Publications

Found 9 results
Filters: Author is A. Borém  [Clear All Filters]
2016
I. B. Gois, Borém, A., Cristofani-Yaly, M., de Resende, M. D. V., Azevedo, C. F., Bastianel, M., Novelli, V. M., Machado, M. A., Gois, I. B., Borém, A., Cristofani-Yaly, M., de Resende, M. D. V., Azevedo, C. F., Bastianel, M., Novelli, V. M., Machado, M. A., Gois, I. B., Borém, A., Cristofani-Yaly, M., de Resende, M. D. V., Azevedo, C. F., Bastianel, M., Novelli, V. M., and Machado, M. A., Genome wide selection in Citrus breeding, vol. 15, no. 4, p. -, 2016.
Conflicts of interest The authors declare no conflict of interest. ACKNOWLEDGMENTS CNPq (Conselho Nacional de Desenvolvimento Científico e Tecnológico) and Capes (Coordenação de Aperfeiçoamento de Pessoal de Nível Superior) for the research fellowship of the first author. Research supported by Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP) (Processes #2007/08435-5 and #2011/18605-0) and Instituto Nacional de Ciência e Tecnologia (INCT) de Genômica para Melhoramento de Citros (Process #573848/2008-4). REFERENCES Asins MJ, Fernandez-Ribacoba J, Bernet GP, Gadea J, et al (2012). The position of the major QTL for Citrus tristeza virus resistance is conserved among Citrus grandis, C. aurantium and Poncirus trifoliata. Mol. Breed. 29: 575-587. http://dx.doi.org/10.1007/s11032-011-9574-x Cavalcanti JJV, Resende MDV, Santos FHC, Pinheiro CR, et al (2012). Predição simultânea dos efeitos de marcadores moleculares e seleção genômica ampla em cajueiro. Rev. Bras. Frutic. 34: 840-846. http://dx.doi.org/10.1590/S0100-29452012000300025 Daetwyler HD, Pong-Wong R, Villanueva B, Woolliams JA, et al (2010). The impact of genetic architecture on genome-wide evaluation methods. Genetics 185: 1021-1031. http://dx.doi.org/10.1534/genetics.110.116855 Daetwyler HD, Calus MPL, Pong-Wong R, de Los Campos G, et al (2013). Genomic prediction in animals and plants: simulation of data, validation, reporting, and benchmarking. Genetics 193: 347-365. http://dx.doi.org/10.1534/genetics.112.147983 Endelman JB, et al (2011). Ridge regression and other kernels for genomic selection with R package rrBLUP. Plant Genome 4: 250-255. http://dx.doi.org/10.3835/plantgenome2011.08.0024 Gmitter Junior FG, Chen C, Machado MA, Souza AA, et al (2012). Citrus genomics. Tree Genet. Genomes 8: 611-626. http://dx.doi.org/10.1007/s11295-012-0499-2 Goddard ME, Hayes BJ, Meuwissen THE, et al (2011). Using the genomic relationship matrix to predict the accuracy of genomic selection. J. Anim. Breed. Genet. 128: 409-421. http://dx.doi.org/10.1111/j.1439-0388.2011.00964.x Grattapaglia D, Resende MDV, et al (2011). Genomic selection in forest tree breeding. Tree Genet. Genomes 7: 241-255. http://dx.doi.org/10.1007/s11295-010-0328-4 Gussen O, Uzun A, Seday U, Kafa G, et al (2011). QTL analysis and regression model for estimating fruit setting in young Citrus trees based on molecular markers. Sci. Hortic. (Amsterdam) 130: 418-424. http://dx.doi.org/10.1016/j.scienta.2011.07.010 Hayes BJ, Bowman PJ, Chamberlain AJ, Goddard ME, et al (2009). Invited review: Genomic selection in dairy cattle: progress and challenges. J. Dairy Sci. 92: 433-443. http://dx.doi.org/10.3168/jds.2008-1646 Heffner EL, Sorrells ME, Jannink JL, et al (2009). Genomic selection for crop improvement. Crop Sci. 49: 1-12. http://dx.doi.org/10.2135/cropsci2008.08.0512 Henderson CR (1973). Maximum likelihood estimation of variance components. Unpublished manuscripts, Animal Science Dept., Cornell University. Ito TM, Polido PB, Rampim MC, Kaschuk G, et al (2014). Genome-wide identification and phylogenetic analysis of the AP2/ERF gene superfamily in sweet orange (Citrus sinensis). Genet. Mol. Res. 13: 7839-7851. http://dx.doi.org/10.4238/2014.September.26.22 Iwata H, Hayashi T, Terakami S, Takada N, et al (2013). Potential assessment of genome-wide association study and genomic selection in Japanese pear Pyrus pyrifolia. Breed. Sci. 63: 125-140. http://dx.doi.org/10.1270/jsbbs.63.125 Jaccoud D, Peng K, Feinstein D, Kilian A, et al (2001). Diversity arrays: a solid state technology for sequence information independent genotyping. Nucleic Acids Res. 29: E25. http://dx.doi.org/10.1093/nar/29.4.e25 Jarrell DC, Roose ML, Traugh SN, Kupper RS, et al (1992). A genetic map of citrus based on the segregation of isozymes and RFLPs in an intergeneric cross. Theor. Appl. Genet. 84: 49-56. http://dx.doi.org/10.1007/BF00223980 Kemper KE, Goddard ME, et al (2012). Understanding and predicting complex traits: knowledge from cattle. Hum. Mol. Genet. 