Publications

Found 4 results
Filters: Author is X. Cui  [Clear All Filters]
2012
X. Cui, Liu, F., Wang, J. Q., Zhang, W. J., Wang, J. Y., Liu, K., Cui, S. Y., Zhang, J., and Xu, R. R., Complete sequence analysis of mitochondrial DNA of aplastic anemia patients, vol. 11, pp. 2130-2137, 2012.
Andrews RM, Kubacka I, Chinnery PF, Lightowlers RN, et al. (1999). Reanalysis and revision of the Cambridge reference sequence for human mitochondrial DNA. Nat. Genet. 23: 147. http://dx.doi.org/10.1038/13779 PMid:10508508   Bohr VA, Stevnsner T and de Souza-Pinto NC (2002). Mitochondrial DNA repair of oxidative damage in mammalian cells. Gene 286: 127-134. http://dx.doi.org/10.1016/S0378-1119(01)00813-7   Chen D, Cao G, Hastings T, Feng Y, et al. (2002). Age-dependent decline of DNA repair activity for oxidative lesions in rat brain mitochondria. J. Neurochem. 81: 1273-1284. http://dx.doi.org/10.1046/j.1471-4159.2002.00916.x PMid:12068075   Chinnery PF and Schon EA (2003). Mitochondria. J. Neurol. Neurosurg. Psychiatr. 74: 1188-1199. http://dx.doi.org/10.1136/jnnp.74.9.1188 PMid:12933917 PMCid:1738655   Clayton DA (1984). Transcription of the mammalian mitochondrial genome. Annu. Rev. Biochem. 53: 573-594. http://dx.doi.org/10.1146/annurev.bi.53.070184.003041 PMid:6383200   DiMauro S and Schon EA (2003). Mitochondrial respiratory-chain diseases. N. Engl. J. Med. 348: 2656-2668. http://dx.doi.org/10.1056/NEJMra022567 PMid:12826641   Gattermann N (2000). From sideroblastic anemia to the role of mitochondrial DNA mutations in myelodysplastic syndromes. Leuk. Res. 24: 141-151. http://dx.doi.org/10.1016/S0145-2126(99)00160-5   Gattermann N (2004). Mitochondrial DNA mutations in the hematopoietic system. Leukemia 18: 18-22. http://dx.doi.org/10.1038/sj.leu.2403209 PMid:14614516   Grist SA, Lu XJ and Morley AA (2004). Mitochondrial mutations in acute leukaemia. Leukemia 18: 1313-1316. http://dx.doi.org/10.1038/sj.leu.2403380 PMid:15129223   Hatfill SJ, La Cock CJ, Laubscher R, Downing TG, et al. (1993). A role for mitochondrial DNA in the pathogenesis of radiation-induced myelodysplasia and secondary leukemia. Leuk. Res. 17: 907-913. http://dx.doi.org/10.1016/0145-2126(93)90036-K   Lee MS and Levin BC (2002). MitoAnalyzer, a computer program and interactive web site to determine the effects of single nucleotide polymorphisms and mutations in human mitochondrial DNA. Mitochondrion 1: 321-326. http://dx.doi.org/10.1016/S1567-7249(01)00031-9   Linnartz B, Anglmayer R and Zanssen S (2004). Comprehensive scanning of somatic mitochondrial DNA alterations in acute leukemia developing from myelodysplastic syndromes. Cancer Res. 64: 1966-1971. http://dx.doi.org/10.1158/0008-5472.CAN-03-2956 PMid:15026331   Penta JS, Johnson FM, Wachsman JT and Copeland WC (2001). Mitochondrial DNA in human malignancy. Mutat. Res. 488: 119-133. http://dx.doi.org/10.1016/S1383-5742(01)00053-9   Richter C, Park JW and Ames BN (1988). Normal oxidative damage to mitochondrial and nuclear DNA is extensive. Proc. Natl. Acad. Sci. U. S. A. 85: 6465-6467. http://dx.doi.org/10.1073/pnas.85.17.6465 PMid:3413108 PMCid:281993   Shadel GS and Clayton DA (1997). Mitochondrial DNA maintenance in vertebrates. Annu. Rev. Biochem. 