Publications

Found 9 results
Filters: Author is S. Liu  [Clear All Filters]
2016
X. G. Zhang, Zhang, H., Liang, X. L., Liu, Q., Wang, H. Y., Cao, B., Cao, J., Liu, S., Long, Y. J., Xie, W. Y., Peng, D. Z., Zhang, X. G., Zhang, H., Liang, X. L., Liu, Q., Wang, H. Y., Cao, B., Cao, J., Liu, S., Long, Y. J., Xie, W. Y., and Peng, D. Z., Epigenetic mechanism of maternal post-traumatic stress disorder in delayed rat offspring development: dysregulation of methylation and gene expression, vol. 15, p. -, 2016.
X. G. Zhang, Zhang, H., Liang, X. L., Liu, Q., Wang, H. Y., Cao, B., Cao, J., Liu, S., Long, Y. J., Xie, W. Y., Peng, D. Z., Zhang, X. G., Zhang, H., Liang, X. L., Liu, Q., Wang, H. Y., Cao, B., Cao, J., Liu, S., Long, Y. J., Xie, W. Y., and Peng, D. Z., Epigenetic mechanism of maternal post-traumatic stress disorder in delayed rat offspring development: dysregulation of methylation and gene expression, vol. 15, p. -, 2016.
J. Yang, Li, B., Liu, S. W., Biswas, M. K., Liu, S., Wei, Y. R., Zuo, C. W., Deng, G. M., Kuang, R. B., Hu, C. H., Yi, G. J., and Li, C. Y., Fermentation of Foc TR4-infected bananas and Trichoderma spp, vol. 15, no. 4, p. -, 2016.
Conflicts of interestThe authors declare no conflict of interest.ACKNOWLEDGMENTSResearch supported by the National Natural Science Fund (#U1131004 and #31471740), the National Banana Industry and Technology System Project (nycytx-33), the International Collaborative Project (#2013J4500033, #2011B050400004, and #2013DFB30400), the Science and Technology Project of Guangdong Province (#2013A061402005 and #2010B031800012), the National Spark Program Project (#2010GA780005), and the “948” Project of the Department of Agriculture (#2011-G16). The funding organizations had no role in the study design, data collection, analysis, decision to publish, or preparation of the manuscript.REFERENCESBeckman CH (1990). Host responses to the pathogen. In: Fusarium wilt of banana (Ploetz RC, eds.). APS Press, American Phytopathological Society, St. Paul. Castle A, Speranzini D, Rghei N, Alm G, et al (1998). Morphological and molecular identification of Trichoderma isolates on North American mushroom farms. Appl. Environ. Microbiol. 64: 133-137. Gautam SP, Bundela PS, Pandey AK, Jamaluddinet al (2012). Diversity of cellulolytic microbes and the biodegradation of municipal solid waste by a potential strain. Int. J. Microbiol. 2012: 325907. http://dx.doi.org/10.1155/2012/325907 Ghose TK, et al (1987). Measurement of cellulase activities. Pure Appl. Chem. 59: 257-268. http://dx.doi.org/10.1351/pac198759020257 Haygood RA, Strider DL, et al (1982). A comparison of inoculation methods of Erwinia chrysanthemi in greenhouse ornamentals. Plant Dis. 66: 461-463. http://dx.doi.org/10.1094/PD-66-461 Huang YH, Wang RC, Li CH, Zuo CW, et al (2012). Control of Fusarium wilt in banana with Chinese leek. Eur. J. Plant Pathol. 134: 87-95. http://dx.doi.org/10.1007/s10658-012-0024-3 Hwang SC, Ko WH, et al (2004). Cavendish banana cultivars resistant to Fusarium wilt acquired through somaclonal variation in Taiwan. Plant Dis. 88: 580-588. http://dx.doi.org/10.1094/PDIS.2004.88.6.580 Jaklitsch WM, Samuels GJ, Ismaiel A, Voglmayr H, et al (2013). Disentangling the Trichoderma viridescens complex. Persoonia 31: 112-146. http://dx.doi.org/10.3767/003158513X672234 Joshi BB, Bhatt RP, Bahukhandi D, et al (2010). Antagonistic and plant growth activity of Trichoderma isolates of Western Himalayas. J. Environ. Biol. 31: 921-928. Li CY, Chen S, Zuo CW, Sun QM, et al (2011). The use of GFP-transformed isolates to study infection of banana with Fusarium oxysporum f. sp. cubense race 4. Eur. J. Plant Pathol. 