Publications

Found 9 results
Filters: Author is F.S. Awan  [Clear All Filters]
2012
S. Riaz, Sadia, B., Awan, F. S., Khan, I. A., Sadaqat, H. A., and Khan, I. A., Development of a species-specific sequence-characterized amplified region marker for roses, vol. 11, pp. 440-447, 2012.
Boudichevskaia A, Flachowsky H, Peil A, Fisher C, et al. (2006). Development of a multiallelic SCAR marker for the scab resistance gene Vr1/Vh4/Vx from R12740-7A apple and its utility for molecular breeding. Tree Genet. 2: 186-195. http://dx.doi.org/10.1007/s11295-006-0043-3 Boukar O, Kong L, Singh BB, Murdock L, et al. (2004). AFLP and AFLP-derived SCAR markers associated with Striga gesnerioides resistance in cowpea. Crop Sci. 44: 1259-1264. http://dx.doi.org/10.2135/cropsci2004.1259 de Varies DP and Dubois AM (1996). Rose breeding: past, present prospects. Second International Symposium on Roses, Antibes, France, February 20-24, 1995. Acta Horticult. 424: 241-248. Deputy JC, Ming R, Ma H, Liu Z, et al. (2002). Molecular markers for sex determination in papaya (Carica papaya L.). Theor. Appl. Genet. 106: 107-111. PMid:12582877 Devereux J, Haeberli P and Smithies O (1984). A comprehensive set of sequence analysis programs for the VAX. Nucleic Acids Res. 12: 387-395. http://dx.doi.org/10.1093/nar/12.1Part1.387 PMid:6546423    PMCid:321012 Ellsworth DL, Rittenhouse KD and Honeycutt RL (1993). Artifactual variation in randomly amplified polymorphic DNA banding patterns. Biotechniques 14: 214-217. PMid:8431284 Esselink GD, Smulders MJ and Vosman B (2003). Identification of cut rose (Rosa hybrida) and rootstock varieties using robust sequence tagged microsatellite site markers. Theor. Appl. Genet. 106: 277-286. PMid:12582853 Gudin S (2000). Rose: genetics and breeding. Avenue Escadrille Normandie-Neimen, 13397 Marseille, Cedex 20, France. Plant Breed. Rev. 8: 159-189. Hernandez P, Martin A and Dorado G (1999). Development of SCARs by direct sequencing of RAPD products: a practical tool for the introgression and marker-assisted selection of wheat. Mol. Breed. 5: 245-253. http://dx.doi.org/10.1023/A:1009637928471 Hernández P, Rosa de la R, Rallo L, Martín A, et al. (2001). First evidence of a retrotransposon-like element in (Olea europeae): implications in plant variety identification by SCAR-marker development. Theor. Appl. Genet. 102: 1082-1087. http://dx.doi.org/10.1007/s001220000515 Heun M, Murphy JP and Phillips TD (1994). A comparison of RAPD and isoenzyme analysis for determining the genetic relationships among Avena sterilis L. accessions. Theor. Appl. Genet. 87: 689-696. http://dx.doi.org/10.1007/BF00222894 Kaul K, Karthigeyan S, Dhyani D, Kaur N, et al. (2009). Morphological and molecular analyses of Rosa damascena x Rosa bourboniana interspecific hybrids. Sci. Horticult. 122: 258-263. http://dx.doi.org/10.1016/j.scienta.2009.05.027 Kaur N, Sharma RK, Sharma M, Singh V, et al. (2007). Molecular evaluation and micropropagation of field selected elites of R. damascena. Gen. Appl. Plant Physiol. 33: 171-186. Khan IA, Awan FS, Ahmed A and Khan AA (2004). A modified mini-prep method for economical and rapid extraction of genomic DNA in plants. Plant Mol. Biol. Rep. 22: 89. http://dx.doi.org/10.1007/BF02773355 Khan IA, Yong BiF, Ahmad A, Awan FS, et al. (2005). Genetic diversity of Pakistan wheat germplasm as revealed by RAPD markers. Genet. Res. Crop Evol. 52: 239-244. http://dx.doi.org/10.1007/s10722-004-5730-z Kiani M, Zamani Z, Khalighi A, Fatahi R, et al. (2008). Wide genetic diversity of Rosa damascena Mill. Germplasm in Iran as revealed by RAPD analysis. Sci. Horticult. 