66: 409-435. http://dx.doi.org/10.1146/annurev.biochem.66.1.409 PMid:9242913   Shin MG, Kajigaya S, Levin BC and Young NS (2003). Mitochondrial DNA mutations in patients with myelodysplastic syndromes. Blood 101: 3118-3125. http://dx.doi.org/10.1182/blood-2002-06-1825 PMid:12446454   Suganuma K, Miwa H, Imai N, Shikami M, et al. (2010). Energy metabolism of leukemia cells: glycolysis versus oxidative phosphorylation. Leuk. Lymphoma 51: 2112-2119. http://dx.doi.org/10.3109/10428194.2010.512966 PMid:20860495   Wulfert M, Kupper AC, Tapprich C, Bottomley SS, et al. (2008). Analysis of mitochondrial DNA in 104 patients with myelodysplastic syndromes. Exp. Hematol. 36: 577-586. http://dx.doi.org/10.1016/j.exphem.2008.01.004 PMid:18439489
Y. D. Sun, Liang, Y., Wu, J. M., Li, Y. Z., Cui, X., and Qin, L., Dynamic QTL analysis for fruit lycopene content and total soluble solid content in a Solanum lycopersicum x S. pimpinellifolium cross, vol. 11, pp. 3696-3710, 2012.
Arazuri S, Jarén C, Arana JI and Pérez de Ciriza JJ (2007). Influence of mechanical harvest on the physical properties of processing tomato (Lycopersicon esculentum Mill.). J. Food Eng. 80: 190-198. http://dx.doi.org/10.1016/j.jfoodeng.2006.05.008   Bernacchi D, Beck-Bunn T, Eshed Y, Lopez J, et al. (1998). Advanced backcross QTL analysis in tomato. I. Identification of QTLs for traits of agronomic importance from Lycopersicon hirsutum. Theor. Appl. Genet. 97: 381-397. http://dx.doi.org/10.1007/s001220050908   Cagas CC, Lee OL, Keisuke N and Nobuo S (2008). Quantitative trait loci controlling flowering time and related traits in a Solanum lycopersicum x S. pimpinellifolium cross. Sci. Hort. 116: 144-151. http://dx.doi.org/10.1016/j.scienta.2007.12.003   Causse M, Saliba-Colombani V, Lecomte L, Duffe P, et al. (2002). QTL analysis of fruit quality in fresh market tomato: a few chromosome regions control the variation of sensory and instrumental traits. J. Exp. Bot. 53: 2089-2098. http://dx.doi.org/10.1093/jxb/erf058 PMid:12324532   Causse M, Duffe P, Gomez MC, Buret M, et al. (2004). A genetic map of candidate genes and QTLs involved in tomato fruit size and composition. J. Exp. Bot. 55: 1671-1685. http://dx.doi.org/10.1093/jxb/erh207 PMid:15258170   Causse M, Chaib J, Lecomte L, Buret M, et al. (2007). Both additivity and epistasis control the genetic variation for fruit quality traits in tomato. Theor. Appl. Genet. 115: 429-442. http://dx.doi.org/10.1007/s00122-007-0578-1 PMid:17571252   Chaib J, Lecomte L, Buret M and Causse M (2006). Stability over genetic backgrounds, generations and years of quantitative trait locus (QTLs) for organoleptic quality in tomato. Theor. Appl. Genet. 112: 934-944. http://dx.doi.org/10.1007/s00122-005-0197-7 PMid:16402187   Chen FQ, Foolad MR, Hyman J, Clair DASt, et al. (1999). Mapping of QTLs for lycopene and other fruit traits in a Lycopersicon esculentum x L. pimpinellifolium cross and comparison of QTLs across tomato species. Mol. Breed. 