21 (R1): R45-R51. http://dx.doi.org/10.1093/hmg/dds332 Kumar S, Bink MCAM, Volz RK, Bus VGM, et al (2012). Towards genomic selection in apple (Malus × domestica Borkh.) breeding programmes: Prospects, challenges and strategies. Tree Genet. Genomes 8: 1-14. http://dx.doi.org/10.1007/s11295-011-0425-z Lande R, Thompson R, et al (1990). Efficiency of marker-assisted selection in the improvement of quantitative traits. Genetics 124: 743-756. Legarra A, Robert-Granié C, Manfredi E, Elsen JM, et al (2008). Performance of genomic selection in mice. Genetics 180: 611-618. http://dx.doi.org/10.1534/genetics.108.088575 Machado MA, Cristofani-Yaly M, Bastianel M, et al (2011). Breeding, genetic and genomic of citrus for disease resistance. Rev. Bras. Frutic. 33: 158-172. http://dx.doi.org/10.1590/S0100-29452011000500019 Meuwissen THE, Hayes BJ, Goddard ME, et al (2001). Prediction of total genetic value using genome-wide dense marker maps. Genetics 157: 1819-1829. Misztal I, Legarra A, Aguilar I, et al (2009). Computing procedures for genetic evaluation including phenotypic, full pedigree, and genomic information. J. Dairy Sci. 92: 4648-4655. http://dx.doi.org/10.3168/jds.2009-2064 Patterson HD, Thompson R, et al (1971). Recovery of inter-block information when block sizes are unequal. Biometrika 58: 545-554. http://dx.doi.org/10.1093/biomet/58.3.545 R Development Core Team (2012). R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria. Resende MDV (2002). Genética Biométrica e estatística no melhoramento de plantas perenes. Brasília: Embrapa Informação tecnológica. Resende MDV, Duarte JB, et al (2007). Precisão e controle de qualidade em experimentos de avaliação de cultivares. Pesqui. Agropecu. Trop. 37: 182-194. Resende MDV, Lopes OS, Silva RL, Pires IE, et al (2008). Seleção genômica ampla (GWS) e maximização da eficiência do melhoramento genético. Pesq. Flor. Bra. 56: 63-77. Resende MDV, Resende MFRJrSansaloniCP, Petroli CD, et al (2012). Genomic selection for growth and wood quality in Eucalyptus: capturing the missing heritability and accelerating breeding for complex traits in forest trees. New Phytol. 194: 116-128. http://dx.doi.org/10.1111/j.1469-8137.2011.04038.x Resende MDV, Silva FF, Resende MFR, Junior. and Azevedo CF (2014). Genome-wide selection. In: Biotechnology and Plant Breeding (Borem A and Fritsche-Neto R, eds.). Elsevier. Resende MFJrMuñozP, Resende MDV, Garrick DJ, et al (2012). Accuracy of genomic selection methods in a standard data set of loblolly pine (Pinus taeda L.). Genetics 190: 1503-1510. http://dx.doi.org/10.1534/genetics.111.137026 Siviero A, Cristofani M, Boava LP, Machado MA, et al (2002). Mapeamento de QTLs associados à produção de frutos e sementes em híbridos de Citrus sunki vs Poncirus trifoliata. Rev. Bras. Frutic. 24: 741-743. http://dx.doi.org/10.1590/S0100-29452002000300045 Siviero A, Cristofani M, Furtado EL, Garcia AAF, et al (2006). Identification of QTLs associated with citrus resistance to Phytophthora gummosis. J. Appl. Genet. 47: 23-28. http://dx.doi.org/10.1007/BF03194595 Talon M and Gmitter Junior FG (2008). Citrus genomics. Intern. J. Plant Genomics: 1-17. Viana AP and Resende MDV (2014). Seleção Genômica Ampla (GWS). In: Genética Quantitativa no Melhoramento de Fruteiras (Viana AP, Resende MDV, eds.). Interciência, Rio de Janeiro. Viana AP, Resende MDV, Riaz S, Walker MA, et al (2016). Genome selection in fruit breeding: application to table grapes. Sci. Agric. 73: 142-149. http://dx.doi.org/10.1590/0103-9016-2014-0323 Wong CK, Bernardo R, et al (2008). Genomewide selection in oil palm: increasing selection gain per unit time and cost with small populations. Theor. Appl. Genet. 116: 815-824. http://dx.doi.org/10.1007/s00122-008-0715-5 Zapata-Velenzuela J, Whetten RW, Neale D, Mckeand S, et al (2013). Genomic estimated breeding values using genomic relationship matrices in a cloned population of Loblolly Pine. Genes Genom. Genet 3: 909-916. Zhao Y, Gowda M, Liu W, Wurschum T, et al (2013). Choice of shrinkage parameter and prediction of genomic breeding values in elite maize breeding populations. Plant Breed. 132: 99-106. http://dx.doi.org/10.1111/pbr.12008 Zhong S, Dekkers JCM, Fernando RL, Jannink JL, et al (2009). Factors affecting accuracy from genomic selection in populations derived from multiple inbred lines: a Barley case study. Genetics 182: 355-364. http://dx.doi.org/10.1534/genetics.108.098277
I. B. Gois, Borém, A., Cristofani-Yaly, M., de Resende, M. D. V., Azevedo, C. F., Bastianel, M., Novelli, V. M., Machado, M. A., Gois, I. B., Borém, A., Cristofani-Yaly, M., de Resende, M. D. V., Azevedo, C. F., Bastianel, M., Novelli, V. M., Machado, M. A., Gois, I. B., Borém, A., Cristofani-Yaly, M., de Resende, M. D. V., Azevedo, C. F., Bastianel, M., Novelli, V. M., and Machado, M. A., Genome wide selection in Citrus breeding, vol. 15, no. 4, p. -, 2016.
