Publications

Found 7 results
Filters: Author is K. Muhammad  [Clear All Filters]
2016
A. Ud-Din, Rauf, M., Ghafoor, S., Khattak, M. N. K., Hameed, M. W., Shah, H., Jan, S., Muhammad, K., Rehman, A., Inamullah,, Ud-Din, A., Rauf, M., Ghafoor, S., Khattak, M. N. K., Hameed, M. W., Shah, H., Jan, S., Muhammad, K., Rehman, A., Inamullah,, Ud-Din, A., Rauf, M., Ghafoor, S., Khattak, M. N. K., Hameed, M. W., Shah, H., Jan, S., Muhammad, K., Rehman, A., and Inamullah, Efficient use of artificial micro-RNA to downregulate the expression of genes at the post-transcriptional level in Arabidopsis thaliana, vol. 15, p. -, 2016.
A. Ud-Din, Rauf, M., Ghafoor, S., Khattak, M. N. K., Hameed, M. W., Shah, H., Jan, S., Muhammad, K., Rehman, A., Inamullah,, Ud-Din, A., Rauf, M., Ghafoor, S., Khattak, M. N. K., Hameed, M. W., Shah, H., Jan, S., Muhammad, K., Rehman, A., Inamullah,, Ud-Din, A., Rauf, M., Ghafoor, S., Khattak, M. N. K., Hameed, M. W., Shah, H., Jan, S., Muhammad, K., Rehman, A., and Inamullah, Efficient use of artificial micro-RNA to downregulate the expression of genes at the post-transcriptional level in Arabidopsis thaliana, vol. 15, p. -, 2016.
A. Ud-Din, Rauf, M., Ghafoor, S., Khattak, M. N. K., Hameed, M. W., Shah, H., Jan, S., Muhammad, K., Rehman, A., Inamullah,, Ud-Din, A., Rauf, M., Ghafoor, S., Khattak, M. N. K., Hameed, M. W., Shah, H., Jan, S., Muhammad, K., Rehman, A., Inamullah,, Ud-Din, A., Rauf, M., Ghafoor, S., Khattak, M. N. K., Hameed, M. W., Shah, H., Jan, S., Muhammad, K., Rehman, A., and Inamullah, Efficient use of artificial micro-RNA to downregulate the expression of genes at the post-transcriptional level in Arabidopsis thaliana, vol. 15, p. -, 2016.
N. Akbar, Ahmad, H., Nadeem, M. S., Hemphill, B. E., Muhammad, K., Ahmad, W., Ilyas, M., Akbar, N., Ahmad, H., Nadeem, M. S., Hemphill, B. E., Muhammad, K., Ahmad, W., and Ilyas, M., HVSI polymorphism indicates multiple origins of mtDNA in the Hazarewal population of Northern Pakistan, vol. 15, p. -, 2016.
N. Akbar, Ahmad, H., Nadeem, M. S., Hemphill, B. E., Muhammad, K., Ahmad, W., Ilyas, M., Akbar, N., Ahmad, H., Nadeem, M. S., Hemphill, B. E., Muhammad, K., Ahmad, W., and Ilyas, M., HVSI polymorphism indicates multiple origins of mtDNA in the Hazarewal population of Northern Pakistan, vol. 15, p. -, 2016.
2012
P. Fasahat, Muhammad, K., Abdullah, A., and Wickneswari, R., Identification of introgressed alien chromosome segments associated with grain quality in Oryza rufipogon x MR219 advanced breeding lines using SSR markers, vol. 11, pp. 3534-3546, 2012.