115: 386-392. http://dx.doi.org/10.1016/j.scienta.2007.10.013 Kohel RJ, Yu J, Park YH and Lazo GR (2001). Molecular mapping and characterization of traits controlling fiber quality in cotton. Euphytica 121: 163-172. http://dx.doi.org/10.1023/A:1012263413418 Masuzaki S, Yaguchi S, Yamauchi N and Shigyo M (2007). Morphological characterization of Allium multiple alien addition lines reveals chromosomal locations of gene(s) related to bulb formation in Allium cepa. J. Sci. Horticult. Biotech. 82: 393-396. Meunier JR and Grimont PA (1993). Factors affecting reproducibility of random amplified polymorphic DNA fingerprinting. Res. Microbiol. 144: 373-379. http://dx.doi.org/10.1016/0923-2508(93)90194-7 Mohapatra A and Rout GR (2005). Identification and analysis of genetic variation among rose cultivars using random amplified polymorphic DNA. Z. Naturforsch. C. 60: 611-617. PMid:16163838 Moretzsohn MC, Nunes CDM, Ferreira ME and Grattapaglia D (2000). RAPD linkage mapping of the shell thickness locus in oil palm (Elaeis guineensis Jacq.). Theor. Appl. Genet. 100: 63-70. http://dx.doi.org/10.1007/s001220050009 Paran I and Michelmore RW (1993). Development of reliable PCR-based markers linked to downy mildew resistance genes in lettuce. Theor. Appl. Genet. 85: 985-993. http://dx.doi.org/10.1007/BF00215038 Piquemal J, Cinquin E, Couton F, Rondeau C, et al. (2005). Construction of an oilseed rape (Brassica napus L.) genetic map with SSR markers. Theor. Appl. Genet. 111: 1514-1523. http://dx.doi.org/10.1007/s00122-005-0080-6 PMid:16187118 Rahman M, Hussain D and Zafar Y (2002). Estimation of genetic divergence among elite cotton (Gossypium hirsutum L.) cultivars/genotypes by DNA fingerprinting technology. Crop Sci. 42: 2137-2144. http://dx.doi.org/10.2135/cropsci2002.2137 Rajapakse S (2003). Gene Mapping. In: Encyclopedia of Rose Sciences (Roberts A, Debener T and Gudin S, eds.). Elsevier, Oxford, 326-334. http://dx.doi.org/10.1016/B0-12-227620-5/00111-7 Rehder A (1940). Manual of Cultivated Trees and Shrubs. Extraction with Volatile Solvents. MacMillan, Robiquest, C. 1835, New York. J. Pharm. 21: 335-336. Rugienius R, Siksnianas T, Stanys V, Gelvonauskiene D, et al. (2006). Use of RAPD and SCAR markers for identification of strawberry genotypes carrying red stele (Phytophtora fragariae) resistance gene Rpf1. Agron. Res. 4: 335-339. Sadia A (2007). Genetic Diversity in Rose Based on RAPD Analysis. MSc. Dissertation thesis, University of Agriculture, Faisalabad, Pakistan. Saiki RK (1989). The Design and Optimization of the PCR. In: PCR Technology - Principles and Applications for DNA Amplification (Erlich HA, ed.). Stockton Press, New York, 7-16. Schierwater B and Ender A (1993). Different thermostable DNA polymerases may amplify different RAPD products. Nucleic Acids Res. 21: 4647-4648. http://dx.doi.org/10.1093/nar/21.19.4647 PMid:8233808    PMCid:311208 Shimada N, Nakatsuka T, Kakizaki Y, Abe Y, et al. (2008). Identification of gentian cultivars using SCAR markers based on intron-length polymorphisms of flavinoid biosynthetic genes. Sci. Horticult. 