Conflicts of interest The authors declare no conflict of interest. ACKNOWLEDGMENTS CNPq (Conselho Nacional de Desenvolvimento Científico e Tecnológico) and Capes (Coordenação de Aperfeiçoamento de Pessoal de Nível Superior) for the research fellowship of the first author. Research supported by Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP) (Processes #2007/08435-5 and #2011/18605-0) and Instituto Nacional de Ciência e Tecnologia (INCT) de Genômica para Melhoramento de Citros (Process #573848/2008-4). REFERENCES Asins MJ, Fernandez-Ribacoba J, Bernet GP, Gadea J, et al (2012). The position of the major QTL for Citrus tristeza virus resistance is conserved among Citrus grandis, C. aurantium and Poncirus trifoliata. Mol. Breed. 29: 575-587. http://dx.doi.org/10.1007/s11032-011-9574-x Cavalcanti JJV, Resende MDV, Santos FHC, Pinheiro CR, et al (2012). Predição simultânea dos efeitos de marcadores moleculares e seleção genômica ampla em cajueiro. Rev. Bras. Frutic. 34: 840-846. http://dx.doi.org/10.1590/S0100-29452012000300025 Daetwyler HD, Pong-Wong R, Villanueva B, Woolliams JA, et al (2010). The impact of genetic architecture on genome-wide evaluation methods. Genetics 185: 1021-1031. http://dx.doi.org/10.1534/genetics.110.116855 Daetwyler HD, Calus MPL, Pong-Wong R, de Los Campos G, et al (2013). Genomic prediction in animals and plants: simulation of data, validation, reporting, and benchmarking. Genetics 193: 347-365. http://dx.doi.org/10.1534/genetics.112.147983 Endelman JB, et al (2011). Ridge regression and other kernels for genomic selection with R package rrBLUP. Plant Genome 4: 250-255. http://dx.doi.org/10.3835/plantgenome2011.08.0024 Gmitter Junior FG, Chen C, Machado MA, Souza AA, et al (2012). Citrus genomics. Tree Genet. Genomes 8: 611-626. http://dx.doi.org/10.1007/s11295-012-0499-2 Goddard ME, Hayes BJ, Meuwissen THE, et al (2011). Using the genomic relationship matrix to predict the accuracy of genomic selection. J. Anim. Breed. Genet. 128: 409-421. http://dx.doi.org/10.1111/j.1439-0388.2011.00964.x Grattapaglia D, Resende MDV, et al (2011). Genomic selection in forest tree breeding. Tree Genet. Genomes 7: 241-255. http://dx.doi.org/10.1007/s11295-010-0328-4 Gussen O, Uzun A, Seday U, Kafa G, et al (2011). QTL analysis and regression model for estimating fruit setting in young Citrus trees based on molecular markers. Sci. Hortic. (Amsterdam) 130: 418-424. http://dx.doi.org/10.1016/j.scienta.2011.07.010 Hayes BJ, Bowman PJ, Chamberlain AJ, Goddard ME, et al (2009). Invited review: Genomic selection in dairy cattle: progress and challenges. J. Dairy Sci. 92: 433-443. http://dx.doi.org/10.3168/jds.2008-1646 Heffner EL, Sorrells ME, Jannink JL, et al (2009). Genomic selection for crop improvement. Crop Sci. 49: 1-12. http://dx.doi.org/10.2135/cropsci2008.08.0512 Henderson CR (1973). Maximum likelihood estimation of variance components. Unpublished manuscripts, Animal Science Dept., Cornell University. Ito TM, Polido PB, Rampim MC, Kaschuk G, et al (2014). Genome-wide identification and phylogenetic analysis of the AP2/ERF gene superfamily in sweet orange (Citrus sinensis). Genet. Mol. Res. 13: 7839-7851. http://dx.doi.org/10.4238/2014.September.26.22 Iwata H, Hayashi T, Terakami S, Takada N, et al (2013). Potential assessment of genome-wide association study and genomic selection in Japanese pear Pyrus pyrifolia. Breed. Sci. 63: 125-140. http://dx.doi.org/10.1270/jsbbs.63.125 Jaccoud D, Peng K, Feinstein D, Kilian A, et al (2001). Diversity arrays: a solid state technology for sequence information independent genotyping. Nucleic Acids Res. 29: E25. http://dx.doi.org/10.1093/nar/29.4.e25 Jarrell DC, Roose ML, Traugh SN, Kupper RS, et al (1992). A genetic map of citrus based on the segregation of isozymes and RFLPs in an intergeneric cross. Theor. Appl. Genet. 84: 49-56. http://dx.doi.org/10.1007/BF00223980 Kemper KE, Goddard ME, et al (2012). Understanding and predicting complex traits: knowledge from cattle. Hum. Mol. Genet. 21 (R1): R45-R51. http://dx.doi.org/10.1093/hmg/dds332 Kumar S, Bink MCAM, Volz RK, Bus VGM, et al (2012). Towards genomic selection in apple (Malus × domestica Borkh.) breeding programmes: Prospects, challenges and strategies. Tree Genet. Genomes 8: 1-14. http://dx.doi.org/10.1007/s11295-011-0425-z Lande R, Thompson R, et al (1990). Efficiency of marker-assisted selection in the improvement of quantitative traits. Genetics 124: 743-756. Legarra A, Robert-Granié C, Manfredi E, Elsen JM, et al (2008). Performance of genomic selection in mice. Genetics 180: 611-618. http://dx.doi.org/10.1534/genetics.108.088575 Machado MA, Cristofani-Yaly M, Bastianel M, et al (2011). Breeding, genetic and genomic of citrus for disease resistance. Rev. Bras. Frutic. 33: 158-172. http://dx.doi.org/10.1590/S0100-29452011000500019 Meuwissen THE, Hayes BJ, Goddard ME, et al (2001). Prediction of total genetic value using genome-wide dense marker maps. Genetics 157: 1819-1829. Misztal I, Legarra A, Aguilar I, et al (2009). Computing procedures for genetic evaluation including phenotypic, full pedigree, and genomic information. J. Dairy Sci. 92: 4648-4655. http://dx.doi.org/10.3168/jds.2009-2064 Patterson HD, Thompson R, et al (1971). Recovery of inter-block information when block sizes are unequal. Biometrika 58: 545-554. http://dx.doi.org/10.1093/biomet/58.3.545 R Development Core Team (2012). R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria. Resende MDV (2002). Genética Biométrica e estatística no melhoramento de plantas perenes. Brasília: Embrapa Informação tecnológica. Resende MDV, Duarte JB, et al (2007). Precisão e controle de qualidade em experimentos de avaliação de cultivares. Pesqui. Agropecu. Trop. 37: 182-194. Resende MDV, Lopes OS, Silva RL, Pires IE, et al (2008). Seleção genômica ampla (GWS) e maximização da eficiência do melhoramento genético. Pesq. Flor. Bra. 56: 63-77. Resende MDV, Resende MFRJrSansaloniCP, Petroli CD, et al (2012). Genomic selection for growth and wood quality in Eucalyptus: capturing the missing heritability and accelerating breeding for complex traits in forest trees. New Phytol. 