez M, Weems D, et al. (2001). The Arabidopsis Information Resource (TAIR): a comprehensive database and web-based information retrieval, analysis, and visualization system for a model plant. Nucleic Acids Res. 29: 102-105.
http://dx.doi.org/10.1093/nar/29.1.102
PMid:11125061 PMCid:29827
Jofuku KD, den Boer BG, Van Montagu M and Okamuro JK (1994). Control of Arabidopsis flower and seed development by the homeotic gene APETALA2. Plant Cell 6: 1211-1225.
PMid:7919989 PMCid:160514
Jung S, Staton M, Lee T, Blenda A, et al. (2008). GDR (Genome Database for Rosaceae): integrated web-database for Rosaceae genomics and genetics data. Nucleic Acids Res. 36: D1034-D1040.
http://dx.doi.org/10.1093/nar/gkm803
PMid:17932055 PMCid:2238863
Kagaya Y, Ohmiya K and Hattori T (1999). RAV1, a novel DNA-binding protein, binds to bipartite recognition sequence through two distinct DNA-binding domains uniquely found in higher plants. Nucleic Acids Res. 27: 470-478.
http://dx.doi.org/10.1093/nar/27.2.470
PMid:9862967 PMCid:148202
Layne DR and Bassi D (2008). The Peach: Botany, Production and Uses. CABI, London.
http://dx.doi.org/10.1079/9781845933869.0000
Li Y, Zhu B, Xu W, Zhu H, et al. (2007). LeERF1 positively modulated ethylene triple response on etiolated seedling, plant development and fruit ripening and softening in tomato. Plant Cell Rep. 26: 1999-2008.
http://dx.doi.org/10.1007/s00299-007-0394-8
PMid:17639404
Licausi F, Giorgi FM, Zenoni S, Osti F, et al. (2010). Genomic and transcriptomic analysis of the AP2/ERF superfamily in Vitis vinifera. BMC Genomics 11: 719.
http://dx.doi.org/10.1186/1471-2164-11-719
PMid:21171999 PMCid:3022922
Moose SP and Sisco PH (1996). Glossy15, an APETALA2-like gene from maize that regulates leaf epidermal cell identity. Genes Dev. 10: 3018-3027.
http://dx.doi.org/10.1101/gad.10.23.3018
PMid:8957002
Nakano T, Suzuki K, Fujimura T and Shinshi H (2006). Genome-wide analysis of the ERF gene family in Arabidopsis and rice. Plant Physiol. 140: 411-432.
http://dx.doi.org/10.1104/pp.105.073783
PMid:16407444 PMCid:1361313
Ohme-Takagi M and Shinshi H (1995). Ethylene-inducible DNA binding proteins that interact with an ethylene-responsive element. Plant Cell 7: 173-182.
PMid:7756828 PMCid:160773
Ren Y, Zhang Z, Liu J, Staub JE, et al. (2009). An integrated genetic and cytogenetic map of the cucumber genome. PLoS One 4: e5795.
http://dx.doi.org/10.1371/journal.pone.0005795
PMid:19495411 PMCid:2685989
Sakuma Y, Liu Q, Dubouzet JG, Abe H, et al. (2002). DNA-binding specificity of the ERF/AP2 domain of Arabidopsis DREBs, transcription factors involved in dehydration- and cold-inducible gene expression. Biochem. Biophys. Res. Commun. 290: 998-1009.
http://dx.doi.org/10.1006/bbrc.2001.6299
PMid:11798174
Shangguan LF, Wang C, Fang JG, Li XY, et al. (2011). Isolation of effective genes with digital northern platform of NCBI Grapevine (Vitis vinifera L.) EST sequences. Sci. Agr. Sin. 44: 2748-2759.
Sharoni AM, Nuruzzaman M, Satoh K, Shimizu T, et al. (2011). Gene structures, classification and expression models of the AP2/EREBP transcription factor family in rice. Plant Cell Physiol. 52: 344-360.
http://dx.doi.org/10.1093/pcp/pcq196
PMid:21169347
Shi J, Blundell TL and Mizuguchi K (2001). FUGUE: sequence-structure homology recognition using environment-specific substitution tables and structure-dependent gap penalties. J. Mol. Biol. 310: 243-257.
http://dx.doi.org/10.1006/jmbi.2001.4762
PMid:11419950
Singh M (2001). Predicting Protein Secondary and Supersecondary Structure. CRC Press LLC, Florida.