119: 292-296. http://dx.doi.org/10.1016/j.scienta.2008.08.001 Summer H, Gramer R and Droge P (2009). Denaturing urea polyacrylamide gel electrophoresis (Urea PAGE). J. Vis. Exp. 10: 1485-3791. Upadhya A, Jayadev K, Manimekalai R and Parthasarathy VA (2004). Genetic relationship and diversity in Indian account accessions based on RAPD markers. Sci. Horticult. 99: 353-362. http://dx.doi.org/10.1016/S0304-4238(03)00103-1 Weising K, Nybom H, Wolf K and Gunter K (2005). DNA Fingerprinting in Plants, Principle, Methods and Applications. 2nd edn. CRC Press, Boca Raton. http://dx.doi.org/10.1201/9781420040043 Wen XP and Pang XX (2004). Characterization of genetic relationships of Rosa roxburghii Tratt and its relatives using morphological traits, RAPD and AFLP markers. Sci. Horticult. 79: 189-196. Williams JG, Kubelik AR, Livak KJ, Rafalski JA, et al. (1990). DNA polymorphisms amplified by arbitrary primers are useful as genetic markers. Nucleic Acids Res. 18: 6531-6535. http://dx.doi.org/10.1093/nar/18.22.6531 PMid:1979162    PMCid:332606 Yan Z, Denneboom C, Hattendorf A, Dolstra O, et al. (2005). Construction of an integrated map of rose with AFLP, SSR, PK, RGA, RFLP, SCAR and morphological markers. Theor. Appl. Genet. 110: 766-777. http://dx.doi.org/10.1007/s00122-004-1903-6 PMid:15672277
2011
A. I. Khan, Khan, I. A., Awan, F. S., Sadaqat, H. A., and Bahadur, S., Estimation of genetic distance based on RAPDs between 11 cotton accessions varying in heat tolerance, vol. 10, pp. 96-101, 2011.
Archak S, Karihaloo JL and Jain A (2002). RAPD markers reveal narrowing genetic base of Indian tomato cultivars. Curr. Sci. 82: 1139-1143.   Burke JJ (2001). Opportunities for Improving Cotton's Tolerance to High Temperature. In: Proceedings of the Beltwide Cotton Conference. Vol. 2. National Cotton Council, Memphis, 1453-1454.   Carelli BP, Gerald LTS, Grazziotin FG and Echeverrigaray S (2006). Genetic diversity among Brazilian cultivars and landraces of tomato Lycopersicon esculentum Mill. revealed by RAPD markers. Genet. Res. Crop Evol. 53: 395-400. http://dx.doi.org/10.1007/s10722-004-0578-9   Chapco W, Ashton NW, Martel RK, Antonishyn N, et al. (1992). A feasibility study of the use of random amplified polymorphic DNA in the population genetics and systematics of grasshoppers. Genome 35: 569-574. http://dx.doi.org/10.1139/g92-085 PMid:1526473   Cheng KT, Chang HC, Su CH and Hsu FL (1997). Identification of dried rhizomes of Copties species using random amplified polymorphic DNA. Bot. Bull. Acad. Sin. 38: 241-244.   Demeke T, Lynch DR, Kawchuk LM, Kozub GC, et al. (1996). Genetic diversity of potato determined by random amplified polymorphic DNA analysis. Plant Cell Rep. 15: 662-667. http://dx.doi.org/10.1007/BF00231920   Erlich HA, Gelfand D and Sninsky JJ (1991). Recent advances in the polymerase chain reaction. Science 252: 1643-1651. http://dx.doi.org/10.1126/science.2047872 PMid:2047872   Gepts P (1993). The use of molecular and biochemical markers in crop evolution studies. Evol. Biol. 27: 51-94. http://dx.doi.org/10.1007/978-1-4615-2878-4_3   Hai-shan Z, Hong Z, Kun-Ming M, Hong-Tao L, et al. (2004). The genetic diversity of Yunnan local varieties and wild species of tomato. J. Yunnan Agric. Univ. 19: 373-377.   Hussein EHA, Al-Said MS, Hanaiya AE and Madkour MA (2002). Genotyping Egyptian Cotton Varieties (G. barbadense) using molecular markers. Biotechnology and Sustainable Development Voices of the South and North Conference held at the Bibliotheca Alexandrina Conference Center, Alexandria, March 16-20 (Poster).   