Publications

Found 1 results
Filters: Author is G.-S. Li  [Clear All Filters]
2012
G. - F. Li, Qian, T. - L., Li, G. - S., Yang, C. - X., Qin, M., Huang, J., Sun, M., and Han, Y. - Q., Sodium valproate inhibits MDA-MB-231 breast cancer cell migration by upregulating NM23H1 expression, vol. 11, pp. 77-86, 2012.
Adams LS, Phung S, Yee N, Seeram NP, et al. (2010). Blueberry phytochemicals inhibit growth and metastatic potential of MDA-MB-231 breast cancer cells through modulation of the phosphatidylinositol 3-kinase pathway. Cancer Res. 70: 3594-3605. http://dx.doi.org/10.1158/0008-5472.CAN-09-3565 PMid:20388778    PMCid:2862148 Baneshi MR, Warner P, Anderson N, Edwards J, et al. (2010). Tamoxifen resistance in early breast cancer: statistical modelling of tissue markers to improve risk prediction. Br. J. Cancer 102: 1503-1510. http://dx.doi.org/10.1038/sj.bjc.6605627 PMid:20461093    PMCid:2869158 Blaheta RA, Nau H, Michaelis M and Cinatl J Jr (2002). Valproate and valproate-analogues: potent tools to fight against cancer. Curr. Med. Chem. 9: 1417-1433. PMid:12173980 Byun SS, Kim FJ, Khandrika L, Kumar B, et al. (2009). Differential effects of valproic acid on growth, proliferation and metastasis in HTB5 and HTB9 bladder cancer cell lines. Cancer Lett. 281: 196-202. http://dx.doi.org/10.1016/j.canlet.2009.02.045 PMid:19324494 Chen PS, Wang CC, Bortner CD, Peng GS, et al. (2007). Valproic acid and other histone deacetylase inhibitors induce microglial apoptosis and attenuate lipopolysaccharide-induced dopaminergic neurotoxicity. Neuroscience 149: 203- 212. http://dx.doi.org/10.1016/j.neuroscience.2007.06.053 PMid:17850978    PMCid:2741413 D’Angelo A, Garzia L, Andre A, Carotenuto P, et al. (2004). Prune cAMP phosphodiesterase binds nm23-H1 and promotes cancer metastasis. Cancer Cell 5: 137-149. http://dx.doi.org/10.1016/S1535-6108(04)00021-2 D’Souza A, Onem E, Patel P, La Gamma EF, et al. (2009). Valproic acid regulates catecholaminergic pathways by concentration-dependent threshold effects on TH mRNA synthesis and degradation. Brain Res. 1247: 1-10. http://dx.doi.org/10.1016/j.brainres.2008.09.088 PMid:18976638 Dragunow M, Greenwood JM, Cameron RE, Narayan PJ, et al. (2006). Valproic acid induces caspase 3-mediated apoptosis in microglial cells. Neuroscience 140: 1149-1156. http://dx.doi.org/10.1016/j.neuroscience.2006.02.065 PMid:16600518 Duenas-Gonzalez A, Candelaria M, Perez-Plascencia C, Perez-Cardenas E, et al. (2008). Valproic acid as epigenetic cancer drug: preclinical, clinical and transcriptional effects on solid tumors. Cancer Treat. Rev. 34: 206-222. http://dx.doi.org/10.1016/j.ctrv.2007.11.003 PMid:18226465 Dutertre M, Gratadou L, Dardenne E, Germann S, et al. (2010). Estrogen regulation and physiopathologic significance of alternative promoters in breast cancer. Cancer Res. 70: 3760-3770. http://dx.doi.org/10.1158/0008-5472.CAN-09-3988 PMid:20406972 Fortunati N, Bertino S, Costantino L, Bosco O, et al. (2008). Valproic acid is a selective antiproliferative agent in estrogen-sensitive breast cancer cells. Cancer Lett. 259: 156-164. http://dx.doi.org/10.1016/j.canlet.2007.10.006 PMid:18006146 Jawed S, Kim B, Ottenhof T, Brown GM, et al. (2007). Human melatonin MT1 receptor induction by valproic acid and its effects in combination with melatonin on MCF-7 breast cancer cell proliferation. Eur. J. Pharmacol. 560: 17-22. http://dx.doi.org/10.1016/j.ejphar.2007.01.022 PMid:17303109 Jin L, Liu G, Zhang CH, Lu CH, et al. (2009). Nm23-H1 regulates the proliferation and differentiation of the human chronic myeloid leukemia K562 cell line: a functional proteomics study. Life Sci. 84: 458-467. http://dx.doi.org/10.1016/j.lfs.2009.01.010 PMid:19302816 Lagneaux L, Gillet N, Stamatopoulos B, Delforge A, et al. (2007). Valproic acid induces apoptosis in chronic lymphocytic leukemia cells through activation of the death receptor pathway and potentiates TRAIL response. Exp. Hematol. 35: 1527-1537. http://dx.doi.org/10.1016/j.exphem.2007.06.014 PMid:17697742 Leone A, McBride OW, Weston A, Wang MG, et al. (1991). Somatic allelic deletion of nm23 in human cancer. Cancer Res. 51: 2490-2493. PMid:2015608 Liang M, Zhang P and Fu J (2007). Up-regulation of LOX-1 expression by TNF-alpha promotes trans-endothelial migration of MDA-MB-231 breast cancer cells. Cancer Lett. 258: 31-37. http://dx.doi.org/10.1016/j.canlet.2007.08.003 PMid:17868983 Marshall SF, Clarke CA, Deapen D, Henderson K, et al. (2010). Recent breast cancer incidence trends according to hormone therapy use: the California Teachers Study cohort. Breast Cancer Res. 2: R4. http://dx.doi.org/10.1186/bcr2467 PMid:20064209    PMCid:2880422 Platta CS, Greenblatt DY, Kunnimalaiyaan M and Chen H (2008). Valproic acid induces Notch1 signaling in small cell lung cancer cells. J Surg. Res. 148: 31-37. http://dx.doi.org/10.1016/j.jss.2008.03.008 PMid:18570928    PMCid:2900385 Shen WT, Wong TS, Chung WY, Wong MG, et al. (2005). Valproic acid inhibits growth, induces apoptosis, and modulates apoptosis-regulatory and differentiation gene expression in human thyroid cancer cells. Surgery 138: 979-984. http://dx.doi.org/10.1016/j.surg.2005.09.019 PMid:16360381 Swain SM, Jeong JH, Geyer CE Jr, Costantino JP, et al. (2010). Longer therapy, iatrogenic amenorrhea, and survival in early breast cancer. N. Engl. J. Med. 362: 2053-2065. http://dx.doi.org/10.1056/NEJMoa0909638 PMid:20519679    PMCid:2935316 Wu L, Li Z, Zhang Y, Zhang P, et al. (2008). Adenovirus-expressed human hyperpla- sia suppressor gene induces apoptosis in cancer cells. Mol. Cancer Ther. 7: 222-232. http://dx.doi.org/10.1158/1535-7163.MCT-07-0382 PMid:18202024