Tamura K, Dudley J, Nei M and Kumar S (2007). MEGA4: Molecular Evolutionary Genetics Analysis (MEGA) software version 4.0. Mol. Biol. Evol. 24: 1596-1599.
http://dx.doi.org/10.1093/molbev/msm092
PMid:17488738
Tournier B, Sanchez-Ballesta MT, Jones B, Pesquet E, et al. (2003). New members of the tomato ERF family show specific expression pattern and diverse DNA-binding capacity to the GCC box element. FEBS Lett. 550: 149-154.
http://dx.doi.org/10.1016/S0014-5793(03)00757-9
Velasco R, Zharkikh A, Troggio M, Cartwright DA, et al. (2007). A high quality draft consensus sequence of the genome of a heterozygous grapevine variety. PLoS One 2: e1326.
http://dx.doi.org/10.1371/journal.pone.0001326
PMid:18094749 PMCid:2147077
Wang C, Wang H, Zhang J and Chen S (2008). A seed-specific AP2-domain transcription factor from soybean plays a certain role in regulation of seed germination. Sci. China C Life Sci. 51: 336-345.
http://dx.doi.org/10.1007/s11427-008-0044-6
PMid:18368311
Wang Y, Deng D, Bian Y, Lv Y, et al. (2010). Genome-wide analysis of primary auxin-responsive Aux/IAA gene family in maize (Zea mays L.). Mol. Biol. Rep. 37: 3991-4001.
http://dx.doi.org/10.1007/s11033-010-0058-6
PMid:20232157
Yamamoto S, Suzuki K and Shinshi H (1999). Elicitor-responsive, ethylene-independent activation of GCC box-mediated transcription that is regulated by both protein phosphorylation and dephosphorylation in cultured tobacco cells. Plant J. 20: 571-579.
http://dx.doi.org/10.1046/j.1365-313X.1999.00634.x
PMid:10652129
Yin XR, Allan AC, Chen KS and Ferguson IB (2010). Kiwifruit EIL and ERF genes involved in regulating fruit ripening. Plant Physiol. 153: 1280-1292.
http://dx.doi.org/10.1104/pp.110.157081
PMid:20457803 PMCid:2899921
Zhang GY, Chen M, Chen XP and Xu ZS (2008). Phylogeny, gene structures, and expression patterns of the ERF gene family in soybean (Glycine max L.). J. Exp. Bot. 59: 4095-4107.
http://dx.doi.org/10.1093/jxb/ern248
PMid:18832187 PMCid:2639015
“An improved strategy based on RAPD markers efficiently identified 95 peach cultivars”, vol. 11. pp. 1158-1168, 2012.
, Archak S, Gaikwad AB, Gautam D, Rao EVVB, et al. (2003). DNA fingerprinting of Indian cashew (Anacardium occidentale L.) varieties using RAPD and ISSR techniques. Euphytica 130: 397-404.
http://dx.doi.org/10.1023/A:1023074617348
Baird WV, Ballard RE, Rajapkse S and Abbott AG (1996). Progress in Prunus mapping and application of molecular markers to germplasm improvement. Hortic. Sci. 31: 1099-1106.
Baysal O, Siragusa M, Gumrukcu E, Zengin S, et al. (2010). Molecular characterization of Fusarium oxysporum f. melongenae by ISSR and RAPD markers on eggplant. Biochem. Genet. 48: 524-537.
http://dx.doi.org/10.1007/s10528-010-9336-1
PMid:20390339
Belaj A, Satovic Z, Ismaili H, Panajoti D, et al. (2003). RAPD genetic diversity of Albanian olive germplasm and its relationships with other Mediterranean countries. Euphytic 130: 387-395.
http://dx.doi.org/10.1023/A:1023042014081
Benjak A, Ercisli S, Vokurka A, Maletic E, et al. (2005). Genetic relationships amonggrapevine cultivars native to Croatia, Greece and Turkey. Vitis 44: 73-77.