Hussein EHA, Mohamed AA, Mohamed SA and Adawy SS (2006). Molecular characterization and genetic relationships among cotton genotypes 1- RAPD, ISSR and SSR analysis. Arab. J. Biotech. 9: 222-229.   Hussein EHA, Osman MHA, Hussein MH and Adawy SS (2007). Molecular characterization of cotton genotypes using PCR-based markers. J. Appl. Sci. Res. 3: 1156-1169.   Karp A, Kresovich S, Bhat KV, Ayad WG, et al. (1997). Molecular tools in plant genetic resources conservation: A guide to the technologies. In: IPGRI Technical Bulletin No. 2. International Plant Genetic Resources Institute, Rome.   Khan AI, Kan IA and Sadaqat HA (2008). Heat tolerance is variable in cotton (Gossipium hirsutum L.) and can be exploited for breeding of better yielding cultivars under high temperature regimes. Pak. J. Bot. 40: 2053-2058.   Khan IA, Awan FS, Ahmad A and Khan AA (2004). A modified mini-prep method for economical and rapid extraction of genomic DNA in plants. Plant Mol. Biol. Rep. 22: 89. http://dx.doi.org/10.1007/BF02773355   Landry BS, Dextraze L and Boivin G (1993). Random amplified polymorphic DNA markers for DNA fingerprinting and genetic variability assessment of minute parasitic wasp species (Hymenoptera: Mymaridae and Trichogrammatidae) used in biological control programs of phytophagous insects. Genome 36: 580-587. http://dx.doi.org/10.1139/g93-078 PMid:8349128   Li L, Xiaoying Z and Klocke E (2004). Variation in some Lycopersicon esculentum and Capsicum annuum cultivars revealed by RAPD and AFLP markers. Guangxi Sci. 11: 249-257.   Lu HJ and Myers GO (2002). Genetic relationships and discrimination of ten influential upland cotton varieties using RAPD markers. Theor. Appl. Genet. 105: 325-331. http://dx.doi.org/10.1007/s00122-002-0947-8 PMid:12582535   Mullis KB (1990). The unusual origin of the polymerase chain reaction. Sci. Am. 262: 56-65. http://dx.doi.org/10.1038/scientificamerican0490-56 PMid:2315679   Rahman HU (2006). Number and weight of cotton lint fibres: variation due to high temperatures in the field. Aust. J. Agric. Res. 57: 583-590. http://dx.doi.org/10.1071/AR05135   Rand MK and Bhat KV (2005). RAPD markers for genetic diversity study among Indian cotton cultivars. Curr. Sci. 88: 1956-1961.   Reddy KR and Hodges HF (1992a). Temperature effects on Pima cotton growth and development. Agron. J. 84: 237-243. http://dx.doi.org/10.2134/agronj1992.00021962008400020022x   Reddy KR, Reddy VR and Hodges HF (1992b). Temperature effects on early season cotton growth and development. Agron. J. 84: 229-237. http://dx.doi.org/10.2134/agronj1992.00021962008400020021x   Welsh J and McClelland M (1990). Fingerprinting genomes using PCR with arbitrary primers. Nucleic Acids Res. 18: 7213-7218. http://dx.doi.org/10.1093/nar/18.24.7213 PMid:2259619 PMCid:332855   Williams JG, Kubelik AR, Livak KJ, Rafalski JA, et al. (1990). DNA polymorphisms amplified by arbitrary primers are useful as genetic markers. Nucleic Acids Res. 18: 6531-6535. http://dx.doi.org/10.1093/nar/18.22.6531 PMid:1979162 PMCid:332606
R. Binyamin, M. Khan, A., Khan, A. I., M. Khan, A., Awan, F. S., and Khan, N. A., Molecular characterization of urdbean (Vigna mungo) germplasm related to resistance against urdbean leaf crinkle virus, vol. 10, pp. 1681-1688, 2011.