194: 116-128. http://dx.doi.org/10.1111/j.1469-8137.2011.04038.x Resende MDV, Silva FF, Resende MFR, Junior. and Azevedo CF (2014). Genome-wide selection. In: Biotechnology and Plant Breeding (Borem A and Fritsche-Neto R, eds.). Elsevier. Resende MFJrMuñozP, Resende MDV, Garrick DJ, et al (2012). Accuracy of genomic selection methods in a standard data set of loblolly pine (Pinus taeda L.). Genetics 190: 1503-1510. http://dx.doi.org/10.1534/genetics.111.137026 Siviero A, Cristofani M, Boava LP, Machado MA, et al (2002). Mapeamento de QTLs associados à produção de frutos e sementes em híbridos de Citrus sunki vs Poncirus trifoliata. Rev. Bras. Frutic. 24: 741-743. http://dx.doi.org/10.1590/S0100-29452002000300045 Siviero A, Cristofani M, Furtado EL, Garcia AAF, et al (2006). Identification of QTLs associated with citrus resistance to Phytophthora gummosis. J. Appl. Genet. 47: 23-28. http://dx.doi.org/10.1007/BF03194595 Talon M and Gmitter Junior FG (2008). Citrus genomics. Intern. J. Plant Genomics: 1-17. Viana AP and Resende MDV (2014). Seleção Genômica Ampla (GWS). In: Genética Quantitativa no Melhoramento de Fruteiras (Viana AP, Resende MDV, eds.). Interciência, Rio de Janeiro. Viana AP, Resende MDV, Riaz S, Walker MA, et al (2016). Genome selection in fruit breeding: application to table grapes. Sci. Agric. 73: 142-149. http://dx.doi.org/10.1590/0103-9016-2014-0323 Wong CK, Bernardo R, et al (2008). Genomewide selection in oil palm: increasing selection gain per unit time and cost with small populations. Theor. Appl. Genet. 116: 815-824. http://dx.doi.org/10.1007/s00122-008-0715-5 Zapata-Velenzuela J, Whetten RW, Neale D, Mckeand S, et al (2013). Genomic estimated breeding values using genomic relationship matrices in a cloned population of Loblolly Pine. Genes Genom. Genet 3: 909-916. Zhao Y, Gowda M, Liu W, Wurschum T, et al (2013). Choice of shrinkage parameter and prediction of genomic breeding values in elite maize breeding populations. Plant Breed. 132: 99-106. http://dx.doi.org/10.1111/pbr.12008 Zhong S, Dekkers JCM, Fernando RL, Jannink JL, et al (2009). Factors affecting accuracy from genomic selection in populations derived from multiple inbred lines: a Barley case study. Genetics 182: 355-364. http://dx.doi.org/10.1534/genetics.108.098277
I. B. Gois, Borém, A., Cristofani-Yaly, M., de Resende, M. D. V., Azevedo, C. F., Bastianel, M., Novelli, V. M., Machado, M. A., Gois, I. B., Borém, A., Cristofani-Yaly, M., de Resende, M. D. V., Azevedo, C. F., Bastianel, M., Novelli, V. M., Machado, M. A., Gois, I. B., Borém, A., Cristofani-Yaly, M., de Resende, M. D. V., Azevedo, C. F., Bastianel, M., Novelli, V. M., and Machado, M. A., Genome wide selection in Citrus breeding, vol. 15, no. 4, p. -, 2016.
Conflicts of interest The authors declare no conflict of interest. ACKNOWLEDGMENTS CNPq (Conselho Nacional de Desenvolvimento Científico e Tecnológico) and Capes (Coordenação de Aperfeiçoamento de Pessoal de Nível Superior) for the research fellowship of the first author. Research supported by Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP) (Processes #2007/08435-5 and #2011/18605-0) and Instituto Nacional de Ciência e Tecnologia (INCT) de Genômica para Melhoramento de Citros (Process #573848/2008-4). REFERENCES Asins MJ, Fernandez-Ribacoba J, Bernet GP, Gadea J, et al (2012). The position of the major QTL for Citrus tristeza virus resistance is conserved among Citrus grandis, C. aurantium and Poncirus trifoliata. Mol. Breed. 29: 575-587. http://dx.doi.org/10.1007/s11032-011-9574-x Cavalcanti JJV, Resende MDV, Santos FHC, Pinheiro CR, et al (2012). Predição simultânea dos efeitos de marcadores moleculares e seleção genômica ampla em cajueiro. Rev. Bras. Frutic. 34: 840-846. http://dx.doi.org/10.1590/S0100-29452012000300025 Daetwyler HD, Pong-Wong R, Villanueva B, Woolliams JA, et al (2010). The impact of genetic architecture on genome-wide evaluation methods. Genetics 185: 1021-1031. http://dx.doi.org/10.1534/genetics.110.116855 Daetwyler HD, Calus MPL, Pong-Wong R, de Los Campos G, et al (2013). Genomic prediction in animals and plants: simulation of data, validation, reporting, and benchmarking. Genetics 193: 347-365. http://dx.doi.org/10.1534/genetics.112.147983 Endelman JB, et al (2011). Ridge regression and other kernels for genomic selection with R package rrBLUP. Plant Genome 4: 250-255. http://dx.doi.org/10.3835/plantgenome2011.08.0024 Gmitter Junior FG, Chen C, Machado MA, Souza AA, et al (2012). Citrus genomics. Tree Genet. Genomes 8: 611-626. http://dx.doi.org/10.1007/s11295-012-0499-2 Goddard ME, Hayes BJ, Meuwissen THE, et al (2011). Using the genomic relationship matrix to predict the accuracy of genomic selection. J. Anim. Breed. Genet. 