Publications
Found 3 results
Filters: Author is Z.Q. Tang [Clear All Filters]
“Genetic variability of Myzus persicae nicotianae densovirus based on partial NS and VP gene sequences”, vol. 15, no. 4, p. -, 2016.
,
Conflicts of interest
The authors declare no conflict of interest.
ACKNOWLEDGMENTS
Research supported by Shanghai Tobacco Co., Ltd (#SZBCW2015-00876), the Science Foundation for Young Scholars of Institute of Tobacco Research of CAAS (#2015B03) and the Agricultural Science and Technology Innovation Program (#ASTIP-TRIC04).
REFERENCES
Allendorf FW (1983). Isolation, gene flow and genetic differentiation among populations. In: Genetics and conservation (Schonewald-Cox CM, Chambers SM, MacBryde B and Thomas L, eds.). Benjamin-Cummings, London, 51-65.
Bass C, Zimmer CT, Riveron JM, Wilding CS, et al (2013). Gene amplification and microsatellite polymorphism underlie a recent insect host shift. Proc. Natl. Acad. Sci. USA 110: 19460-19465. http://dx.doi.org/10.1073/pnas.1314122110
Berns KI, Bergoin M, Bloom M, Lederman M, et al. (1995). The family Parvoviridae. In: Virus taxonomy: classification and nomenclature of viruses. Sixth report of the International Committee on Taxonomy of Viruses (Murphy FA, Fauquet CM, Bishop DHL, Ghabrial SA, et al., eds.). Springer-Verlag, Vienna, 169-178.
Blackman RL and Eastop VF (1984). Aphids on the world’s crops: an identification and information guide. John Wiley & Sons, Hoboken.
Cotmore SF, Agbandje-McKenna M, Chiorini JA, Mukha DV, et al (2014). The family Parvoviridae. Arch. Virol. 159: 1239-1247. http://dx.doi.org/10.1007/s00705-013-1914-1
Evans N, Paulay G, et al (2012). DNA barcoding methods for invertebrates. Methods Mol. Biol. 858: 47-77. http://dx.doi.org/10.1007/978-1-61779-591-6_4
Excoffier L, Lischer HE, et al (2010). Arlequin suite ver 3.5: a new series of programs to perform population genetics analyses under Linux and Windows. Mol. Ecol. Resour. 10: 564-567. http://dx.doi.org/10.1111/j.1755-0998.2010.02847.x
Fédière G, et al (2000). Epidemiology and pathology of Densovirinae. Contrib. Microbiol. 4: 1-11. http://dx.doi.org/10.1159/000060332
Flint-Garcia SA, Thornsberry JM, BucklerES4thet al (2003). Structure of linkage disequilibrium in plants. Annu. Rev. Plant Biol. 54: 357-374. http://dx.doi.org/10.1146/annurev.arplant.54.031902.134907
Gao F, Jin J, Zou W, Liao F, et al (2016). Geographically driven adaptation of chilli veinal mottle virus revealed by genetic diversity analysis of the coat protein gene. Arch. Virol. 161: 1329-1333. http://dx.doi.org/10.1007/s00705-016-2761-7
Harpending HC, Batzer MA, Gurven M, Jorde LB, et al (1998). Genetic traces of ancient demography. Proc. Natl. Acad. Sci. USA 95: 1961-1967. http://dx.doi.org/10.1073/pnas.95.4.1961
Hebert PD, Gregory TR, et al (2005). The promise of DNA barcoding for taxonomy. Syst. Biol. 54: 852-859. http://dx.doi.org/10.1080/10635150500354886
Li JB, Ren ZM, et al (2009). Genetic diversity among Schlechtendalia chinensis individuals revealed by Cyt b sequences. J. Fudan Univ. Nat. Sci. 48: 680-686.