131: 327-340. http://dx.doi.org/10.1007/s10658-011-9811-5 Li CY, Deng GM, Yang J, Viljoen A, et al (2012). Transcriptome profiling of resistant and susceptible Cavendish banana roots following inoculation with Fusarium oxysporum f. sp. cubense tropical race 4. BMC Genomics 13: 374. http://dx.doi.org/10.1186/1471-2164-13-374 Miller GL, et al (1959). Use of dinitrosalicylic acid reagent for determination of reducing sugar. Anal. Chem. 31: 426-428. http://dx.doi.org/10.1021/ac60147a030 Morton DJ, Stroube WH, et al (1955). Antagonistic and stimulating effects of soil micro-organism of Sclerotium. Phytopathology 45: 417-420. Mysore VT, Basavanna M, Monnanda SN, Harishchandra SP, et al (2005). Endophytic fungal assemblages from inner and twig of Terminalia arjuna W. and A. (Combretaceae). World J. Microbiol. Biotechnol. 21: 1535-1540. http://dx.doi.org/10.1007/s11274-005-7579-5 Ploetz RC (1990). Population biology of Fusarium oxysporum f. sp. cubense. In: Fusarium wilt of banana (Ploetz RC, eds.). APS Press, American Phytopathological Society, St. Paul. Ploetz RC, et al (1994). Panama disease: return of the first banana menace. Int. J. Pest Manage. 40: 326-336. http://dx.doi.org/10.1080/09670879409371908 Ploetz RC, et al (2015). Fusarium wilt of banana. Phytopathology 105: 1512-1521. http://dx.doi.org/10.1094/PHYTO-04-15-0101-RVW Pointing SB, Buswell JA, Jones EBG, Vrijmoed LLP, et al (1999). Extracellular cellulolytic enzyme profiles of five lignicolous mangrove fungi. Mycol. Res. 103: 696-700. http://dx.doi.org/10.1017/S0953756298007655 Raza W, Ling N, Zhang R, Huang Q, et al (2016). Success evaluation of the biological control of Fusarium wilts of cucumber, banana, and tomato since 2000 and future research strategies. Crit. Rev. Biotechnol. 26: 1-11. http://dx.doi.org/10.3109/07388551.2015.1130683 Sivan A, Ucko O, Chet I, et al (1987). Biological control of Fusarium crown rot of tomato by Trichoderma harzianum under field conditions. Plant Dis. 71: 587-592. http://dx.doi.org/10.1094/PD-71-0587 Sundaramoorthy S, Balabaskar P, et al (2013). Biocontrol efficacy of Trichoderma spp. against wilt of tomato caused by Fusarium oxysporum f. sp. lycopersici. J. Appl. Biol. Biotechnol. 1: 36-40. Tamura K, Stecher G, Peterson D, Filipski A, et al (2013). MEGA6: Molecular Evolutionary Genetics Analysis version 6.0. Mol. Biol. Evol. 30: 2725-2729. http://dx.doi.org/10.1093/molbev/mst197 Waqas M, Khan AL, Kamran M, Hamayun M, et al (2012). Endophytic fungi produce gibberellins and indoleacetic acid and promotes host-plant growth during stress. Molecules 17: 10754-10773. http://dx.doi.org/10.3390/molecules170910754 Zhang JD, Yang Q, et al (2015). Optimization of solid-state fermentation conditions for Trichoderma harzianum using an orthogonal test. Genet. Mol. Res. 14: 1771-1781. http://dx.doi.org/10.4238/2015.March.13.4    
L. Zheng, Qi, Y. X., Liu, S., Shi, M. L., and Yang, W. P., miR-129b suppresses cell proliferation in the human lung cancer cell lines A549 and H1299, vol. 15, no. 4, p. -, 2016.