Adu-Kwarten E, Ellis WO, Oduro I and Manful JT (2003). Rice grain quality: a comparison of local varieties with new varieties under study in Ghana. Food Control. 14: 507-514. http://dx.doi.org/10.1016/S0956-7135(03)00063-X   Aluko G, Martinez C, Tohme J, Castano C, et al. (2004). QTL mapping of grain quality traits from the interspecific cross Oryza sativa x O. glaberrima. Theor. Appl. Genet. 109: 630-639. http://dx.doi.org/10.1007/s00122-004-1668-y PMid:15105992   Bhonsle SJ and Sellappan K (2010). Grain quality evaluation of traditionally cultivated rice varieties of Goa, India. Recent Res. Sci. Technol. 2: 88-97.   Bhuiyan MAR, Narimah MK, Abdul Rahim H, Abdullah MZ, et al. (2011). Transgressive variants for red pericarp grain with high yield potential derived from Oryza rufipogon x Oryza sativa: Field evaluation, screening for blast disease, QTL validation and background marker analysis for agronomic traits. Field Crops Res. 121: 232-239. http://dx.doi.org/10.1016/j.fcr.2010.12.012   Brar DS and Khush GS (1997). Alien introgression in rice. Plant Mol. Biol. 35: 35-47. http://dx.doi.org/10.1023/A:1005825519998 PMid:9291958   Butsat S and Siriamornpun S (2010). Antioxidant capacities and phenolic compounds of the husk, bran and endosperm of Thai rice. Food Chem. 119: 606-613. http://dx.doi.org/10.1016/j.foodchem.2009.07.001   Diako C, Manful JT, Johnson PNT, Sakyi-Dawson E, et al. (2011). Physicochemical characterization of four commercial rice varieties in Ghana. Adv. J. Food Sci. Technol. 3: 196-202.   Eggum BO and Juliano BO (1975). Higher protein content from nitrogen fertiliser application and nutritive value of milled-rice protein. J. Sci. Food Agr. 26: 425-427. http://dx.doi.org/10.1002/jsfa.2740260407 PMid:1152435   Eggum BO, Juliano BO, Perez CM and Acedo EF (1993). The resistant starch, undigestible energy and undigestible protein contents of raw and cooked milled rice. J. Cereal Sci. 18: 159-170. http://dx.doi.org/10.1006/jcrs.1993.1043   Frey KJ, Cox TS, Rodgers DM and Cox PB (1983). Increasing Cereal Yields With Genes From Wild and Weedy Species. Proceedings of the 15th International Genetics Congress. Oxford and IBH Publishing Co., New Delhi, 51-68.   González RJ, Livore A and Pons B (2004). Physico-chemical and cooking characteristics of some rice varieties. Braz. Arch. Biol. Techn. 47: 71-76. http://dx.doi.org/10.1590/S1516-89132004000100010   He P, Li SG, Qian Q, Ma YQ, et al. (1999). Genetic analysis of rice grain quality. Theor. Appl. Genet. 98: 502-508. http://dx.doi.org/10.1007/s001220051098   ISO/DIS 6647-1 (2005). Determination of Amylose Content, Part 1. Reference Method. 2005.   ISO/DIS 6647-2 (2005). Determination of Amylose Content, Part 2. Routine Method, 2005.   Juliano BO (1972). Physicochemical Properties of Starch and Protein in Relation to Grain Quality and Nutritional Value of Rice. In: Rice Breeding. International Rice Research Institute, Los Banos, 389-405.   Juliano BO and FAO (1993). Rice in Human Nutrition. FAO, Rome. Available at [http://www.fao.org/inpho/content/documents//vlibrary/t0567e/t0567e00.htm]. Accessed January 14, 2004.   Kennedy G and Burlingame B (2003). Analysis of food composition data on rice from a plant genetic resources perspective. Food Chem. 80: 589-596. http://dx.doi.org/10.1016/S0308-8146(02)00507-1   Kumar I and Khush GS (1987). Genetic analysis of different amylose levels in rice. Crop Sci. 27: 1167-1172. http://dx.doi.org/10.2135/cropsci1987.0011183X002700060016x   Lanceras JC, Huang ZL, Naivikul O, Vanavichit A, et al. (2000). Mapping of genes for cooking and eating qualities in Thai jasmine rice (KDML105). DNA Res. 7: 93-101. http://dx.doi.org/10.1093/dnares/7.2.93 PMid:10819324   Li X, Huang K, Zhu B, Liang Z, et al. (2008). Comparative physicochemical properties and structure of rice containing the sck+cryIAc genes and its nontransgenic counterpart. J. Food Sci. 73: S64-S69. http://dx.doi.org/10.1111/j.1750-3841.2007.00605.x PMid:18211372   Mckenzie KS and Rutger JN (1983). Genetic analysis of amylose content, alkali spreading score, and grain dimension in rice. Crop Sci. 23: 306-311. http://dx.doi.org/10.2135/cropsci1983.0011183X002300020031x   Moore JC, DeVries JW, Lipp M, Griffiths JC, et al. (2010). Total protein methods and their potential utility to reduce the risk of food protein adulteration. Compr. Rev. Food Sci. Food Saf. 9: 330-357. http://dx.doi.org/10.1111/j.1541-4337.2010.00114.x   MS1194 (1991). Methods for Determination of Crude Protein in Foods and Feeds. Malaysian Standard, SRIM, Malaysia.   