Librado P, Rozas J, et al (2009). DnaSP v5: a software for comprehensive analysis of DNA polymorphism data. Bioinformatics 25: 1451-1452. http://dx.doi.org/10.1093/bioinformatics/btp187
Llewellyn KS, Loxdale HD, Harrington R, Brookes CP, et al (2003). Migration and genetic structure of the grain aphid (Sitobion avenae) in Britain related to climate and clonal fluctuation as revealed using microsatellites. Mol. Ecol. 12: 21-34. http://dx.doi.org/10.1046/j.1365-294X.2003.01703.x
Loxdale HD, Hardie J, Halbert S, Foottit R, et al (1993). The relative importance of short- and long-range movement of flying aphids. Biol. Rev. Camb. Philos. Soc. 68: 291-311. http://dx.doi.org/10.1111/j.1469-185X.1993.tb00998.x
Meynadier G, Vago C, Plantevin G, Atger P, et al (1964). Virose d’un type inhabituel chez le lépidoptère Galleria mellonella L. Revue de Zool. Agric. et Appliquée 63: 207-208.
Mutuel D, Ravallec M, Chabi B, Multeau C, et al (2010). Pathogenesis of Junonia coenia densovirus in Spodoptera frugiperda: a route of infection that leads to hypoxia. Virology 403: 137-144. http://dx.doi.org/10.1016/j.virol.2010.04.003
Nohara K, Takeuchi H, Tsuzaki T, Suzuki N, et al (2010). Genetic variability and stock structure of red tilefish Branchiostegus japonicus inferred from mtDNA sequence analysis. Fish. Sci. 76: 75-81. http://dx.doi.org/10.1007/s12562-009-0188-8
Ryabov EV, Keane G, Naish N, Evered C, et al (2009). Densovirus induces winged morphs in asexual clones of the rosy apple aphid, Dysaphis plantaginea. Proc. Natl. Acad. Sci. USA 106: 8465-8470. http://dx.doi.org/10.1073/pnas.0901389106
Tajima F, et al (1989). Statistical method for testing the neutral mutation hypothesis by DNA polymorphism. Genetics 123: 585-595.
Tamura K, Stecher G, Peterson D, Filipski A, et al (2013). MEGA6: molecular evolutionary genetics analysis version 6.0. Mol. Biol. Evol. 30: 2725-2729. http://dx.doi.org/10.1093/molbev/mst197
Tang S, Song X, Xue L, Wang X, et al (2016). Characterization and distribution analysis of a densovirus infecting Myzus persicae nicotianae (Hemiptera: Aphididae). J. Econ. Entomol. 109: 580-587. http://dx.doi.org/10.1093/jee/tov399
Taylor HR, Harris WE, et al (2012). An emergent science on the brink of irrelevance: a review of the past 8 years of DNA barcoding. Mol. Ecol. Resour. 12: 377-388. http://dx.doi.org/10.1111/j.1755-0998.2012.03119.x
Thompson JD, Higgins DG, Gibson TJ, et al (1994). CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res. 22: 4673-4680. http://dx.doi.org/10.1093/nar/22.22.4673
Wang XY, Xu GQ, et al (2014). Genetic differentiation and gene flow among geographic populations of Spodoptera exigua (Lepidoptera: Noctuidae) in China. Acta Entomol. Sin. 57: 1061-1074.
Wright S (1984). Evolution and the genetics of populations, volume 3: experimental results and evolutionary deductions. University of Chicago Press, Chicago.