Bhau BS, Medhi K, Das Ambrish P, Saikia SP, et al. (2009). Analysis of genetic diversity of Persea bombycina "Som" using RAPD-based molecular markers. Biochem. Genet. 47: 486-497.
http://dx.doi.org/10.1007/s10528-009-9242-6
PMid:19424786
Boronnikova SV, Kokaeva ZG, Gostimsky SA, Dribnokhodova OP, et al. (2007). Analysis of DNA polymorphism in a relict Uralian species, large-flowered foxglove (Digitalis grandiflora Mill.), using RAPD and ISSR markers. Russ. J. Genet. 43: 530-535.
http://dx.doi.org/10.1134/S1022795407050080
Bousquet J, Simon L and Lalonde M (1990). DNA amplification from vegetative and sexual tissues of tree using polymerase chain reaction. Can. J. For. Res. 20: 254-257.
http://dx.doi.org/10.1139/x90-037
Bunyard EA (1938). The history and cultivation of the peach and nectarine. J. Royal Hort. Sci. 63: 114-121.
Byrne DH (1990). Isozyme variability in four diploid stone fruits compared with other woody perennial plants. J. Hered. 81: 68-71.
Cheng ZP and Huang HW (2009). SSR fingerprinting Chinese peach cultivars and landraces (Prunus persica) and analysis of their genetic relationships. Sci. Hortic. 120: 188-193.
http://dx.doi.org/10.1016/j.scienta.2008.10.008
Chiu T, Pang J, Chen M and Tsen H (2010). Improvement of strain discrimination by combination of RAPD with PFGE for the analysis of the swine isolates of Salmonella enterica serovar Choleraesuis. World J. Microbiol. Biotechnol. 27: 465-469.
http://dx.doi.org/10.1007/s11274-010-0467-7
D'Onofrio C, Lorenzis G, de Giordani T, Natali L, et al. (2009). Retrotransposon-based molecular markers in grapevine species and cultivars identification and phylogenetic analysis. Acta Hortic. 827: 45-52.
Demirsoy L, Demir T, Demirsoy H, Kacar YA, et al. (2008). Identification of some sweet cherry cultivars grown in Amasya by RAPD markers. Acta Hortic. 795: 147-152.
Ding XD, Lu LX, Chen XJ and Guan X (2000). Identifying litchi cultivars and evaluating their genetic relationships by RAPD markers. J. Trop. Subtrop. Bot. 8: 49-54.
Elidemir AY and Uzun I (2009). Assessment of genetic diversity of some important grape cultivars, rootstocks, and wild grapes in Turkey using RAPD markers. Acta Hortic. 827: 275-278.
Lee GP, Lee CH and Kim CS (2004). Molecular markers derived from RAPD, SCAR, and the conserved 18S rDNA sequences for classification and identification in Pyrus pyrifolia and P. communis. Theor. Appl. Genet. 108: 1487- 1491.
http://dx.doi.org/10.1007/s00122-003-1582-8
PMid:14749847
Mariniello L, Sommella MG, Sorrentino A, Forlani M, et al. (2002). Identification of Prunus armeniaca cultivars by RAPD and SCAR markers. Biotechnol. Lett. 24: 749-755.
http://dx.doi.org/10.1023/A:1015516712754
Melgarejo P, Martcnez JJ, Hernández Fca, Martínez R, et al. (2009). Cultivar identification using 18S-28S rDNA intergenic spacer-RFLP in pomegranate (Punica granatum L.). Sci. Hortic. 120: 500-503.
http://dx.doi.org/10.1016/j.scienta.2008.12.013
Murray MG and Thompson WF (1980). Rapid isolation of high molecular weight plant DNA. Nucleic Acids Res. 8: 4321- 4325.
