Found 2 results
Filters: Author is G.H. Xu  [Clear All Filters]
G. H. Xu, Su, W. Y., Shu, Y. J., Cong, W. W., Wu, L., and Guo, C. H., RAPD and ISSR-assisted identification and development of three new SCAR markers specific for the Thinopyrum elongatum E (Poaceae) genome, vol. 11, pp. 1741-1751, 2012.
Chen GY, Dong P, Wei YM, He K, et al. (2007). Development of Ee chromosome specific RGAP markers for Lophopyrum elongatum (Host) A.Löve in wheat background by using resistance gene analog polymorphism. Acta Agron. Sin. 33: 1782-1787.   Chowdhury MA, Andrahennandi CP, Slinkard AE and Vandenberg A (2001). RAPD and SCAR markers for resistance to acochyta blight in lentil. Euphytica 118: 331-337.   Deal KR, Goyal S and Dvorak J (1999). Arm location of Lophopyrum elongatum genes affecting K+/Na+ selectivity under salt stress. Euphytica 108: 193-198.   Doyle JJ and Doyle JL (1990). Isolation of plant DNA from fresh tissue. Focus 12: 13-15.   Friebe B, Jiang J, Raupp WJ, McIntosh RA, et al. (1996). Characterization of wheat-alien translocations conferring resistance to diseases and pests: current status. Euphytica 91: 59-87.   Hernández P, Martín A and Dorado G (1999). Development of SCARs by direct sequencing or RAPD products: a practical tool for the introgression and marker-assisted selection of wheat. Mol. Breed. 5: 245-253.   Jauhar PP and Peterson TS (2000). Toward Transferring Scab Resistance From a Diploid Wild Grass, Lophopyrum elongatum, Into Durum Wheat. In: Proceedings of the 2000 National Fusarium Head Blight Forum. Erlanger, Kentucky, 201-204.   Knott DR, Dvorak J and Nanda JS (1977). The transfer to wheat and homoeology of an Agropyron elongatum chromosome carrying resistance to stem rust. Can. J. Genet. Cytol. 19: 75-79.   Li YJ, Li B, Liu JZ, Li JY, et al. (1998). Chromosomal location of the genes coding for acid phosphatase and alkaline phosphatase in Agropyron elongatum (2n=2x=14, EE). Acta Genet. Sin. 25: 449-453.   Liu C, Yang ZJ, Li GR, Zeng ZX, et al. (2008). Isolation of a new repetitive DNA sequence from Secale africanum enables targeting of Secale chromatin in wheat background. Euphytica 159: 249-258.   Liu SB, Jia JZ, Wang HG, Kong LR et al. (1998). The polymorphism between Thinopyrum (Elytrigia elongatum, 2n = 14) and common wheat and RAPD marker specific for E genome. Acta Agron. Sin. 24: 687-690.   Ma JX, Dong YC and Jia JZ (1999). The location of wheat stripe rust resistance gene from Thinopyrum. Chin. Sci. Bull. 44: 65-69.   Ma JX, Zhou RH, Dong YS and Jia JZ (2000). Control and inheritance of resistance to yellow rust in Triticum aestivum- Lophopyrum elongatum chromosome substitution lines. Euphytica 111: 57-60.   Mullan DJ, Platteter A, Teakle NL, Appels R, et al. (2005). EST-derived SSR markers from defined regions of the wheat genome to identify Lophopyrum elongatum specific loci. Genome 48: 811-822. PMid:16391687   Oliver RE, Cai X, Xu SS, Chen X, et al. (2005). Wheat-alien species derivatives: a novel source of resistance to Fusarium head blight in wheat. Crop Sci. 45: 1353-1360.   Omielan JA, Epstein E and Dvorák J (1991). Salt tolerance and ionic relations of wheat as affected by individual chromosomes of salt-tolerant Lophopyrum elongatum. Genome 34: 961-974.   