Xu P, Cheng P, Liu Z, Li Y, et al (2012). Complete genome sequence of a monosense densovirus infecting the cotton bollworm, Helicoverpa armigera. J. Virol. 86: 10909. http://dx.doi.org/10.1128/JVI.01912-12
Xu P, Liu Y, Graham RI, Wilson K, et al (2014). Densovirus is a mutualistic symbiont of a global crop pest (Helicoverpa armigera) and protects against a baculovirus and Bt biopesticide. PLoS Pathog. 10: e1004490. http://dx.doi.org/10.1371/journal.ppat.1004490
Zhang B, Ma C, Edwards O, Fuller S, et al (2014). The mitochondrial genome of the Russian wheat aphid Diuraphis noxia: large repetitive sequences between trnE and trnF in aphids. Gene 533: 253-260. http://dx.doi.org/10.1016/j.gene.2013.09.064
Zhao C, Yang XM, Tang SH, Xu PJ, et al (2015a). Population genetic structure of Myzus persicae nicotianae (Hemiptera: Aphididae) in China by microsatellite analysis. Genet. Mol. Res. 14: 17159-17169. http://dx.doi.org/10.4238/2015.December.16.16
Zhao CL, Chen H, Song J, Cui BK, et al (2015b). Phylogeny and taxonomy of the genus Abundisporus (Polyporales, Basidiomycota). Mycol. Prog. 14: 38. http://dx.doi.org/10.1007/s11557-015-1062-y
“Genetic variability of Myzus persicae nicotianae densovirus based on partial NS and VP gene sequences”, vol. 15, no. 4, p. -, 2016.
,
Conflicts of interest
The authors declare no conflict of interest.
ACKNOWLEDGMENTS
Research supported by Shanghai Tobacco Co., Ltd (#SZBCW2015-00876), the Science Foundation for Young Scholars of Institute of Tobacco Research of CAAS (#2015B03) and the Agricultural Science and Technology Innovation Program (#ASTIP-TRIC04).
REFERENCES
Allendorf FW (1983). Isolation, gene flow and genetic differentiation among populations. In: Genetics and conservation (Schonewald-Cox CM, Chambers SM, MacBryde B and Thomas L, eds.). Benjamin-Cummings, London, 51-65.
Bass C, Zimmer CT, Riveron JM, Wilding CS, et al (2013). Gene amplification and microsatellite polymorphism underlie a recent insect host shift. Proc. Natl. Acad. Sci. USA 110: 19460-19465. http://dx.doi.org/10.1073/pnas.1314122110
Berns KI, Bergoin M, Bloom M, Lederman M, et al. (1995). The family Parvoviridae. In: Virus taxonomy: classification and nomenclature of viruses. Sixth report of the International Committee on Taxonomy of Viruses (Murphy FA, Fauquet CM, Bishop DHL, Ghabrial SA, et al., eds.). Springer-Verlag, Vienna, 169-178.
Blackman RL and Eastop VF (1984). Aphids on the world’s crops: an identification and information guide. John Wiley & Sons, Hoboken.
Cotmore SF, Agbandje-McKenna M, Chiorini JA, Mukha DV, et al (2014). The family Parvoviridae. Arch. Virol. 159: 1239-1247. http://dx.doi.org/10.1007/s00705-013-1914-1
Evans N, Paulay G, et al (2012). DNA barcoding methods for invertebrates. Methods Mol. Biol. 858: 47-77. http://dx.doi.org/10.1007/978-1-61779-591-6_4
Excoffier L, Lischer HE, et al (2010). Arlequin suite ver 3.5: a new series of programs to perform population genetics analyses under Linux and Windows. Mol. Ecol. Resour. 10: 564-567. http://dx.doi.org/10.1111/j.1755-0998.2010.02847.x
Fédière G, et al (2000). Epidemiology and pathology of Densovirinae. Contrib. Microbiol. 4: 1-11. http://dx.doi.org/10.1159/000060332
Flint-Garcia SA, Thornsberry JM, BucklerES4thet al (2003). Structure of linkage disequilibrium in plants. Annu. Rev. Plant Biol. 54: 357-374. http://dx.doi.org/10.1146/annurev.arplant.54.031902.134907
Gao F, Jin J, Zou W, Liao F, et al (2016). Geographically driven adaptation of chilli veinal mottle virus revealed by genetic diversity analysis of the coat protein gene. Arch. Virol. 161: 1329-1333. http://dx.doi.org/10.1007/s00705-016-2761-7
Harpending HC, Batzer MA, Gurven M, Jorde LB, et al (1998). Genetic traces of ancient demography. Proc. Natl. Acad. Sci. USA 95: 1961-1967. http://dx.doi.org/10.1073/pnas.95.4.1961
Hebert PD, Gregory TR, et al (2005). The promise of DNA barcoding for taxonomy. Syst. Biol. 54: 852-859. http://dx.doi.org/10.1080/10635150500354886
Li JB, Ren ZM, et al (2009). Genetic diversity among Schlechtendalia chinensis individuals revealed by Cyt b sequences. J. Fudan Univ. Nat. Sci. 48: 680-686.