Amadou HI, Bebeli PJ and Kaltsikes PJ (2001). Genetic diversity in Bambara groundnut (Vigna subterranea L.) germplasm revealed by RAPD markers. Genome 44: 995-999. PMid:11768227 Anonymous (2009). Economic Survey of Pakistan, Finance and Economic Affairs Division. Govt. of Pakistan, Islamabad, 23. Arulbalachandran D, Mullainathan L, Karthigayan S, Somasundaram ST, et al. (2009). Evaluation of genetic variation in mutants of black gram (Vigna mungo (L.) Hepper) as revealed by RAPD markers. Emir. J. Food Agric. 21: 42-50. Ashfaq M, Khan MA, Mughal SM, Javed N, et al. (2007). Evaluation of urdbean germplasm for resistance against urdbean leaf crinkle virus. Pak. J. Bot. 39: 2103-2111. Bashir M and Zubair M (2002). Identification of resistance in urdbean (Vigna mungo) against two different viral diseases. Pak. J. Bot. 34: 49-51. Bashir M, Mughal SM and Malik BA (1991). Assessment of yield losses due to leaf crinkle virus in urdbean (Vigna mungo (L) Hepper). Pak. J. Bot. 23: 140-142. Bashir M, Ahmad Z and Ghafoor A (2005). Sources of genetic resistance in mungbean and blackgram against urdbean leaf crinkle virus (ULCV). Pak. J. Bot. 37: 47-51. Chaudhry MA, Ilyas MB and Ghazanfar MU (2007). Screening of urdbean germplasm for the sources of resistance against urdbean leaf crinkle virus. Mycopathology 5: 1-4. Dikshit HK, Jhang T, Singh NK, Koundal KR, et al. (2007). Genetic differentiation of Vigna species by RAPD, URP and SSR markers. Biol. Plant. 51: 451-457. http://dx.doi.org/10.1007/s10535-007-0095-8 Ghaffor A, Sharif A, Ahmad Z, Zahid MA, et al. (2001). Genetic diversity in blackgram (Vigna mungo L. Hepper). Field Crop Res. 69: 183-190. http://dx.doi.org/10.1016/S0378-4290(00)00141-6 Harris SA (1999). RAPD in Systematics - a Useful Methodology. Molecular Systematics and Plant Evolution. Taylor and Francis, London. Iqbal SM, Ghafoor A, Zubair M and Malik BA (1991). Reactions of urdbean cultivars against leaf crinkle virus disease. J. Agric. Res. 29: 415. Jinguo H and Brady AV (2003). Target region amplification polymorphism: a novel marker technique for plant genotyping. Plant Mol. Biol. Rep. 21: 289-294. http://dx.doi.org/10.1007/BF02772804 Kadian OP (1980). Studies on leaf crinkle disease of urdbean (Vigna mungo (L.) Hepper), mungbean (V. radiata (L.) Wilczek) and its control. Ph.D. thesis, Department of Plant Pathology, Haryana Agriculture University, Hisar. Kaga A, Tomooka N, Egawa Y, Hosaka K, et al. (1996). Species relationships in the subgenus ceratotropis (genus Vigna) as revealed by RAPD analysis. Euphytica. 88: 17-24. http://dx.doi.org/10.1007/BF00029261 Khan IA, Awan FS, Ahmad A and Khan AA (2004). A modified mini-prep method for economical and rapid extraction of genomic DNA in plants. Plant Mol. Bio. Rep. 22: 89a-89e. http://dx.doi.org/10.1007/BF02773355 Mignouna HD, Ng NQ, Ikea J and Thottapilly G (1998). Genetic diversity in cowpea as revealed by random amplified polymorphic DNA. J. Genet. Breed. 53: 151-159. Reddy CH, Tonapi VA, Navi SS and Jayarajan R (2005). Influence of plant age on infection and symptomological studies on urdbean leaf crinkle virus in urdbean (Vigna mungo). Int. J. Agric. Sci. 1: 1-6. Santalla M, Power JB and Davey MR (1998). Genetic diversity in mungbean germplasm revealed by RAPD markers. Plant Breed. 117: 473-478. http://dx.doi.org/10.1111/j.1439-0523.1998.tb01976.x Singh JP (1980). Effect of virus diseases on growth components and yield of mungbean and urdbean. Indian Phythol. 