128: 409-421. http://dx.doi.org/10.1111/j.1439-0388.2011.00964.x Grattapaglia D, Resende MDV, et al (2011). Genomic selection in forest tree breeding. Tree Genet. Genomes 7: 241-255. http://dx.doi.org/10.1007/s11295-010-0328-4 Gussen O, Uzun A, Seday U, Kafa G, et al (2011). QTL analysis and regression model for estimating fruit setting in young Citrus trees based on molecular markers. Sci. Hortic. (Amsterdam) 130: 418-424. http://dx.doi.org/10.1016/j.scienta.2011.07.010 Hayes BJ, Bowman PJ, Chamberlain AJ, Goddard ME, et al (2009). Invited review: Genomic selection in dairy cattle: progress and challenges. J. Dairy Sci. 92: 433-443. http://dx.doi.org/10.3168/jds.2008-1646 Heffner EL, Sorrells ME, Jannink JL, et al (2009). Genomic selection for crop improvement. Crop Sci. 49: 1-12. http://dx.doi.org/10.2135/cropsci2008.08.0512 Henderson CR (1973). Maximum likelihood estimation of variance components. Unpublished manuscripts, Animal Science Dept., Cornell University. Ito TM, Polido PB, Rampim MC, Kaschuk G, et al (2014). Genome-wide identification and phylogenetic analysis of the AP2/ERF gene superfamily in sweet orange (Citrus sinensis). Genet. Mol. Res. 13: 7839-7851. http://dx.doi.org/10.4238/2014.September.26.22 Iwata H, Hayashi T, Terakami S, Takada N, et al (2013). Potential assessment of genome-wide association study and genomic selection in Japanese pear Pyrus pyrifolia. Breed. Sci. 63: 125-140. http://dx.doi.org/10.1270/jsbbs.63.125 Jaccoud D, Peng K, Feinstein D, Kilian A, et al (2001). Diversity arrays: a solid state technology for sequence information independent genotyping. Nucleic Acids Res. 29: E25. http://dx.doi.org/10.1093/nar/29.4.e25 Jarrell DC, Roose ML, Traugh SN, Kupper RS, et al (1992). A genetic map of citrus based on the segregation of isozymes and RFLPs in an intergeneric cross. Theor. Appl. Genet. 84: 49-56. http://dx.doi.org/10.1007/BF00223980 Kemper KE, Goddard ME, et al (2012). Understanding and predicting complex traits: knowledge from cattle. Hum. Mol. Genet. 21 (R1): R45-R51. http://dx.doi.org/10.1093/hmg/dds332 Kumar S, Bink MCAM, Volz RK, Bus VGM, et al (2012). Towards genomic selection in apple (Malus × domestica Borkh.) breeding programmes: Prospects, challenges and strategies. Tree Genet. Genomes 8: 1-14. http://dx.doi.org/10.1007/s11295-011-0425-z Lande R, Thompson R, et al (1990). Efficiency of marker-assisted selection in the improvement of quantitative traits. Genetics 124: 743-756. Legarra A, Robert-Granié C, Manfredi E, Elsen JM, et al (2008). Performance of genomic selection in mice. Genetics 180: 611-618. http://dx.doi.org/10.1534/genetics.108.088575 Machado MA, Cristofani-Yaly M, Bastianel M, et al (2011). Breeding, genetic and genomic of citrus for disease resistance. Rev. Bras. Frutic. 33: 158-172. http://dx.doi.org/10.1590/S0100-29452011000500019 Meuwissen THE, Hayes BJ, Goddard ME, et al (2001). Prediction of total genetic value using genome-wide dense marker maps. Genetics 157: 1819-1829. Misztal I, Legarra A, Aguilar I, et al (2009). Computing procedures for genetic evaluation including phenotypic, full pedigree, and genomic information. J. Dairy Sci. 92: 4648-4655. http://dx.doi.org/10.3168/jds.2009-2064 Patterson HD, Thompson R, et al (1971). Recovery of inter-block information when block sizes are unequal. Biometrika 58: 545-554. http://dx.doi.org/10.1093/biomet/58.3.545 R Development Core Team (2012). R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria. Resende MDV (2002). Genética Biométrica e estatística no melhoramento de plantas perenes. Brasília: Embrapa Informação tecnológica. Resende MDV, Duarte JB, et al (2007). Precisão e controle de qualidade em experimentos de avaliação de cultivares. Pesqui. Agropecu. Trop. 37: 182-194. Resende MDV, Lopes OS, Silva RL, Pires IE, et al (2008). Seleção genômica ampla (GWS) e maximização da eficiência do melhoramento genético. Pesq. Flor. Bra. 56: 63-77. Resende MDV, Resende MFRJrSansaloniCP, Petroli CD, et al (2012). Genomic selection for growth and wood quality in Eucalyptus: capturing the missing heritability and accelerating breeding for complex traits in forest trees. New Phytol. 194: 116-128. http://dx.doi.org/10.1111/j.1469-8137.2011.04038.x Resende MDV, Silva FF, Resende MFR, Junior. and Azevedo CF (2014). Genome-wide selection. In: Biotechnology and Plant Breeding (Borem A and Fritsche-Neto R, eds.). Elsevier. Resende MFJrMuñozP, Resende MDV, Garrick DJ, et al (2012). Accuracy of genomic selection methods in a standard data set of loblolly pine (Pinus taeda L.). Genetics 190: 1503-1510. http://dx.doi.org/10.1534/genetics.111.137026 Siviero A, Cristofani M, Boava LP, Machado MA, et al (2002). Mapeamento de QTLs associados à produção de frutos e sementes em híbridos de Citrus sunki vs Poncirus trifoliata. Rev. Bras. Frutic. 24: 741-743. http://dx.doi.org/10.1590/S0100-29452002000300045 Siviero A, Cristofani M, Furtado EL, Garcia AAF, et al (2006). Identification of QTLs associated with citrus resistance to Phytophthora gummosis. J. Appl. Genet. 47: 23-28. http://dx.doi.org/10.1007/BF03194595 Talon M and Gmitter Junior FG (2008). Citrus genomics. Intern. J. Plant Genomics: 1-17. Viana AP and Resende MDV (2014). Seleção Genômica Ampla (GWS). In: Genética Quantitativa no Melhoramento de Fruteiras (Viana AP, Resende MDV, eds.). Interciência, Rio de Janeiro. Viana AP, Resende MDV, Riaz S, Walker MA, et al (2016). Genome selection in fruit breeding: application to table grapes. Sci. Agric. 73: 142-149. http://dx.doi.org/10.1590/0103-9016-2014-0323 Wong CK, Bernardo R, et al (2008). Genomewide selection in oil palm: increasing selection gain per unit time and cost with small populations. Theor. Appl. Genet. 116: 815-824. http://dx.doi.org/10.1007/s00122-008-0715-5 Zapata-Velenzuela J, Whetten RW, Neale D, Mckeand S, et al (2013). Genomic estimated breeding values using genomic relationship matrices in a cloned population of Loblolly Pine. Genes Genom. Genet 3: 909-916. Zhao Y, Gowda M, Liu W, Wurschum T, et al (2013). Choice of shrinkage parameter and prediction of genomic breeding values in elite maize breeding populations. Plant Breed. 132: 99-106. http://dx.doi.org/10.1111/pbr.12008 Zhong S, Dekkers JCM, Fernando RL, Jannink JL, et al (2009). Factors affecting accuracy from genomic selection in populations derived from multiple inbred lines: a Barley case study. Genetics 182: 355-364. http://dx.doi.org/10.1534/genetics.108.098277
2012
G. C. Sant’Ana, Ferreira, J. L., Rocha, H. S., Borém, A., Pasqual, M., and Cançado, G. M. A., Comparison of a retrotransposon-based marker with microsatellite markers for discriminating accessions of Vitis vinifera, vol. 11, pp. 1507-1525, 2012.