Librado P, Rozas J, et al (2009). DnaSP v5: a software for comprehensive analysis of DNA polymorphism data. Bioinformatics 25: 1451-1452. http://dx.doi.org/10.1093/bioinformatics/btp187
Llewellyn KS, Loxdale HD, Harrington R, Brookes CP, et al (2003). Migration and genetic structure of the grain aphid (Sitobion avenae) in Britain related to climate and clonal fluctuation as revealed using microsatellites. Mol. Ecol. 12: 21-34. http://dx.doi.org/10.1046/j.1365-294X.2003.01703.x
Loxdale HD, Hardie J, Halbert S, Foottit R, et al (1993). The relative importance of short- and long-range movement of flying aphids. Biol. Rev. Camb. Philos. Soc. 68: 291-311. http://dx.doi.org/10.1111/j.1469-185X.1993.tb00998.x
Meynadier G, Vago C, Plantevin G, Atger P, et al (1964). Virose d’un type inhabituel chez le lépidoptère Galleria mellonella L. Revue de Zool. Agric. et Appliquée 63: 207-208.
Mutuel D, Ravallec M, Chabi B, Multeau C, et al (2010). Pathogenesis of Junonia coenia densovirus in Spodoptera frugiperda: a route of infection that leads to hypoxia. Virology 403: 137-144. http://dx.doi.org/10.1016/j.virol.2010.04.003
Nohara K, Takeuchi H, Tsuzaki T, Suzuki N, et al (2010). Genetic variability and stock structure of red tilefish Branchiostegus japonicus inferred from mtDNA sequence analysis. Fish. Sci. 76: 75-81. http://dx.doi.org/10.1007/s12562-009-0188-8
Ryabov EV, Keane G, Naish N, Evered C, et al (2009). Densovirus induces winged morphs in asexual clones of the rosy apple aphid, Dysaphis plantaginea. Proc. Natl. Acad. Sci. USA 106: 8465-8470. http://dx.doi.org/10.1073/pnas.0901389106
Tajima F, et al (1989). Statistical method for testing the neutral mutation hypothesis by DNA polymorphism. Genetics 123: 585-595.
Tamura K, Stecher G, Peterson D, Filipski A, et al (2013). MEGA6: molecular evolutionary genetics analysis version 6.0. Mol. Biol. Evol. 30: 2725-2729. http://dx.doi.org/10.1093/molbev/mst197
Tang S, Song X, Xue L, Wang X, et al (2016). Characterization and distribution analysis of a densovirus infecting Myzus persicae nicotianae (Hemiptera: Aphididae). J. Econ. Entomol. 109: 580-587. http://dx.doi.org/10.1093/jee/tov399
Taylor HR, Harris WE, et al (2012). An emergent science on the brink of irrelevance: a review of the past 8 years of DNA barcoding. Mol. Ecol. Resour. 12: 377-388. http://dx.doi.org/10.1111/j.1755-0998.2012.03119.x
Thompson JD, Higgins DG, Gibson TJ, et al (1994). CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res. 22: 4673-4680. http://dx.doi.org/10.1093/nar/22.22.4673
Wang XY, Xu GQ, et al (2014). Genetic differentiation and gene flow among geographic populations of Spodoptera exigua (Lepidoptera: Noctuidae) in China. Acta Entomol. Sin. 57: 1061-1074.
Wright S (1984). Evolution and the genetics of populations, volume 3: experimental results and evolutionary deductions. University of Chicago Press, Chicago.