5: 283-299. http://dx.doi.org/10.1023/A:1009656910457   Doganlar S, Frary A, Ku HM and Tanksley SD (2002). Mapping quantitative trait loci in inbred backcross lines of Lycopersicon pimpinellifolium (LA1589). Genome 45: 1189-1202. http://dx.doi.org/10.1139/g02-091 PMid:12502266   Eshed Y and Zamir D (1996). Less-than-additive epistatic interactions of quantitative trait loci in tomato. Genetics 143: 1807-1817. PMid:8844166 PMCid:1207441   Foolad MR (2007). Genome mapping and molecular breeding of tomato. Int. J. Plant Genomics 2007: 64358. http://dx.doi.org/10.1155/2007/64358 PMid:18364989 PMCid:2267253   Frary A, Fulton TM, Zamir D and Tanksley SD (2004). Advanced backcross QTL analysis of a Lycopersicon esculentum x L. pennellii cross and identification of possible orthologs in the Solanaceae. Theor. Appl. Genet. 108: 485-496. http://dx.doi.org/10.1007/s00122-003-1422-x PMid:14740082   Fulton TM, Chunwingse J and Tanksley SD (1995). Microprep protocol for extraction of DNA from tomato and other herbaceous plants. Plant Mol. Biol. Rep. 13: 207-209. http://dx.doi.org/10.1007/BF02670897   Fulton TM, Beck-Bunn T, Emmatty D, Eshed Y, et al. (1997). QTL analysis of an advanced backcross of Lycopersicon peruvianum to the cultivated tomato and comparisons with QTLs found in other wild species. Theor. Appl. Genet. 95: 881-894. http://dx.doi.org/10.1007/s001220050639   Fulton TM, Grandillo S, Beck-Bunn T, Fridman E, et al. (2000). Advanced backcross QTL analysis of a Lycopersicon esculentum x Lycopersicon parviflorum cross. Theor. Appl. Genet. 100: 1025-1042. http://dx.doi.org/10.1007/s001220051384   Grandillo S and Tanksley SD (1996). QTL analysis of horticultural traits differentiating the cultivated tomato from the closely related species Lycopersicon pimpinellifolium. Theor. Appl. Genet. 92: 935-951. http://dx.doi.org/10.1007/BF00224033   Grandillo S, Ku HM and Tanksley SD (1999). Identifying the loci responsible for natural variation in fruit size and shape in tomato. Theor. Appl. Genet. 99: 978-987. http://dx.doi.org/10.1007/s001220051405   Gur A and Zamir D (2004). Unused natural variation can lift yield barriers in plant breeding. PLoS Biol. 2: e245. http://dx.doi.org/10.1371/journal.pbio.0020245 PMid:15328532 PMCid:514488   Gur A, Semel Y, Osorio S, Friedmann M, et al. (2011). Yield quantitative trait loci from wild tomato are predominately expressed by the shoot. Theor. Appl. Genet. 122: 405-420. http://dx.doi.org/10.1007/s00122-010-1456-9 PMid:20872209 PMCid:3021191   Heather EY, Anne F, Sami D, Anna F, et al. (2004). Comparative fine mapping of fruit quality QTLs on chromosome 4 introgressions derived from two wild tomato species. Euphytica 135: 283-296. http://dx.doi.org/10.1023/B:EUPH.0000013314.04488.87   Kader AA (1986). Effects of postharvest handling procedures on tomato quality. Acta Hort. 190: 209-221.   Ku HM, Grandillo S and Tanksley SD (2000). fs8.1, a major QTL, sets the pattern of tomato carpel shape well before anthesis. Theor. Appl. Genet. 101: 873-878. http://dx.doi.org/10.1007/s001220051555   Kuan-Hung L, Wei-Lung Y, Huei-Mei C and Hsiao-Feng L (2010). Quantitative trait loci influencing fruit-related characteristics of tomato grown in high-temperature conditions. Euphytica 174: 119-135. http://dx.doi.org/10.1007/s10681-010-0147-6   Lavecchia R and Zuorro A (2008). Improved lycopene extraction from tomato peels using cell-wall degrading enzymes. Eur. Food Res. Technol. 228: 153-158. http://dx.doi.org/10.1007/s00217-008-0897-8   Lecomte L, Duffe P, Buret M, Servin B, et al. (2004). Marker-assisted introgression of five QTLs controlling fruit quality traits into three tomato lines revealed interactions between QTLs and genetic backgrounds. Theor. Appl. Genet. 