33: 405-408. Sivaprakash KR, Prashanth SR, Mohanty BP and Parida A (2004). Genetic diversity of black gram (Vigna mungo) landraces as evaluated by amplified fragment length polymorphism markers. Curr. Sci. 86: 1411-1416. Souframanien J and Gopalakrishna T (2004). A comparative analysis of genetic diversity in blackgram genotypes using RAPD and ISSR markers. Theor. Appl. Genet. 109: 1687-1693. http://dx.doi.org/10.1007/s00122-004-1797-3 PMid:15368042 Souframanien J, Pawar SE and ucha AG (2002). Genetic variation in gamma ray induced mutants in blackgram as revealed by RAPD and ISSR markers. Indian J. Genet. 62: 291-295. Williams JG, Kubelik AR, Livak KJ, Rafalski JA, et al. (1990). DNA polymorphisms amplified by arbitrary primers are useful as genetic markers. Nucleic Acids Res. 18: 6531-6535. http://dx.doi.org/10.1093/nar/18.22.6531 PMid:1979162    PMCid:332606 Yee E, Kidwell KK, Sills GR and Lumpkin TA (1999). Diversity among selected Vigna angularis (adzuki) accessions on basis of RAPD and AFLP markers. Crop Sci. 39: 268-275. http://dx.doi.org/10.2135/cropsci1999.0011183X003900010041x
2010
A. Iqbal, Sadia, B., Khan, A. I., Awan, F. S., Kainth, R. A., and Sadaqat, H. A., Biodiversity in the sorghum (Sorghum bicolor L. Moench) germplasm of Pakistan, vol. 9, pp. 756-764, 2010.
Agrama HA and Tuinstra MR (2003). Phylogenetic diversity and relationships among sorghum accessions using SSRs and RAPDs. Afri. J. Biotech. 2: 334-340.   Amrapali AA, Sakhare SB, Kulwal PL, Dhumale DB, et al. (2008). RAPD profile studies in sorghum for identification of hybrids and their parents. Inter. J. Integ. Bio 3: 18-24.   Anonymous (2008). Pakistan Economic Survey 2007-08. MINFAL, Federal Bureau of Statistics. Islamabad.   Ayana A, Bekele E and Bryngelsson T (2000). Genetic variation in wild sorghum (Sorghum bicolor ssp. verticilliflorum (L.) Moench) germplasm from Ethiopia assessed by random amplified polymorphic DNA (RAPD). Hereditas 132: 249-254. http://dx.doi.org/10.1111/j.1601-5223.2000.t01-1-00249.x PMid:11075520   Baskaran P and Jayabalan N (2005). In vitro plant regeneration and mass propagation system for Sorghum bicolor - a valuable major cereal crop. J. Agri. Tech. 1: 345-363.   Dahlberg JA, Zhang X, Hart GE and Mullet JE (2002). Comparative Assessment of Variation among Sorghum Germplasm Accessions Using Seed Morphology and RAPD Measurements. Crop Sci. 42: 291-296. http://dx.doi.org/10.2135/cropsci2002.0291 PMid:11756288   Dhillon MK, Sharma HC, Folkertsma RT and Chandra S (2006). Genetic divergence and molecular characterization of sorghum hybrids and their parents for reaction to Atherigona soccata (Rondani). Euphytica 149: 199-210. http://dx.doi.org/10.1007/s10681-005-9067-2   Dillon SL, Lawrence PK and Henry RJ (2005). The new use of sorghum bicolor-derived SSR markers to evaluate genetic diversity in 17 Australian sorghum species. Plant Genet. Res. 3: 19-28. http://dx.doi.org/10.1079/PGR200454   Djè J, Ater M, Lefèbvre C and Vekemans X (1998). Patterns of morphological and allozyme variation in sorghum landraces of Northwestern Morocco. Gen. Res. Crop Evol. 45: 541-548. http://dx.doi.org/10.1023/A:1008629717825   Godwin ID and Seetharama N (2005). Sorghum Genetic Engineering: Current Status and Prospectus. In: Sorghum Tissue Culture and Transformation (Seetharama N and Godwin I, eds.). Oxford & IBH Publishing Co. Pvt. Ltd., New Delhi, 1-8.   