Prins R, Marais GF, Pretorius ZA, Janse BJH, et al. (1997). A study of modified forms of the Lr19 translocation of common wheat. Theor. Appl. Genet. 95: 424-430.   Reynolds MP, Calderini DF, Condon AG and Rajaram S (2001). Physiological basis of yield gains in wheat associated with the Lr19 translocation from Agropyron elongatum. Euphytica 119: 139-144.   Roundy BA (1985). Root penetration and shoot elongation of tall wheatgrass and basin wildrye in relation to salinity. Can. J. Plant Sci. 65: 335-343.   Sharma D and Knott DR (1966). The transfer of leaf rust resistance from Agropyron to Triticum by irradiation. Can. J. Genet. Cytol. 8: 137-143.   Sharma H, Ohm H, Goulart L, Lister R, et al. (1995). Introgression and characterization of barley yellow dwarf virus resistance from Thinopyrum intermedium into wheat. Genome 38: 406-413. PMid:18470179   Sharma HC, Ohm HW, Lister RW, Foster JE, et al. (1989). Response of wheatgrasses and wheat × wheatgrass hybrids to barley yellow dwarf virus. Theor. Appl. Genet. 77: 369-374.   Shen X and Ohm H (2006). Fusarium head blight resistance derived from Lophopyrum elongatum chromosome 7E and its augmentation with Fhb1 in wheat. Plant Breed. 125: 424-429.   Shen XR and Ohm H (2007). Molecular mapping of Thinopyrum-derived Fusarium head blight resistance in common wheat. Mol. Breed. 20: 131-140.   Shen X, Kong L and Ohm H (2004). Fusarium head blight resistance in hexaploid wheat (Triticum aestivum)-Lophopyrum genetic lines and tagging of the alien chromatin by PCR markers. Theor. Appl. Genet. 108: 808-813. PMid:14628111   Shukle RH, Lampe DJ, Lister RM and Foster JE (1987). Aphid feeding behavior: relationship to barley yellow dwarf virus resistance in Agropyron species. Phytopathology 77: 725-729.   Vaillancourt A, Nkongolo KK, Michael P and Mehes M (2008). Identification, characterisation, and chromosome locations of rye and wheat specific ISSR and SCAR markers useful for breeding purposes. Euphytica 159: 297-306.   Wu M, Zhang JP, Wang JC, Yang XM, et al. (2010). Cloning and characterization of repetitive sequences and development of SCAR markers specific for the P genome of Agropyron cristatum. Euphytica 172: 363-372.   Yang ZJ and Ren ZL (2001). Chromosomal distribution and genetic expression of Lophopyrum elongatum (Host) A. Löve genes for adult plant resistance to stripe rust in wheat background. Genet. Resour. Crop. Evol. 48: 183-187.   You MS, Li BY, Tian ZH, Tang CH, et al. (2003). Development of specific SSR marker for Ee-genome of Thinopyrum sp. by using wheat microsatellites. J. Agri. Biotec. 11: 577-581.   Zhang Li, Yan ZH, Zheng YL, Liu DC, et al. (2008). Development of Ee-chromosome specific AFLP and STS molecular marker for Lophopyrum elongatum in Chinese Spring Wheat Background. J. Agri. Biotec. 16: 465-473.   Zhang X, Shen X, Hao Y, Cai J, et al. (2011). A genetic map of Lophopyrum ponticum chromosome 7E, harboring resistance genes to Fusarium head blight and leaf rust. Theor. Appl. Genet. 122: 263-270. PMid:20830464
Z. C. Wang, Shi, J. G., Chen, X. S., Xu, G. H., Li, L. J., and Jia, L. S., The role of smoking status and collagen IX polymorphisms in the susceptibility to cervical spondylotic myelopathy, vol. 11, pp. 1238-1244, 2012.