109: 658-668. http://dx.doi.org/10.1007/s00122-004-1674-0 PMid:15112037   Ma F and Cheng L (2003). The sun-exposed peel of apple fruit has higher xanthophyll cycle-dependent thermal dissipation and antioxidants of the ascorbate-glutathione pathway than the shaded peel. Plant Sci. 165: 819-827. http://dx.doi.org/10.1016/S0168-9452(03)00277-2   Riadh I, Chafik H, Marcello SL, Imen T, et al. (2011). Antioxidant activity and bioactive compound changes during fruit ripening of high-lycopene tomato cultivars. J. Food Compost. Anal. 24: 588-595. http://dx.doi.org/10.1016/j.jfca.2010.11.003   Roberto L and Antonio Z (2008). Improved lycopene extraction from tomato peels using cell-wall degrading enzymes. Eur. Food Res. Technol. 228: 153-158. http://dx.doi.org/10.1007/s00217-008-0897-8   Rousseaux MC, Jones CM, Adams D, Chetelat R, et al. (2005). QTL analysis of fruit antioxidants in tomato using Lycopersicon pennellii introgression lines. Theor. Appl. Genet. 111: 1396-1408. http://dx.doi.org/10.1007/s00122-005-0071-7 PMid:16177901   Saliba-Colombani V, Causse M, Langlois D, Philouze J, et al. (2001). Genetic analysis of organoleptic quality in fresh market tomato. 1. Mapping QTLs for physical and chemical traits. Theor. Appl. Genet. 102: 259-272. http://dx.doi.org/10.1007/s001220051643   Semel Y, Nissenbaum J, Menda N, Zinder M, et al. (2006). Overdominant quantitative trait loci for yield and fitness in tomato. Proc. Natl. Acad. Sci. U. S. A. 103: 12981-12986. http://dx.doi.org/10.1073/pnas.0604635103 PMid:16938842 PMCid:1552043   Shirasawa K, Asamizu E, Fukuoka H, Ohyama A, et al. (2010). An interspecific linkage map of SSR and intronic polymorphism markers in tomato. Theor. Appl. Genet. 121: 731-739. http://dx.doi.org/10.1007/s00122-010-1344-3 PMid:20431859 PMCid:2909429   Sonah H, Deshmukh RK, Singh VP, Gupta DK, et al. (2011). Genomic resources in horticultural crops: status, utility and challenges. Biotechnol. Adv. 29: 199-209. http://dx.doi.org/10.1016/j.biotechadv.2010.11.002 PMid:21094247   Tanksley SD, Grandillo S, Fulton TM, Zamir D, et al. (1996). Advanced backcross QTL analysis in a cross between an elite processing line of tomato and its wild relative L. pimpinellifolium. Theor. Appl. Genet. 92: 213-224. http://dx.doi.org/10.1007/BF00223378   Thorup TA, Tanyolac B, Livingstone KD, Popovsky S, et al. (2000). Candidate gene analysis of organ pigmentation loci in the Solanaceae. Proc. Natl. Acad. Sci. U. S. A. 97: 11192-11197. http://dx.doi.org/10.1073/pnas.97.21.11192 PMid:11027328 PMCid:17176   Wu M and Kubota C (2008). Effects of high electrical conductivity of nutrient solution and its application timing on lycopene, chlorophyll and sugar concentrations of hydroponic tomatoes during ripening. Sci. Hort. 116: 122-129. http://dx.doi.org/10.1016/j.scienta.2007.11.014   Yong-Sheng L, Amit G, Ronen G, Causse M, et al. (2003). There is more to tomato fruit colour than candidate carotenoid genes. Plant Biotechnol. J. 1: 195-207. http://dx.doi.org/10.1046/j.1467-7652.2003.00018.x PMid:17156032
X. Cui, Reply to commentary by Dr. J. Zhang and associates on the article “Complete sequence analysis of mitochondrial DNA of aplastic anemia patients”, published in Genet. Mol. Res. 11 (3): 2130-2137, vol. 11, pp. 4671-4671, 2012.