Murray MG and Thompson WF (1980). Rapid isolation of high molecular weight plant DNA. Nucleic Acids Res. 8: 4321-4325. http://dx.doi.org/10.1093/nar/8.19.4321 PMid:7433111 PMCid:324241   Oka HI (1988). Origin of Cultivated Rice. Scientific Societies Press, Tokyo.   Owens WG (2001). Wheat, Corn and Coarse Grains Milling. In: Cereals Processing Technology (Owens WG, ed.). Woodhead Publishing Ltd., Cambridge, 27-52. http://dx.doi.org/10.1533/9781855736283.1.27 PMid:11241889   Panaud O, Chen X and McCouch SR (1996). Development of microsatellite markers and characterization of simple sequence length polymorphism (SSLP) in rice (Oryza sativa L.). Mol. Gen. Genet. 252: 597-607. PMid:8914521   Perez RG, Squazzo SL and Koo EH (1996). Enhanced release of amyloid beta-protein from codon 670/671 "Swedish" mutant beta-amyloid precursor protein occurs in both secretory and endocytic pathways. J. Biol. Chem. 271: 9100-9107. http://dx.doi.org/10.1074/jbc.271.15.9100 PMid:8621560   RTWG (Rice Technical Working Group) (1997). National Cooperative Testing Manual for Rice: Guidelines and Policies. Philippine Rice Research Institute, Muñoz.   Sarker NN and Farouk SM (1989). Some factors causing rice milling loss in Bangladesh. Agric. Mech. Asia Afr. Latin Am. 20: 49-52,56.   Semel Y, Nissenbaum J, Menda N, Zinder M, et al. (2006). Overdominant quantitative trait loci for yield and fitness in tomato. Proc. Natl. Acad. Sci. U. S. A. 103: 12981-12986. http://dx.doi.org/10.1073/pnas.0604635103 PMid:16938842 PMCid:1552043   Septiningsih EM, Prasetiyono J, Lubis E, Tai TH, et al. (2003). Identification of quantitative trait loci for yield and yield components in an advanced backcross population derived from the Oryza sativa variety IR64 and the wild relative O. rufipogon. Theor. Appl. Genet. 107: 1419-1432. http://dx.doi.org/10.1007/s00122-003-1373-2 PMid:14513215   Shobha Rani N, Madhav SM, Sundaram MKPRM, Prasad GSV, et al. (2008). Genetics and molecular approaches for improvement of grain quality in rice. Indian J. Crop. Sci. 3: 1-14.   Tan YF, Li JX, Yu SB, Xing YZ, et al. (1999). The three important traits for cooking and eating quality of rice grains are controlled by a single locus in an elite rice hybrid, Shanyou 63. Theor. Appl. Genet. 99: 642-648. http://dx.doi.org/10.1007/s001220051279 PMid:22665200   Tanksley SD, Grandillo S, Fulton TM, Zamir D, et al. (1996). Advanced backcross QTL analysis in a cross between an elite processing line of tomato and its wild relative L. pimpinellifolium. Theor. Appl. Genet. 92: 213-224. http://dx.doi.org/10.1007/BF00223378   Thomson MJ, Tai TH, McClung AM, Lai XH, et al. (2003). Mapping quantitative trait loci for yield, yield components and morphological traits in an advanced backcross population between Oryza rufipogon and the Oryza sativa cultivar Jefferson. Theor. Appl. Genet. 107: 479-493. http://dx.doi.org/10.1007/s00122-003-1270-8 PMid:12736777   van Berloo R (2008). GGT 2.0: versatile software for visualization and analysis of genetic data. J. Hered. 99: 232-236. http://dx.doi.org/10.1093/jhered/esm109 PMid:18222930   Xiao J, Grandillo S, Ahn SN, McCouch SR, et al. (1996). Genes from wild rice improve yield. Nature 384: 223-224. http://dx.doi.org/10.1038/384223a0   Xiao J, Li J, Grandillo S, Ahn SN, et al. (1998). Identification of trait-improving quantitative trait loci alleles from a wild rice relative, Oryza rufipogon. Genetics 150: 899-909. PMid:9755218 PMCid:1460369   Wickneswari R, Sabu KK, Lim LS and Abdullah MZ (2003). Improvement of Grain Yield Using Advanced Backcross Strategy in a Malaysian Rice Variety. Proceedings of the XIX International Congress of Genetics, Melbourne, 54. PMid:14676949   Yadav RB, Khatkar BS and Yadav BS (2007). Morphological, physicochemical and cooking properties of some Indian rice (Oryza sativa L.) cultivars. J. Agr. Tech. 3: 203-210.