Akmal M, Kesani A, Anand B, Singh A, et al. (2004). Effect of nicotine on spinal disc cells: a cellular mechanism for disc degeneration. Spine (Phila Pa 1976). 29: 568-575.   Blumbach K, Bastiaansen-Jenniskens YM, DeGroot J, Paulsson M, et al. (2009). Combined role of type IX collagen and cartilage oligomeric matrix protein in cartilage matrix assembly: cartilage oligomeric matrix protein counteracts type IX collagen-induced limitation of cartilage collagen fibril growth in mouse chondrocyte cultures. Arthritis Rheum. 60: 3676-3685. PMid:19950300   Eyre DR, Wu JJ, Fernandes RJ, Pietka TA, et al. (2002). Recent developments in cartilage research: matrix biology of the collagen II/IX/XI heterofibril network. Biochem. Soc. Trans. 30 (Pt 6): 893-899. PMid:12440941   Falcon-Ramirez E, Casas-Avila L, Miranda A, Diez P, et al. (2011). Sp1 polymorphism in collagen I alpha1 gene is associated with osteoporosis in lumbar spine of Mexican women. Mol. Biol. Rep. 38: 2987-2992. PMid:20146006   Garnero P, Sornay-Rendu E, Arlot M, Christiansen C, et al. (2004). Association between spine disc degeneration and type II collagen degradation in postmenopausal women: the OFELY study. Arthritis Rheum. 50: 3137-3144. PMid:15476251   Higashino K, Matsui Y, Yagi S, Takata Y, et al. (2007). The alpha2 type IX collagen tryptophan polymorphism is associated with the severity of disc degeneration in younger patients with herniated nucleus pulposus of the lumbar spine. Int. Orthop. 31: 107-111. PMid:16586133 PMCid:2267527   Huang CC, Wang TC, Lin BH, Wang YW, et al. (2009). Collagen IX is required for the integrity of collagen II fibrils and the regulation of vascular plexus formation in zebrafish caudal fins. Dev. Biol. 332: 360-370. PMid:19501583   Jim JJ, Noponen-Hietala N, Cheung KM, Ott J, et al. (2005). The TRP2 allele of COL9A2 is an age-dependent risk factor for the development and severity of intervertebral disc degeneration. Spine (Phila Pa 1976). 30: 2735-2742.   Jumah KB and Nyame PK (1994). Relationship between load carrying on the head and cervical spondylosis in Ghanaians. West Afr. J. Med. 13: 181-182. PMid:7841112   Kales SN, Linos A, Chatzis C, Sai Y, et al. (2004). The role of collagen IX tryptophan polymorphisms in symptomatic intervertebral disc disease in Southern European patients. Spine (Phila Pa 1976). 29: 1266-1270.   Karppinen J, Paakko E, Raina S, Tervonen O, et al. (2002). Magnetic resonance imaging findings in relation to the COL9A2 tryptophan allele among patients with sciatica. Spine (Phila Pa 1976). 27: 78-83.   Kimura T, Nakata K, Tsumaki N, Miyamoto S, et al. (1996). Progressive degeneration of articular cartilage and intervertebral discs. An experimental study in transgenic mice bearing a type IX collagen mutation. Int. Orthop. 20: 177-181. PMid:8832322   Koelling S, Kruegel J, Klinger M, Schultz W, et al. (2008). Collagen IX in weight-bearing areas of human articular cartilage in late stages of osteoarthritis. Arch. Orthop. Trauma Surg. 128: 1453-1459. PMid:18357462   Lucas SR, Bass CR, Crandall JR, Kent RW, et al. (2009). Viscoelastic and failure properties of spine ligament collagen fascicles. Biomech. Model. Mechanobiol. PMid:19308471   Matsui Y, Wu JJ, Weis MA, Pietka T, et al. (2003). Matrix deposition of tryptophan-containing allelic variants of type IX collagen in developing human cartilage. Matrix Biol. 22: 123-129.   Nemoto Y, Matsuzaki H, Tokuhasi Y, Okawa A, et al. (2006). Histological changes in intervertebral discs after smoking and cessation: experimental study using a rat passive smoking model. J. Orthop. Sci. 11: 191-197. PMid:16568393   Oda H, Matsuzaki H, Tokuhashi Y, Wakabayashi K, et al. (2004). Degeneration of intervertebral discs due to smoking: experimental assessment in a rat-smoking model. J. Orthop. Sci. 9: 135-141. PMid:15045541   Paassilta P, Lohiniva J, Goring HH, Perala M, et al. (2001). Identification of a novel common genetic risk factor for lumbar disk disease. JAMA 285: 1843-1849. PMid:11308397   Wu JJ and Eyre DR (1984). Cartilage type IX collagen is cross-linked by hydroxypyridinium residues. Biochem. Biophys. Res. Commun. 123: 1033-1039.   Yoo K and Origitano TC (1998). Familial cervical spondylosis. Case report. J. Neurosurg. 89: 139-141. PMid:9647185   Zhang Y, Sun Z, Liu J and Guo X (2008). Advances in susceptibility genetics of intervertebral degenerative disc disease. Int. J. Biol. Sci. 4: 283-290. PMid:18781226 PMCid:2532796   Zhu Y, Wu JJ, Weis MA, Mirza SK, et al. (2011). Type IX Collagen Neo-Deposition in Degenerative Discs of Surgical Patients Whether Genotyped Plus or Minus for COL9 Risk Alleles. Spine (Phila Pa 1976). 36: 2031-2038.