Godwin ID, Aitken EA and Smith LW (1997). Application of inter simple sequence repeat (ISSR) markers to plant genetics. Electrophoresis 18: 1524-1528. http://dx.doi.org/10.1002/elps.1150180906 PMid:9378115   Jordan DR, Tao YZ, Godwin ID, Henzell RG, et al. (1998). Loss of genetic diversity associated with selection for resistance to sorghum midge in Australian sorghum. Euphytica 102: 1-7. http://dx.doi.org/10.1023/A:1018311908636   Kamala V, Bramel PJ, Sivaramakrishnan S, Chandra S, et al. (2006). Genetic and phenotypic diversity in downy-mildew-resistant sorghum (Sorghum bicolor (L.) Moench) germplasm. Gen. Res. Crop Evol. 53: 1243-1253. http://dx.doi.org/10.1007/s10722-005-5678-7   Khan IA, Awan FS, Ahmed A and Khan AA (2004). A modified mini-prep method for economical and rapid extraction of genomic DNA in plants. Plant Mol. Biol. Reprod. 22: 89a-89e. http://dx.doi.org/10.1007/BF02773355   Mehmood S, Bashir A, Amad A, Akram Z, et al. (2008). Molecular characterization of regional Sorghum bicolor varieties from Pakistan. Pak. J. Bot. 40: 2015-2021.   Mohamed EA, Youssef SS, Selim EEM and Ghonaim MM (2008). Genetic diversity among Sorghum bicolor genotypes using simple sequence repeats (SSRs) markers. Arab. J. Biotech. 11: 181-192.   Murray SC, Sharma A, Rooney WL, Klein PE, et al. (2008). Genetic improvement of sorghum as a biofuel feedstock: I. QTL for stem sugar and grain nonstructural carbohydrates. Crop Sci. 48: 2165-2179. http://dx.doi.org/10.2135/cropsci2008.01.0016   Nkongola KK and Nsapato L (2003). Genetic diversity in Sorghum bicolor (L.) Moench accessions from different ecogeographical regions in Malawi assessed with RAPDs. Gen. Res. Crop Evol. 50: 149-156. http://dx.doi.org/10.1023/A:1022996211164   Paterson AH, Bowers JE and Chapman BA (2004). Ancient polyploidization predating divergence of the cereals, and its consequences for comparative genomics. Proc. Natl. Acad. Sci. U. S. A. 101: 9903-9908. http://dx.doi.org/10.1073/pnas.0307901101 PMid:15161969 PMCid:470771   Paterson E, Bowers J, Bruggmann R, Inna D, et al. (2009). The Sorghum bicolor genome and the diversification of grasses. Nature 457: 551-553. http://dx.doi.org/10.1038/nature07723 PMid:19189423   Perumal R, Krishnaramanujam R, Menz MA, Katile S, et al. (2007). Genetic diversity among sorghum races and working groups based on AFLPs and SSRs. Crop Sci. 47: 1383. http://dx.doi.org/10.2135/cropsci2006.08.0532   Rajkumar FB and Kuruvinashetti MS (2007). Genetic variability of sorghum charcoal rot pathogen (Macrophomina phaseolina) assessed by random DNA markers. Plant Pathol. J. 23: 45-50. http://dx.doi.org/10.5423/PPJ.2007.23.2.045   Romero G, Adeva C and Battad II Z (2009). Genetic fingerprinting: advancing the frontiers of crop biology research. Phil. Sci. Lett. 2: 8-13.   Shehzad T, Okuizumi H, Kawase M and Okuno K (2009). Development of SSR-based sorghum (Sorghum bicolor (L.) Moench) diversity research set of germplasm and its evaluation by morphological traits. Gen. Res. Crop Evol. 56: 809-827. http://dx.doi.org/10.1007/s10722-008-9403-1   Tao Y, Manners JM, Ludlow M and Henzel RJ (1994). DNA polymorphisms in grain sorghum (Sorghum bicolor (L.) Moench). Theor. Appl. Genet. 86: 679-688.   Visarada KBRS and Kishore NS (2007). Improvement of Sorghum through Transgenic Technology. ISB News Report, Rajendranagar, 1-3.   Yeh FC, Yang R, Boyle TJ, Ye Z, et al. (2002). Popgen 32, Microsoftware Windows Based Freeware for Population Genetic Analysis. Molecular Biology and Biotechnology Center, Edmonton.