Xu P, Cheng P, Liu Z, Li Y, et al (2012). Complete genome sequence of a monosense densovirus infecting the cotton bollworm, Helicoverpa armigera. J. Virol. 86: 10909. http://dx.doi.org/10.1128/JVI.01912-12
Xu P, Liu Y, Graham RI, Wilson K, et al (2014). Densovirus is a mutualistic symbiont of a global crop pest (Helicoverpa armigera) and protects against a baculovirus and Bt biopesticide. PLoS Pathog. 10: e1004490. http://dx.doi.org/10.1371/journal.ppat.1004490
Zhang B, Ma C, Edwards O, Fuller S, et al (2014). The mitochondrial genome of the Russian wheat aphid Diuraphis noxia: large repetitive sequences between trnE and trnF in aphids. Gene 533: 253-260. http://dx.doi.org/10.1016/j.gene.2013.09.064
Zhao C, Yang XM, Tang SH, Xu PJ, et al (2015a). Population genetic structure of Myzus persicae nicotianae (Hemiptera: Aphididae) in China by microsatellite analysis. Genet. Mol. Res. 14: 17159-17169. http://dx.doi.org/10.4238/2015.December.16.16
Zhao CL, Chen H, Song J, Cui BK, et al (2015b). Phylogeny and taxonomy of the genus Abundisporus (Polyporales, Basidiomycota). Mycol. Prog. 14: 38. http://dx.doi.org/10.1007/s11557-015-1062-y
“Quantitative trait loci associated with body weight and abdominal fat traits on chicken chromosomes 3, 5 and 7”, vol. 11, pp. 956-965, 2012.
, Abasht B, Dekkers JC and Lamont SJ (2006). Review of quantitative trait loci identified in the chicken. Poult. Sci. 85: 2079-2096.
PMid:17135661
Ambo M, Moura AS, Ledur MC, Pinto LF, et al. (2009). Quantitative trait loci for performance traits in a broiler x layer cross. Anim. Genet. 40: 200-208.
http://dx.doi.org/10.1111/j.1365-2052.2008.01824.x
PMid:19170675
Andersson L and Georges M (2004). Domestic-animal genomics: deciphering the genetics of complex traits. Nat. Rev. Genet. 5: 202-212.
http://dx.doi.org/10.1038/nrg1294
PMid:14970822
Ankra-Badu GA, Le Bihan-Duval E, Mignon-Grasteau S, Pitel F, et al. (2010). Mapping QTL for growth and shank traits in chickens divergently selected for high or low body weight. Anim. Genet. 41: 400-405.
PMid:20096032
Atzmon G, Blum S, Feldman M, Lavi U, et al. (2007). Detection of agriculturally important QTLs in chickens and analysis of the factors affecting genotyping strategy. Cytogenet. Genome Res. 117: 327-337.
http://dx.doi.org/10.1159/000103195
PMid:17675875
Atzmon G, Blum S, Feldman M, Cahaner A, et al. (2008). QTLs detected in a multigenerational resource chicken population. J. Hered. 99: 528-538.
http://dx.doi.org/10.1093/jhered/esn030
PMid:18492652
Brockmann GA, Haley CS, Renne U, Knott SA, et al. (1998). Quantitative trait loci affecting body weight and fatness from a mouse line selected for extreme high growth. Genetics 150: 369-381.
PMid:9725853 PMCid:1460298
Campos RL, Nones K, Ledur MC, Moura AS, et al. (2009). Quantitative trait loci associated with fatness in a broiler-layer cross. Anim. Genet. 40: 729-736.
http://dx.doi.org/10.1111/j.1365-2052.2009.01910.x
PMid:19466938
Carlborg O, Kerje S, Schutz K, Jacobsson L, et al. (2003). A global search reveals epistatic interaction between QTL for early growth in the chicken. Genome Res. 13: 413-421.
http://dx.doi.org/10.1101/gr.528003
PMid:12618372 PMCid:430275
Choct M, Naylor A, Hutton O and Nolan J (2000). Increasing efficiency of lean tissue composition in broiler chickens. A Report for the Rural Industries Research and Development Corporation. Publication No. 98/123. Available at [https://rirdc.infoservices.com.au/downloads/98-123]. Accessed September 20, 2010.