http://dx.doi.org/10.1093/nar/8.19.4321
PMid:7433111 PMCid:324241
Papp N, Szilvassy B, Abranko L, Szabo T, et al. (2010). Main quality attributes and antioxidants in Hungarian sour cherries: identification of genotypes with enhanced functional properties. Int. J. Food Sci. Technol. 45: 395-402.
http://dx.doi.org/10.1111/j.1365-2621.2009.02168.x
Sadder MT and Ateyyeh AF (2006). Molecular assessment of polymorphism among local Jordanian genotypes the common fig (Ficus carica L.). Sci. Hortic. 107: 347-351.
http://dx.doi.org/10.1016/j.scienta.2005.11.006
Saker MM, Adawy SS, Mohamed AA and El-Itriby HA (2006). Monitoring of cultivar identity in tissue culture-derived date palms using RAPD and AFLP analysis. Biol. Plantarum 50: 198-204.
http://dx.doi.org/10.1007/s10535-006-0007-3
Silvestrini M, Maluf MP, Silvarolla MB, Guerreiro-Filho O, et al. (2008). Genetic diversity of a Coffea germplasm collection assessed by RAPD markers. Genet. Res. Crop Evol. 55: 901-910.
http://dx.doi.org/10.1007/s10722-007-9295-5
Stark-Urnau M (2002a). Use of RAPD-markers in Malus x domestica (apple) and Pyrus communis (pear) for cultivar identification - Part I: Malus x domestica (apple). RAPD-Marker bei Malus x domestica (Apfel) und Pyrus communis (Birne) als Mittel zur Sortenidentifizierung - Teil I: Malus x domestica (Apfel). Erwerbsobstbau 44: 139-144.
Stark-Urnau M (2002b). Use of RAPD-Markers in Malus x domestica (apple) and Pyrus communis (pear) for cultivar identification - Part II: Pyrus communis (Birne). RAPD-Marker bei Malus x domestica (Apfel) und Pyrus communis (Birne) als Mittel zur Sortenidentifizierung - Teil II: Pyrus communis (Birne). Erwerbsobstbau 44: 167-171.
Sun P, Li W, Jiang HY and Yao JC (2005). Analysis of genetic relationship among cutlivars of Prunus persica using RAPD markers. J. Gansu Agric. Univ. 40: 586-590.
Vijayan K (2004). Genetic relationships of Japanese and Indian mulberry (Morus spp.) genotypes revealed by DNA fingerprinting. Plant Systemat. Evol. 243: 221-232.
http://dx.doi.org/10.1007/s00606-003-0078-y
Williams JG, Kubelik AR, Livak KJ, Rafalski JA, et al. (1990). DNA polymorphisms amplified by arbitrary primers are useful as genetic markers. Nucleic Acids Res. 18: 6531-6535.
http://dx.doi.org/10.1093/nar/18.22.6531
PMid:1979162 PMCid:332606
Yamamoto T, Yamaguchi M and Hayashi T (2005). An intergrated genetic linkage map of peach by SSR, STS, AFLP and RAPD. J. Jpn. Soc. Hortic. Sci. 74: 204-213.
http://dx.doi.org/10.2503/jjshs.74.204
Yang XG, Zhang KC, Qin L and Wang YX (2001). RAPD analysis of germplasm resources on peach. J. Fruit Sci. 18: 276-279.
Yang YJ, Zhang KC and Lin K (2002). Studies on RAPD polymorphisms and genetic relationship of Prunus persica plants. J. Henan Agric. Univ. 36: 187-189.
Yonemoto Y, Chowdhury AK, Kato H and Macha MM (2006). Cultivars identification and their genetic relationships in Dimocarpus longan subspecies based on RAPD markers. Sci. Hortic. 109: 147-152.
http://dx.doi.org/10.1016/j.scienta.2006.04.003
Yuan Z, Luo LS, Xiao DX and Zhang DB (2002). A study on the genetic relationship of peach species using RAPD markers. Acta Agric. Univ. Jiangxiensis 24: 172-175.
Zong CW, Gao HN, Zhao CR, Wang C, et al. (2005). Studies on analysis of peach cultivars based on RAPD markers. J. Nanjing Agric. Univ. 28: 35-39.