F. Ahmad, Khan, A. I., Awan, F. S., Sadia, B., Sadaqat, H. A., and Bahadur, S., Genetic diversity of chickpea (Cicer arietinum L.) germplasm in Pakistan as revealed by RAPD analysis, vol. 9, pp. 1414-1420, 2010.
Caetano-Anolles G (1994). MAAP: a versatile and universal tool for genome analysis. Plant Mol. Biol. 25: 1011-1026. http://dx.doi.org/10.1007/BF00014674 PMid:7919212   Campos H, Cooper M, Habben JE and Edmeades GO (2004). Improving drought tolerance in maize: a view from industry. Field Crops Res. 90: 19-34. http://dx.doi.org/10.1016/j.fcr.2004.07.003   Carelli BP, Gerald LTS, Grazziotin FG and Echeverrigaray S (2006). Genetic diversity among Brazilian cultivars and land races of tomato (Lycopersicon esculentum Mill) revealed by RAPD markers. Genet. Resour. Crop Evol. 53: 395-400. http://dx.doi.org/10.1007/s10722-004-0578-9   Doyle JJ and Doyle JL (1990). Isolation of plant DNA from fresh tissue. Focus 12: 13-15.   Food and Agriculture Organization (2007). FAOSTAT. The Food and Agricultural Organization of the United Nations, Rome. Available at [http:/faostat.fao.org/site/567/default.aspx].   Nei M and Li WH (1979). Mathematical model for studying genetic variation in terms of restriction endonucleases. Proc. Natl. Acad. Sci. U. S. A. 76: 5269-5273. http://dx.doi.org/10.1073/pnas.76.10.5269 PMid:291943 PMCid:413122   Noli E, Conti S, Maccaferri M and Sanguineti M (1999). Molecular characterization of tomato cultivars. Seed Sci. Tech. 27: 1-10.   Renganayaki K, Read JC and Fritz AK (2001). Genetic diversity among Texas bluegrass (Poa Arachnifera torr.) revealed by AFLP and RAPD markers. Theor. Appl. Genet. 102: 1037-1045. http://dx.doi.org/10.1007/s001220000521   Sharma RP and Mohapatra T (1996). Molecular mapping and tagging of genes in crop plants. Genetica 97: 313-320. http://dx.doi.org/10.1007/BF00055317 PMid:9081859   Simon CJ and Muehlbauer FJ (1997). Construction of chickpea linkage map and its comparison with the map of pea and lentil. J. Herid. 88: 115-119. http://dx.doi.org/10.1093/oxfordjournals.jhered.a023068   Singh KB (1997). Chickpea (Cicer arietinum L.). Field Crops Res. 53: 161-170. http://dx.doi.org/10.1016/S0378-4290(97)00029-4   Villand J, Skroch PW, Lai T, Hanson P, et al. (1998). Genetic variation among tomato accessions from primary and secondary centers of diversity. Crop Sci. 38: 1339-1347. http://dx.doi.org/10.2135/cropsci1998.0011183X003800050032x   Weising K, Nybom H, Wolff L and Meyer W (1995). DNA Fingerprinting in Plants and Fungi. CRC Press, Boca Raton. PMCid:307286   Welsh J and McClelland M (1990). Fingerprinting genomes using PCR with arbitrary primers. Nucleic Acids Res. 18: 7213-7218. http://dx.doi.org/10.1093/nar/18.24.7213 PMid:2259619 PMCid:332855   Williams CE and Clair DA (1993). Phenotypic relationships and levels of variability detected by restriction fragment length polymorphism and random amplified polymorphic DNA analysis of cultivated and wild accessions of Lycopersicon esculentum. Genome 36: 619-630. http://dx.doi.org/10.1139/g93-083 PMid:18470012   Williams JG, Kubelik AR, Livak KJ, Rafalski JA, et al. (1990). DNA polymorphisms amplified by arbitrary primers are useful as genetic markers. Nucleic Acids Res. 18: 6531-6535. http://dx.doi.org/10.1093/nar/18.22.6531 PMid:1979162 PMCid:332606   Yeh FC, Yang R, Boyle TJ, Ye Z, et al. (2000). Popgene 32, Microsoft Windows Based Freeware for Population Genetic Analysis. Molecular Biology and Biotechnology Centre, University of Alberta, Edmonton.