U. Hameed, Pan, Y. - B., Muhammad, K., Afghan, S., and Iqbal, J., Use of simple sequence repeat markers for DNA fingerprinting and diversity analysis of sugarcane (Saccharum spp) cultivars resistant and susceptible to red rot, vol. 11, pp. 1195-1204, 2012.
Brown JS, Schnell RJ, Power EJ, Douglas SL, et al. (2007). Analysis of clonal germplasm from five Saccharum species: S. barberi, S. robustum, S. officinarum, S. sinense and S. spontaneum. A study of inter- and intraspecies relationships using microsatellite markers. Genet. Res. Crop Evol. 54: 627-648. http://dx.doi.org/10.1007/s10722-006-0035-z   Chen PH, Pan YB, Chen RK and Xu LP (2009). SSR marker-based analysis of genetic relatedness among sugarcane cultivars (Saccharum spp. hybrids) from breeding programs in China and other countries. Sugar Tech. 11: 347-354. http://dx.doi.org/10.1007/s12355-009-0060-2   Chen X, Temnykh S, Xu Y and Cho YG (1997). Development of a microsatellite framework map providing genome-wide coverage in rice (Oryza sativa L.). Theor. Appl. Genet. 95: 553-567. http://dx.doi.org/10.1007/s001220050596   Cordeiro GM, Taylor GO and Henry RJ (2000). Characterisation of microsatellite markers from sugarcane (Saccharum sp.), a highly polyploid species. Plant Sci. 155: 161-168. http://dx.doi.org/10.1016/S0168-9452(00)00208-9   Cordeiro GM, Pan YB and Henry RJ (2003). Sugarcane microsatellites for the assessment of genetic diversity in sugarcane germplasm. Plant Sci. 165: 181-189. http://dx.doi.org/10.1016/S0168-9452(03)00157-2   D'Hont A, Grivet L, Feldmann P, Rao S, et al. (1996). Characterisation of the double genome structure of modern sugarcane cultivars (Saccharum spp.) by molecular cytogenetics. Mol. Gen. Genet. 250: 405-413. http://dx.doi.org/10.1007/BF02174028 PMid:8602157   Doyle JJ and Doyle JL (1990). Isolation of plant DNA from fresh tissue. Focus 12: 13-15.   Garcia AA, Kido EA, Meza AN and Souza HM (2006). Development of an integrated genetic map of a sugarcane (Saccharum spp.) commercial cross, based on a maximum-likelihood approach for estimation of linkage and linkage phases. Theor. Appl. Genet. 112: 298-314. http://dx.doi.org/10.1007/s00122-005-0129-6 PMid:16307229   Glynn NC, Mccorkle K and Comstock JC (2009). Diversity among mainland USA sugarcane cultivars examined by SSR genotyping. Am. Soc. Sugar Cane Technol. 29: 36-52.   Goldstein DB and Schlotterer C (1999). Microsatellites: Evolution and Applications. Oxford University Press, Oxford.   Harvey M and Botha FC (1996). Use of PCR-based methodologies for the determination of DNA diversity between Sacchrum varieties. Euphytica 89: 257-265. http://dx.doi.org/10.1007/BF00034614   Hoarau JY, Grivet L, Offmann B, Raboin LM, et al. (2002). Genetic dissection of a modern sugarcane cultivar (Saccharum spp.). II. Detection of QTLs for yield components. Theor. Appl. Genet. 105: 1027-1037. http://dx.doi.org/10.1007/s00122-002-1047-5 PMid:12582930   Jannoo N, Grivet L, Seguin M and Paulet F (1999). Molecular investigation of the genetic base of sugarcane cultivars. Theor. Appl. Genet. 99: 171-184. http://dx.doi.org/10.1007/s001220051222   Jeffreys AJ, Wilson V and Thein SL (1985). Individual-specific 'fingerprints' of human DNA. Nature 316: 76-79. http://dx.doi.org/10.1038/316076a0 PMid:2989708   Korkovelos AE, Mavromatis AG, Huang WG, Hagidimitriou M, et al. (2008). Effectiveness of SSR molecular markers in evaluating the phylogenetic relationships among eight Actinidia species. Sci. Hortic. 116: 305-310. http://dx.doi.org/10.1016/j.scienta.2008.01.011   Lima ML, Garcia AA, Oliveira KM, Matsuoka S, et al. (2002). Analysis of genetic similarity detected by AFLP and coefficient of parentage among genotypes of sugar cane (Saccharum spp.). Theor. Appl. Genet. 