Aradhya MK, Dangl GS, Prins BH, Boursiquot JM, et al. (2003). Genetic structure and differentiation in cultivated grape, Vitis vinifera L. Genet. Res. 81: 179-192. http://dx.doi.org/10.1017/S0016672303006177 PMid:12929909   Arrigo N and Arnold C (2007). Naturalised Vitis rootstocks in Europe and consequences to native wild grapevine. PLoS One 2: e521. http://dx.doi.org/10.1371/journal.pone.0000521 PMid:17565374 PMCid:1885978   Bowers JE, Dangl GS, Vignani R and Meredith CP (1996). Isolation and characterization of new polymorphic simple sequence repeat loci in grape (Vitis vinifera L.). Genome 39: 628-633. http://dx.doi.org/10.1139/g96-080 PMid:18469922   Bowers JE, Boursiquot JM, This P, Chu K, et al. (1999a). Historical genetics: the parentage of Chardonnay, Gamay, and other wine grapes of Northeastern France. Science 285: 1562-1565. http://dx.doi.org/10.1126/science.285.5433.1562 PMid:10477519   Bowers JE, Dangl GS and Meredith CP (1999b). Development and characterization of additional microsatellite DNA markers for grape. Am. J. Enol. Viticult. 50: 243-246.   Casacuberta JM, Vernhettes S, Audeon C and Grandbastien MA (1997). Quasispecies in retrotransposons: a role for sequence variability in Tnt1 evolution. Genetica 100: 109-117. http://dx.doi.org/10.1023/A:1018309007841 PMid:9440263   Cavalli-Sforza LL and Edwards AW (1967). Phylogenetic analysis. Models and estimation procedures. Am. J. Hum. Genet. 19: 233-257. PMid:6026583 PMCid:1706274   Chakraborty R and Jin L (1993). Determination of relatedness between individuals using DNA fingerprinting. Hum. Biol. 65: 875-895. PMid:8300084   Cipriani G, Marrazzo MT, Di Gaspero G, Pfeiffer A, et al. (2008). A set of microsatellite markers with long core repeat optimized for grape (Vitis spp.) genotyping. BMC Plant Biol. 8: 127. http://dx.doi.org/10.1186/1471-2229-8-127 PMid:19087321 PMCid:2625351   Cordaux R and Batzer MA (2009). The impact of retrotransposons on human genome evolution. Nat. Rev. Genet. 10: 691-703. http://dx.doi.org/10.1038/nrg2640 PMid:19763152 PMCid:2884099   Creste S, Tulmann-Neto A and Figueira A (2001). Detection of simple sequence repeat polymorphisms in denaturing polyacrilamide sequencing gels by silver staining. Plant Mol. Biol. Rep. 4: 299-306. http://dx.doi.org/10.1007/BF02772828   Dettweiler E, Jung A, Zyprian E and Töpfer R (2000). Grapevine cultivar Müller-Thurgau its true to type descent. Vitis 39: 63-65.   Doyle JJ and Doyle JL (1990). Isolation of plant DNA from fresh tissue. Focus 12: 13-15.   Evanno G, Regnaut S and Goudet J (2005). Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. Mol. Ecol. 14: 2611-2620. http://dx.doi.org/10.1111/j.1365-294X.2005.02553.x PMid:15969739   Excoffier L, Laval G and Schneider S (2005). Arlequin (version 3.0): an integrated software package for population genetics data analysis. Evol. Bioinform. Online 1: 47-50.   Glaubitz JC (2004). A user-friendly program to reformat diploid genotypic data for commonly used population genetic software packages. Mol. Ecol. Notes 4: 309-310. http://dx.doi.org/10.1111/j.1471-8286.2004.00597.x   Hocquigny S, Pelsy F, Dumas V, Kindt S, et al. (2004). Diversification within grapevine cultivars goes through chimeric states. Genome 47: 579-589. http://dx.doi.org/10.1139/g04-006 PMid:15190375   Kumar A and Bennetzen JL (1999). Plant retrotransposons. Annu. Rev. Genet. 33: 479-532. http://dx.doi.org/10.1146/annurev.genet.33.1.479 PMid:10690416   Laucou V, Boursiquot JM, Lacombe T, Bordenav L, et al. (2009). Parentage of grapevine rootstock 'Fercal' finally elucidated. Vitis 47: 163-167.   Leão PCS, Riaz S, Graziani R, Dangl GS, et al. (2009). Characterization of a Brazilian grape germplasm collection using microsatellite markers. Am. J. Enol. Viticult. 60: 517-524.   Liu KJ and Muse SV (2005). PowerMarker: an integrated analysis environment for genetic marker analysis. Bioinformatics 21: 2128-2129. http://dx.doi.org/10.1093/bioinformatics/bti282 PMid:15705655   Lopes MS, Sefc KM, Eiras ED, Steinkellner H, et al. (1999). The use of microsatellites for germplasm management in a Portuguese grapevine collection. Theor. Appl. Genet. 99: 733-739. http://dx.doi.org/10.1007/s001220051291 PMid:22665212   Moncada X, Pelsy F, Merdinoglu D and Hinrichsen P (2006). Genetic diversity and geographical dispersal in grapevine clones revealed by microsatellite markers. Genome 49: 1459-1472. http://dx.doi.org/10.1139/g06-102 PMid:17426761   Peakall R and Smouse PE (2006). GENALEX 6: genetic analysis in Excel. Population genetic software for teaching and research. Mol. Ecol. Notes 6: 288-295. http://dx.doi.org/10.1111/j.1471-8286.2005.01155.x   Pelsy F (2007). Untranslated leader region polymorphism of Tvv1, a retrotransposon family, is a novel marker useful for analyzing genetic diversity and relatedness in the genus Vitis. Theor. Appl. Genet. 116: 15-27. http://dx.doi.org/10.1007/s00122-007-0643-9 PMid:17926019   Pelsy F and Merdinoglu D (2002). The complete sequence of Tvv1 a family of Ty1 copia-like retrotransposon of Vitis vinifera L., reconstructed by chromosome walking. Theor. Appl. Genet. 105: 614-621. http://dx.doi.org/10.1007/s00122-002-0969-2 PMid:12582512   Pritchard J, Stephens M and Donnelly P (2000). Inference of population structure using multilocus genotype data. Genetics 155: 945-959. PMid:10835412 PMCid:1461096   Riaz S, Garrison KE, Dangl GS, Boursiquot JM, et al. (2002). Genetic divergence and chimerism within ancient asexually propagated winegrape cultivars. J. Am. Soc. Hort. Sci. 127: 508-514.   