Churchill GA and Doerge RW (1994). Empirical threshold values for quantitative trait mapping. Genetics 138: 963-971.
PMid:7851788 PMCid:1206241
Deeb N and Lamont SJ (2002). Genetic architecture of growth and body composition in unique chicken populations. J. Hered. 93: 107-118.
http://dx.doi.org/10.1093/jhered/93.2.107
PMid:12140270
Green P, Falls K and Crooks S (1990). Program CRI-MAP, Version 2.4. Washington University School of Medicine, St. Louis.
Hu ZL, Fritz ER and Reecy JM (2007). AnimalQTLdb: a livestock QTL database tool set for positional QTL information mining and beyond. Nucleic Acids Res. 35: D604-D609.
http://dx.doi.org/10.1093/nar/gkl946
PMid:17135205 PMCid:1781224
Ikeobi CO, Woolliams JA, Morrice DR, Law A, et al. (2002). Quantitative trait loci affecting fatness in the chicken. Anim. Genet. 33: 428-435.
http://dx.doi.org/10.1046/j.1365-2052.2002.00911.x
PMid:12464017
Jacobsson L, Park HB, Wahlberg P, Fredriksson R, et al. (2005). Many QTLs with minor additive effects are associated with a large difference in growth between two selection lines in chickens. Genet. Res. 86: 115-125.
http://dx.doi.org/10.1017/S0016672305007767
PMid:16356285
Kerje S, Carlborg O, Jacobsson L, Schutz K, et al. (2003). The two-fold difference in adult size between the red junglefowl and White Leghorn chickens is largely explained by a limited number of QTLs. Anim. Genet. 34: 264-274.
http://dx.doi.org/10.1046/j.1365-2052.2003.01000.x
PMid:12873214
Knott SA, Marklund L, Haley CS, Andersson K, et al. (1998). Multiple marker mapping of quantitative trait loci in a cross between outbred wild boar and large white pigs. Genetics 149: 1069-1080.
PMid:9611214 PMCid:1460207
Lagarrigue S, Pitel F, Carre W, Abasht B, et al. (2006). Mapping quantitative trait loci affecting fatness and breast muscle weight in meat-type chicken lines divergently selected on abdominal fatness. Genet. Sel. Evol. 38: 85-97.
http://dx.doi.org/10.1186/1297-9686-38-1-85
PMCid:2689300
Le Bihan-Duval E, Millet N and Remignon H (1999). Broiler meat quality: effect of selection for increased carcass quality and estimates of genetic parameters. Poult. Sci. 78: 822-826.
PMid:10438124
Le Mignon G, Pitel F, Gilbert H, Le Bihan-Duval E, et al. (2009). A comprehensive analysis of QTL for abdominal fat and breast muscle weights on chicken chromosome 5 using a multivariate approach. Anim. Genet. 40: 157-164.
http://dx.doi.org/10.1111/j.1365-2052.2008.01817.x
PMid:19243366
Liu X, Li H, Wang S, Hu X, et al. (2007). Mapping quantitative trait loci affecting body weight and abdominal fat weight on chicken chromosome one. Poult. Sci. 86: 1084-1089.
PMid:17495077
Marklund L, Nystrom PE, Stern S, Andersson-Eklund L, et al. (1999). Confirmed quantitative trait loci for fatness and growth on pig chromosome 4. Heredity 82: 134-141.
http://dx.doi.org/10.1038/sj.hdy.6884630
PMid:10098263
McElroy JP, Kim JJ, Harry DE, Brown SR, et al. (2006). Identification of trait loci affecting white meat percentage and other growth and carcass traits in commercial broiler chickens. Poult. Sci. 85: 593-605.
PMid:16615342
Nadaf J, Pitel F, Gilbert H, Duclos MJ, et al. (2009). QTL for several metabolic traits map to loci controlling growth and body composition in an F2 intercross between high- and low-growth chicken lines. Physiol. Genomics 38: 241-249.
http://dx.doi.org/10.1152/physiolgenomics.90384.2008
PMid:19531576
National Research Council (1994). Nutrient Requirements of Poultry. Natl. Acad. Press, Washington.