Conflicts of interestThe authors declare no conflict of interest.ACKNOWLEDGMENTSWe thank all of our lab members for helpful discussions and critical comments on this study. Research supported by the People’s Hospital of Laiwu City, and was approved by the Medical Scientific Research Foundation of Guangdong Province (Grant #B2014360) as well as the Scientific Research Project of Shenzhen Health Bureau (Grant #201402043) REFERENCESAlmeida MI, Reis RM, Calin GA, et al (2011). MicroRNA history: discovery, recent applications, and next frontiers. Mutat. Res. 717: 1-8. http://dx.doi.org/10.1016/j.mrfmmm.2011.03.009 Bandres E, Agirre X, Bitarte N, Ramirez N, et al (2009). Epigenetic regulation of microRNA expression in colorectal cancer. Int. J. Cancer 125: 2737-2743. http://dx.doi.org/10.1002/ijc.24638 Calin GA, Sevignani C, Dumitru CD, Hyslop T, et al (2004). Human microRNA genes are frequently located at fragile sites and genomic regions involved in cancers. Proc. Natl. Acad. Sci. USA 101: 2999-3004. http://dx.doi.org/10.1073/pnas.0307323101 Chen X, Zhang L, Zhang T, Hao M, et al (2013). Methylation-mediated repression of microRNA 129-2 enhances oncogenic SOX4 expression in HCC. Liver Int. 33: 476-486. http://dx.doi.org/10.1111/liv.12097 Di Leva G, Croce CM, et al (2010). Roles of small RNAs in tumor formation. Trends Mol. Med. 16: 257-267. http://dx.doi.org/10.1016/j.molmed.2010.04.001 Garzon R, Calin GA, Croce CM, et al (2009). MicroRNAs in Cancer. Annu. Rev. Med. 60: 167-179. http://dx.doi.org/10.1146/annurev.med.59.053006.104707 Hayashita Y, Osada H, Tatematsu Y, Yamada H, et al (2005). A polycistronic microRNA cluster, miR-17-92, is overexpressed in human lung cancers and enhances cell proliferation. Cancer Res. 65: 9628-9632. http://dx.doi.org/10.1158/0008-5472.CAN-05-2352 Hu Z, Chen X, Zhao Y, Tian T, et al (2010). Serum microRNA signatures identified in a genome-wide serum microRNA expression profiling predict survival of non-small-cell lung cancer. J. Clin. Oncol. 28: 1721-1726. http://dx.doi.org/10.1200/JCO.2009.24.9342 Inamura K, Togashi Y, Nomura K, Ninomiya H, et al (2007). let-7 microRNA expression is reduced in bronchioloalveolar carcinoma, a non-invasive carcinoma, and is not correlated with prognosis. Lung Cancer 58: 392-396. http://dx.doi.org/10.1016/j.lungcan.2007.07.013 Johnson SM, Grosshans H, Shingara J, Byrom M, et al (2005). RAS is regulated by the let-7 microRNA family. Cell 120: 635-647. http://dx.doi.org/10.1016/j.cell.2005.01.014 Karaayvaz M, Zhai H, Ju J, et al (2013). miR-129 promotes apoptosis and enhances chemosensitivity to 5-fluorouracil in colorectal cancer. Cell Death Dis. 4: e659. http://dx.doi.org/10.1038/cddis.2013.193 Katada T, Ishiguro H, Kuwabara Y, Kimura M, et al (2009). microRNA expression profile in undifferentiated gastric cancer. Int. J. Oncol. 34: 537-542. Krol J, Loedige I, Filipowicz W, et al (2010). The widespread regulation of microRNA biogenesis, function and decay. Nat. Rev. Genet. 