Saitou N and Nei M (1987). The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol. Biol. Evol. 4: 406-425. PMid:3447015   Sanmiguel P and Bennetzen JL (1998). Evidence that a recent increase in maize genome size was caused by the massive amplification of intergene retrotransposons. Ann. Bot. 82: 37-44. http://dx.doi.org/10.1006/anbo.1998.0746   SanMiguel P, Tikhonov A, Jin YK, Motchoulskaia N, et al. (1996). Nested retrotransposons in the intergenic regions of the maize genome. Science 274: 765-768. http://dx.doi.org/10.1126/science.274.5288.765 PMid:8864112   Santana JC, Hidalgo E, de Lucas AI, Recio P, et al. (2008). Identification and relationships of accessions grown in the grapevine (Vitis vinifera L.) Germplasm Bank of Castilla y Léon (Spain) and the varieties authorized in the VQPRD areas of the region by SSR-marker analysis. Genet. Res. Crop Evol. 55: 573-583.   Schuck MR, Moreira FM, Guerra MP, Voltolini JA, et al. (2009). Molecular characterization of grapevine from Santa Catarina, Brazil, using microsatellite markers. Pesq. Agropec. Bras. 44: 487-495. http://dx.doi.org/10.1590/S0100-204X2009000500008   Sefc KM, Regner F, Turetschek E, Glossl J, et al. (1999). Identification of microsatellite sequences in Vitis riparia and their applicability for genotyping of different Vitis species. Genome 42: 367-373. PMid:10382286   Sefc KM, Lopes MS, Lefort F, Botta R, et al. (2000). Microsatellite variability in grapevine cultivars from different European regions and evaluation of assignment testing to assess the geographic origin of cultivars. Theor. Appl. Genet. 100: 498-505. http://dx.doi.org/10.1007/s001220050065   Sousa JSI (1959). Mutações somáticas na videira niagara. Bragantia 18: 387-423. http://dx.doi.org/10.1590/S0006-87051959000100027   Tessier C, David J, This P, Boursiquot JM, et al. (1999). Optimization of the choice of molecular markers for varietal identification in Vitis vinifera L. Theor. Appl. Genet. 89: 171-177. http://dx.doi.org/10.1007/s001220051054   This P, Jung A, Boccacci P, Borrego J, et al. (2004). Development of a standard set of microsatellite reference alleles for identification of grape cultivars. Theor. Appl. Genet. 109: 1448-1458. http://dx.doi.org/10.1007/s00122-004-1760-3 PMid:15565426   Thomas MR and Scott NS (1993). Microsatellites repeats in grapevine reveal DNA polymorphisms when analysis as sequenced-tagged sites (STSs). Theor. Appl. Genet. 86: 985-990. http://dx.doi.org/10.1007/BF00211051   Waits LP, Luikart G and Taberlet P (2001). Estimating the probability of identity among genotypes in natural populations: cautions and guidelines. Mol. Ecol. 10: 249-256. http://dx.doi.org/10.1046/j.1365-294X.2001.01185.x PMid:11251803
A. D. Bdo Val, Ferreira, J. L., J. Neto, V., Pasqual, M., de Oliveira, A. F., Borém, A., and Cançado, G. M. A., Genetic diversity of Brazilian and introduced olive germplasms based on microsatellite markers, vol. 11, pp. 556-571, 2012.
Alba V, Montemurro C, Sabetta W, Pasqualone A, et al. (2009). SSR-based identification key of cultivars of Olea europaea L. diffused in Southern-Italy. Sci. Horticult. 123: 11-16. http://dx.doi.org/10.1016/j.scienta.2009.07.007 Albertini E, Torricelli R, Bitocchi E, Raggi L, et al. (2011). Structure of genetic diversity in Olea europaea L. cultivars from central Italy. Mol. Breed. 27: 533-547. http://dx.doi.org/10.1007/s11032-010-9452-y Baldoni L, Cultrera NG, Mariotti R, Ricciolini C, et al. (2009). A consensus list of microsatellite markers for olive genotyping. Mol. Breed. 24: 213-231. http://dx.doi.org/10.1007/s11032-009-9285-8 Besnard G, Baali-Cherif D, Bettinelli-Riccardi S, Parietti D, et al. (2009). Pollen-mediated gene flow in a highly fragmented landscape: consequences for defining a conservation strategy of the relict Laperrine’s olive. C R Biol. 332: 662-672. http://dx.doi.org/10.1016/j.crvi.2009.02.003 PMid:19523606 Bracci T, Busconi M, Fogher C and Sebastiani L (2011). Molecular studies in olive (Olea europaea L.): overview on DNA markers applications and recent advances in genome analysis. Plant Cell Rep. 30: 449-462. http://dx.doi.org/10.1007/s00299-010-0991-9 PMid:21212959 Cadalen T, Mörchen M, Blassiau C, Clabaut A, et al. (2010). Development of SSR markers and construction of a consensus genetic map for chicory (Cichorium intybus L.). Mol. Breed. 25: 699-722. http://dx.doi.org/10.1007/s11032-009-9369-5 Carriero F, Fontanazza G, Cellini F and Giorio G (2002). Identification of simple sequence repeats (SSRs) in olive (Olea europaea L.). Theor. Appl. Genet. 104: 301-307. http://dx.doi.org/10.1007/s001220100691 PMid:12582701 Cavalli-Sforza LL and Edwards AW (1967). Phylogenetic analysis. Models and estimation procedures. Am. J. Hum. Genet. 19: 233-257. PMid:6026583    PMCid:1706274 Chafari J, Meziane AE, Moukhli A, Boulouha B, et al. (2008). Menara gardens: a Moroccan olive germplasm collection identified by a SSR locus-based genetic study. Genet. Resour. Crop Evol. 55: 893-900. http://dx.doi.org/10.1007/s10722-007-9294-6 Cipriani G, Marrazzo MT, Marconi R, Cimato A, et al. (2002). Microsatellite markers isolated in olive (Olea europaea L.) are suitable for individual fingerprinting and reveal polymorphism within ancient cultivars. Theor. Appl. Genet. 