Nones K, Ledur MC, Ruy DC, Baron EE, et al. (2006). Mapping QTLs on chicken chromosome 1 for performance and carcass traits in a broiler x layer cross. Anim. Genet. 37: 95-100.
http://dx.doi.org/10.1111/j.1365-2052.2005.01387.x
PMid:16573522
Park HB, Jacobsson L, Wahlberg P, Siegel PB, et al. (2006). QTL analysis of body composition and metabolic traits in an intercross between chicken lines divergently selected for growth. Physiol. Genomics 25: 216-223.
http://dx.doi.org/10.1152/physiolgenomics.00113.2005
PMid:16390876
SAS Institute (2004). JMP User’s Guide. SAS Institute Inc., Cary.
Schmid M, Nanda I, Guttenbach M, Steinlein C, et al. (2000). First report on chicken genes and chromosomes 2000. Cytogenet. Cell Genet. 90: 169-218.
http://dx.doi.org/10.1159/000056772
Seaton G, Hernandez J, Grunchec JA, White I, et al. (2006). GridQTL: A Grid Portal for QTL Mapping of Compute Intensive Datasets. Proceedings of the 8th World Congress on Genetics Applied to Livestock Production, Belo Horizonte, 13-18.
Sewalem A, Morrice DM, Law A, Windsor D, et al. (2002). Mapping of quantitative trait loci for body weight at three, six, and nine weeks of age in a broiler layer cross. Poult. Sci. 81: 1775-1781.
PMid:12512565
Siwek M, Cornelissen SJ, Buitenhuis AJ, Nieuwland MG, et al. (2004). Quantitative trait loci for body weight in layers differ from quantitative trait loci specific for antibody responses to sheep red blood cells. Poult. Sci. 83: 853-859.
PMid:15206609
Spelman RJ and Bovenhuis H (1998). Moving from QTL experimental results to the utilization of QTL in breeding programmes. Anim. Genet. 29: 77-84.
http://dx.doi.org/10.1046/j.1365-2052.1998.00238.x
PMid:9699266
Tercic D, Holcman A, Dovc P, Morrice DR, et al. (2009). Identification of chromosomal regions associated with growth and carcass traits in an F(3) full sib intercross line originating from a cross of chicken lines divergently selected on body weight. Anim. Genet. 40: 743-748.
http://dx.doi.org/10.1111/j.1365-2052.2009.01917.x
PMid:19466935
Wahlberg P, Carlborg O, Foglio M, Tordoir X, et al. (2009). Genetic analysis of an F2 intercross between two chicken lines divergently selected for body-weight. BMC Genomics 10: 248.
http://dx.doi.org/10.1186/1471-2164-10-248
PMid:19473501 PMCid:2695486
Wang Q, Li H, Li N, Leng L, et al. (2006). Identification of single nucleotide polymorphism of adipocyte fatty acid-binding protein gene and its association with fatness traits in the chicken. Poult. Sci. 85: 429-434.
PMid:16553271
Zhang S, Li H and Shi H (2006). Single marker and haplotype analysis of the chicken apolipoprotein B gene T123G and D9500D9-polymorphism reveals association with body growth and obesity. Poult. Sci. 85: 178-184.
PMid:16523611
Zhou H, Deeb N, Evock-Clover CM, Ashwell CM, et al. (2006a). Genome-wide linkage analysis to identify chromosomal regions affecting phenotypic traits in the chicken. I. Growth and average daily gain. Poult. Sci 85: 1700-1711.
PMid:17012159
Zhou H, Deeb N, Evock-Clover CM, Ashwell CM, et al. (2006b). Genome-wide linkage analysis to identify chromosomal regions affecting phenotypic traits in the chicken. II. Body composition. Poult. Sci. 85: 1712-1721.
PMid:17012160