Publications

Found 1 results
Filters: Author is D. Ferguson  [Clear All Filters]
2012
Q. Cheng, Sanborn, C., Ferguson, D., and Blanco, J. G., DNA sequence variants in the carbonyl reductase 1 (cbr1) gene in seven breeds of Canis lupus familiaris, vol. 11. pp. 1109-1116, 2012.
Untitled Document Astra LI, Hammond R, Tarakji K and Stephenson LW (2003). Doxorubicin-induced canine CHF: advantages and disadvantages. J. Card. Surg. 18: 301-306. http://dx.doi.org/10.1046/j.1540-8191.2003.02032.x PMid:12869174   Blanco JG, Leisenring WM, Gonzalez-Covarrubias VM, Kawashima TI, et al. (2008). Genetic polymorphisms in the carbonyl reductase 3 gene CBR3 and the NAD(P)H:quinone oxidoreductase 1 gene NQO1 in patients who developed anthracycline-related congestive heart failure after childhood cancer. Cancer 112: 2789-2795. http://dx.doi.org/10.1002/cncr.23534 PMid:18457324   Blanco JG, Sun CL, Landier W, Chen L, et al. (2011). Anthracycline-related cardiomyopathy after childhood cancer: role of polymorphisms in carbonyl reductase genes - A report from the Children's Oncology Group. J. Clin. Oncol. (in press) DOI [10.1200/JCO.2011.34.8987].   Forrest GL, Gonzalez B, Tseng W, Li X, et al. (2000). Human carbonyl reductase overexpression in the heart advances the development of doxorubicin-induced cardiotoxicity in transgenic mice. Cancer Res. 60: 5158-5164. PMid:11016643   Gillings S, Johnson J, Fulmer A and Hauck M (2009). Effect of a 1-hour IV infusion of doxorubicin on the development of cardiotoxicity in dogs as evaluated by electrocardiography and echocardiography. Vet. Ther. 10: 46-58. PMid:19742448   Herman EH and Ferrans VJ (1998). Preclinical animal models of cardiac protection from anthracycline-induced cardiotoxicity. Semin. Oncol. 25: 15-21. PMid:9768819   Herman EH, Rahman A, Ferrans VJ, Vick JA, et al. (1983). Prevention of chronic doxorubicin cardiotoxicity in beagles by liposomal encapsulation. Cancer Res. 43: 5427-5432. PMid:6616474   Lakhman SS, Chen X, Gonzalez-Covarrubias V, Schuetz EG, et al. (2007). Functional characterization of the promoter of human carbonyl reductase 1 (CBR1). Role of XRE elements in mediating the induction of CBR1 by ligands of the aryl hydrocarbon receptor. Mol. Pharmacol. 72: 734-743. http://dx.doi.org/10.1124/mol.107.035550 PMid:17569794 PMCid:2446603   Lal S, Sandanaraj E, Wong ZW, Ang PC, et al. (2008). CBR1 and CBR3 pharmacogenetics and their influence on doxorubicin disposition in Asian breast cancer patients. Cancer Sci. 99: 2045-2054. http://dx.doi.org/10.1111/j.1349-7006.2008.00744.x   McDowell TL, Symons JA and Duff GW (2005). Human interleukin-1 alpha gene expression is regulated by Sp1 and a transcriptional repressor. Cytokine 30: 141-153. http://dx.doi.org/10.1016/j.cyto.2004.12.010 PMid:15863387   Minotti G, Menna P, Salvatorelli E, Cairo G, et al. (2004). Anthracyclines: molecular advances and pharmacologic developments in antitumor activity and cardiotoxicity. Pharmacol. Rev. 56: 185-229. http://dx.doi.org/10.1124/pr.56.2.6 PMid:15169927   Mordente A, Meucci E, Martorana GE, Giardina B, et al. (2001). Human heart cytosolic reductases and anthracycline cardiotoxicity. IUBMB Life 52: 83-88. http://dx.doi.org/10.1080/15216540252774829 PMid:11795600   Morrison WB (2002). Cancer in Dogs and Cats: Medical and Surgical Management. Teton New Media, Jackson Hole.   Olson LE, Bedja D, Alvey SJ, Cardounel AJ, et al. (2003). Protection from doxorubicin-induced cardiac toxicity in mice with a null allele of carbonyl reductase 1. Cancer Res. 63: 6602-6606. PMid:14583452   Simon D, Nolte I, Eberle N, Abbrederis N, et al. (2006). Treatment of dogs with lymphoma using a 12-week, maintenance-free combination chemotherapy protocol. J. Vet. Intern. Med. 20: 948-954. http://dx.doi.org/10.1111/j.1939-1676.2006.tb01810.x PMid:16955821   Wang F, Hoivik D, Pollenz R and Safe S (1998). Functional and physical interactions between the estrogen receptor Sp1 and nuclear aryl hydrocarbon receptor complexes. Nucleic Acids Res. 26: 3044-305. http://dx.doi.org/10.1093/nar/26.12.3044 PMid:9611253 PMCid:147653