104: 30-38. http://dx.doi.org/10.1007/s001220200003 PMid:12579425   Liu ZW, Biyashev RB and Saghai-Maroof MA (1996). Development of simple sequence repeat DNA markers and their integration into a barley linkage map. Theor. Appl. Genet. 93: 869-876. http://dx.doi.org/10.1007/BF00224088   Lu YH, D'Hont A, Paulet F and Grivet L (1994). Molecular diversity and genome structure in modern sugarcane varieties. Euphytica 78: 217-226. http://dx.doi.org/10.1007/BF00027520   Miller JD, Glaz B, Tai PYP, Comstock JC, et al. (2005). Genetic contribution to yield gains in the Florida sugarcane industry across 33 years. Crop Sci. Am. 45: 92-97. http://dx.doi.org/10.2135/cropsci2005.0092   Nair NV, Selvi A, Sreenivasn TV and Pushpalatha KN (2002). Molecular diversity in Indian sugarcane cultivars as revealed by random amplified DNA polymorphism. Euphytica 127: 219-225. http://dx.doi.org/10.1023/A:1020234428681   Pan YB, Cordeiro GM, Richard Jr EP and Henry RJ (2003a). Molecular genotyping of sugarcane clones with microsatellite DNA markers. Maydica 48: 319-329.   Pan YB, Miller JD, Schnell RJ and Richard J (2003b). Application of microsatellite and RAPD fingerprints in the Florida sugarcane variety program. Sugar Cane Int. 19-28.   Pan YB, Tew TL, Schnell RJ and Viator RP (2006). Microsatellite DNA marker-assisted selection of Saccharum spontaneum cytoplasm-derived germplasm. Sugar Tech. 8: 23-29. http://dx.doi.org/10.1007/BF02943737   Pan YB, Scheffler BS and Richard JEP (2007). High-throughput genotyping of commercial sugarcane clones with microsatellite (SSR) DNA markers. Sugar Tech. 9: 176-181.   Pestsova E, Ganal MW and Roder MS (2000). Isolation and mapping of microsatellite markers specific for the D genome of bread wheat. Genome 43: 689-697. http://dx.doi.org/10.1139/g00-042 PMid:10984182   Pinto LR, Oliveira KM, Marconi T and Garcia AAF (2006). Characterization of novel sugarcane expressed sequence tag microsatellites and their comparison with genomic SSRs. Plant Breed. 125: 378-384. http://dx.doi.org/10.1111/j.1439-0523.2006.01227.x   Pinto LR, Leite DC, Favero TM, Pastina MM, et al. (2011). Identification of microsatellites markers associated with yield components and quality parameters in sugarcane. Int. Sugar J. 113: 56-60.   Piperidis G, Taylor GO and Smith GR (2001). A microsatellite marker database for fingerprinting sugarcane clones. XXIV Proc. Int. Soc. Sugar Cane Technol.632-633.   Powell W, Machray GC and Provan J (1996). Polymorphism revealed by simple sequence repeats. Trends Plant Sci. 1: 215-222.   Prevost A and Wilkinson MJ (1999). A new system of comparing PCR primers applied to ISSR fingerprinting. Theor. Appl. Genet. 98: 107-112. http://dx.doi.org/10.1007/s001220051046   Sambrook J, Fritsch EF and Maniatis T (1989). Molecular Cloning. A Laboratory Manual. Cold Spring: Harbor Laboratory Press, New York.   Sharopova N, McMullen MD, Schultz L, Schroeder S, et al. (2002). Development and mapping of SSR markers for maize. Plant Mol. Biol. 48: 463-481. http://dx.doi.org/10.1023/A:1014868625533 PMid:12004892   Silva J and Bressiani J (2005). Sucrose synthase molecular marker associated with sugar content in elite sugarcane progeny. Genet. Mol. Biol. 28: 294-298. http://dx.doi.org/10.1590/S1415-47572005000200020   Singh RK, Singh P, Misra P and Singh SP (2005). STMS marker for tagging high sugar genes in sugarcane. Sugar Tech. 7: 74-76. http://dx.doi.org/10.1007/BF02942534   Smith JSC, Chin ECL, Shu H, Smith OS, et al. (1997). An evaluation of the utility of SSR loci as molecular markers in maize (Zea mays L.): comparisons with data from RFLPs and pedigree. Theor. Appl. Genet. 95: 163-173. http://dx.doi.org/10.1007/s001220050544   Zhang D, Mischke S, Goenaga R and Hemeida AA (2006). Accuracy and reliability of high-throughput microsatellite genotyping for Cacao clone identification. Crop Sci. 46: 2084-2092. http://dx.doi.org/10.2135/cropsci2006.01.0004