11: 597-610. Liu Y, Hei Y, Shu Q, Dong J, et al (2012). VCP/p97, down-regulated by microRNA-129-5p, could regulate the progression of hepatocellular carcinoma. PLoS One 7: e35800. http://dx.doi.org/10.1371/journal.pone.0035800 Lu CY, Lin KY, Tien MT, Wu CT, et al (2013). Frequent DNA methylation of MiR-129-2 and its potential clinical implication in hepatocellular carcinoma. Genes Chromosomes Cancer 52: 636-643. Malvezzi M, Bertuccio P, Levi F, La Vecchia C, et al (2013). European cancer mortality predictions for the year 2013. Ann. Oncol. 24: 792-800. http://dx.doi.org/10.1093/annonc/mdt010 Munker R, Calin GA, et al (2011). MicroRNA profiling in cancer. Clin. Sci. 121: 141-158. http://dx.doi.org/10.1042/CS20110005 Poghosyan H, Sheldon LK, Leveille SG, Cooley ME, et al (2013). Health-related quality of life after surgical treatment in patients with non-small cell lung cancer: a systematic review. Lung Cancer 81: 11-26. http://dx.doi.org/10.1016/j.lungcan.2013.03.013 Siegel R, Naishadham D, Jemal A, et al (2013). Cancer statistics, 2013. CA Cancer J. Clin. 63: 11-30. http://dx.doi.org/10.3322/caac.21166 Spira A, Ettinger DS, et al (2004). Multidisciplinary management of lung cancer. N. Engl. J. Med. 350: 379-392. http://dx.doi.org/10.1056/NEJMra035536 Takamizawa J, Konishi H, Yanagisawa K, Tomida S, et al (2004). Reduced expression of the let-7 microRNAs in human lung cancers in association with shortened postoperative survival. Cancer Res. 64: 3753-3756. http://dx.doi.org/10.1158/0008-5472.CAN-04-0637 Tsai KW, Wu CW, Hu LY, Li SC, et al (2011). Epigenetic regulation of miR-34b and miR-129 expression in gastric cancer. Int. J. Cancer 129: 2600-2610. http://dx.doi.org/10.1002/ijc.25919 Wang R, Wang ZX, Yang JS, Pan X, et al (2011). MicroRNA-451 functions as a tumor suppressor in human non-small cell lung cancer by targeting ras-related protein 14 (RAB14). Oncogene 30: 2644-2658. http://dx.doi.org/10.1038/onc.2010.642 Yanaihara N, Caplen N, Bowman E, Seike M, et al (2006). Unique microRNA molecular profiles in lung cancer diagnosis and prognosis. Cancer Cell 9: 189-198. http://dx.doi.org/10.1016/j.ccr.2006.01.025 Yu X, Song H, Xia T, Han S, et al (2013). Growth inhibitory effects of three miR-129 family members on gastric cancer. Gene 532: 87-93. http://dx.doi.org/10.1016/j.gene.2013.09.048 Zhang HC, Song YF, Ye J, Lai GX, et al. (2016). MicroRNA-154 functions as a tumor suppressor and directly targets HMGA2 in human non-small cell lung cancer. Genet. Mol. Res. 15: gmr.15028173. Zhang J, Xue ZQ, Chu XY, Wang YX, et al (2012). Surgical treatment and prognosis of octogenarians with non-small cell lung cancer. Asian Pac. J. Trop. Med. 5: 465-468. http://dx.doi.org/10.1016/S1995-7645(12)60079-0 Zhou X, Zhang L, Zheng B, Yan Y, et al (2016). MicroRNA-761 is upregulated in hepatocellular carcinoma and regulates tumorigenesis by targeting Mitofusin-2. Cancer Sci. 107: 424-432. http://dx.doi.org/10.1111/cas.12904