104: 223-228. http://dx.doi.org/10.1007/s001220100685 PMid:12582690 Cordeiro AI, Sanchez-Sevilla JF, Alvarez-Tinaut MC and Gomez-Jimenez MC (2008). Genetic diversity assessment in Portugal accessions of Olea europaea by RAPD markers. Bio. Plant 52: 642-647. http://dx.doi.org/10.1007/s10535-008-0125-1 Creste S, Tulmann-Neto A and Figueira A (2001). Detection of single sequence repeat polymorphisms in denaturing polyacrylamide sequencing gels by silver staining. Plant Mol. Biol. Rep. 4: 299-306. http://dx.doi.org/10.1007/BF02772828 Doyle JJ and Doyle JL (1990). Isolation of plant DNA from fresh tissue. Focus 12: 13-15. Erre P, Chessa I, Umñoz-Diez C, Belaj A, et al. (2010). Genetic diversity and relationships between wild and cultivated olives (Olea europaea L.) in Sardinia as assessed by SSR markers. Genet. Resour. Crop Evol. 57: 41-54. http://dx.doi.org/10.1007/s10722-009-9449-8 Evanno G, Regnaut S and Goudet J (2005). Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. Mol. Ecol. 14: 2611-2620. http://dx.doi.org/10.1111/j.1365-294X.2005.02553.x PMid:15969739 Excoffier L, Laval G and Schneider S (2005). Arlequin (version 3.0): an integrated software package for population genetics data analysis. Evol. Bioinform. Online 1: 47-50. Glaubitz JC (2004). Convert: a user-friendly program to reformat diploid genotypic data for commonly used population genetic software packages. Mol. Ecol. Not 4: 309-310. http://dx.doi.org/10.1111/j.1471-8286.2004.00597.x Gorji AH and Zolnoori M (2011). Genetic diversity in hexaploid wheat genotypes using microsatellite markers. Asian J.l Biotechnol. 3: 368-377. http://dx.doi.org/10.3923/ajbkr.2011.368.377 Gouveia JMNB (2008). O Azeite da “Galega Vulgar”, Patrimônio Nacional. Available at [http://www.esa.ipsantarem.pt/newsletter/N6Marco2008/index_ficheiros/JoseGouveia.pdf]. Accessed June 9, 2011. Grati-Kamoun N, Mahmoud FL, Rebaï A, Gargouri A, et al. (2006). Genetic diversity of Tunisian olive tree (Olea europaea L.) cultivars assessed by AFLP markers. Genet. Resour. Crop Evol. 53: 265-275. http://dx.doi.org/10.1007/s10722-004-6130-0 Hakim IR, Kammoun NG, Makhloufi E and Rebaï A (2010). Discovery and potential of snp markers in characterization of tunisian olive germplasm. Diversity 2: 17-27. http://dx.doi.org/10.3390/d2010017 Khadari B, Charafi J, Moukhli A and Ater M (2008). Substantial genetic diversity in cultivated Moroccan olive despite a single major cultivar: a paradoxical situation evidenced by the use of SSR loci. Tree Gen. Gen. 4: 213-221. http://dx.doi.org/10.1007/s11295-007-0102-4 Liu K and Muse SV (2005). PowerMarker: an integrated analysis environment for genetic marker analysis. Bioinformatics 21: 2128-2129. http://dx.doi.org/10.1093/bioinformatics/bti282 PMid:15705655 Martins-Lopes P, Gomes S, Lima-Brito J, Lopes J, et al. (2009). Assessment of clonal genetic variability in Olea europaea L. “Cobrançosa” by molecular markers. Sci. Horticult. 123: 82-89. http://dx.doi.org/10.1016/j.scienta.2009.08.001 Mookerjee S, Guerin J, Collins G, Ford C, et al. (2005). Paternity analysis using microsatellite markers to identify pollen donors in an olive grove. Theor. Appl. Genet. 111: 1174-1182. http://dx.doi.org/10.1007/s00122-005-0049-5 PMid:16133312 Muzzalupo I, Stefanizzi F, Salimonti A, Falabella R, et al. (2009). Microsatellite markers for identification of a group of italian olive accessions. Sci. Agric. 66: 685-690. http://dx.doi.org/10.1590/S0103-90162009000500014 Noormohammadi Z, Hosseini-Mazinani M, Trujillo I and Angjelina B (2009). Study of intracultivar variation among main Iranian olive cultivars using SSR markers. Acta Biol. Szegediensis 53: 27-32. Pasqualone A, Montemurro C, Summo C, Sabetta W, et al. (2007). Effectiveness of microsatellite DNA markers in checking the identity of protected designation of origin extra virgin olive oil. J. Agric. Food Chem. 55: 3857-3862. http://dx.doi.org/10.1021/jf063708r PMid:17439146 Peakall R and Smouse PE (2006). Genalex 6: genetic analysis in Excel. Population genetic software for teaching and research. Mol. Ecol. Not 6: 288-295. http://dx.doi.org/10.1111/j.1471-8286.2005.01155.x Poljuha D, Sladonja B, Šetić E, Milotić A, et al. (2008). DNA fingerprinting of olive varieties in Istria (Croatia) by microsatellite markers. Sci. Horticult. 115: 223-230. http://dx.doi.org/10.1016/j.scienta.2007.08.018 Pritchard JK, Stephens M and Donnelly P (2000). Inference of population structure using multilocus genotype data. Genetics 155: 945-959. PMid:10835412    PMCid:1461096 Rony C, Baalbaki R, Kalaitzis P and Talhouk SN (2009). Molecular characterization of Lebanese olive germplasm. Tree Gen. Gen. 5: 109-115. http://dx.doi.org/10.1007/s11295-008-0170-0 Roubos K, Moustakas M and Aravanopoulos FA (2010). Molecular identification of Greek olive (Olea europaea) cultivars based on microsatellite loci. Genet. Mol. Res. 9: 1865-1876. http://dx.doi.org/10.4238/vol9-3gmr916 PMid:20882482 Saitou N and Nei M (1987). The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol. Biol. Evol. 4: 406-425. PMid:3447015 Sarri V, Baldoni L, Porceddu A, Cultrera NG, et al. (2006). Microsatellite markers are powerful tools for discriminating among olive cultivars and assigning them to geographically defined populations. Genome 49: 1606-1615. http://dx.doi.org/10.1139/g06-126 PMid:17426775 Spennemann DHR and Allen LR (2000). Feral olives (Olea europaea) as future woody weeds in Australia: A review. Aust. J. Exp. Agricult. 40: 889-901. http://dx.doi.org/10.1071/EA98141 Waits LP, Luikart G and Taberlet P (2001). Estimating the probability of identity among genotypes in natural populations: cautions and guidelines. Mol. Ecol. 10: 249-256. http://dx.doi.org/10.1046/j.1365-294X.2001.01185.x PMid:11251803 Weber JL (1990). Informativeness of human (dC-dA)n.(dG-dT)n polymorphisms. Genomics 7: 524-530. http://dx.doi.org/10.1016/0888-7543(90)90195-Z