Publications

Found 6 results
Filters: Author is P. Yu  [Clear All Filters]
2016
X. - G. Zhou, Yu, P., Dong, C., Yao, C. - X., Ding, Y. - M., Tao, N., Zhao, Z. - W., Zhou, X. - G., Yu, P., Dong, C., Yao, C. - X., Ding, Y. - M., Tao, N., and Zhao, Z. - W., Proteomic analysis of mycelial proteins from Magnaporthe oryzae under nitrogen starvation, vol. 15, p. -, 2016.
X. - G. Zhou, Yu, P., Dong, C., Yao, C. - X., Ding, Y. - M., Tao, N., Zhao, Z. - W., Zhou, X. - G., Yu, P., Dong, C., Yao, C. - X., Ding, Y. - M., Tao, N., and Zhao, Z. - W., Proteomic analysis of mycelial proteins from Magnaporthe oryzae under nitrogen starvation, vol. 15, p. -, 2016.
M. H. Rahman, Yu, P., Zhang, Y. X., Sun, L. P., Wu, W. X., Shen, X. H., Zhan, X. D., Chen, D. B., Cao, L. Y., and Cheng, S. H., Quantitative trait loci mapping of the stigma exertion rate and spikelet number per panicle in rice (Oryza sativa L.), vol. 15, no. 4, p. -, 2016.
Conflicts of interestThe authors declare no conflict of interest.ACKNOWLEDGMENTSResearch supported by the Natural Science Foundation of China (#31101203), the National Key Transform Program (#2014ZX08001-002), the National Natural Science Foundation of China (#31501290), the Zhejiang Provincial Natural Science Foundation of China (Grant #LQ14C130003), and the Super Rice Breeding Innovation Team and Rice Heterosis Mechanism Research Innovation Team of the Chinese Academy of Agricultural Sciences Innovation Project (CAAS-ASTIP-2013-CNRRI). REFERENCESCheng SH, Zhuang JY, Fan YY, Du JH, et al (2007). Progress in research and development on hybrid rice: a super-domesticate in China. Ann. Bot. (Lond.) 100: 959-966. http://dx.doi.org/10.1093/aob/mcm121 Deshmukh R, Singh A, Jain N, Anand S, et al (2010). Identification of candidate genes for grain number in rice (Oryza sativa L.). Funct. Integr. Genomics 10: 339-347. http://dx.doi.org/10.1007/s10142-010-0167-2 He Q, Zhang K, Xu C, Xing Y, et al (2010). Additive and additive × additive interaction make important contributions to spikelets per panicle in rice near isogenic (Oryza sativa L.) lines. J. Genet. Genomics 37: 795-803. http://dx.doi.org/10.1016/S1673-8527(09)60097-7 Jiang GH, Xu CG, Tu JM, Li XH, et al (2004). Pyramiding of insect-and disease-resistance genes into an elite indica, cytoplasm male sterile restorer line of rice, ‘Minghui 63’. Plant Breed. 123: 112-116. http://dx.doi.org/10.1046/j.1439-0523.2003.00917.x Li P, Feng F, Zhang Q, Chao Y, et al (2014). Genetic mapping and validation of quantitative trait loci for stigma exertion rate in rice. Mol. Breed. 34: 2131-2138. http://dx.doi.org/10.1007/s11032-014-0168-2 Li WH, Dong GJ, Hu XM, Teng S, et al (2003). [QTL analysis for percentage of exserted stigma in rice (Oryza sativa L.)]. Yi Chuan Xue Bao 30: 637-640. Liang Y, Zhan X, Gao Z, Lin Z, et al (2012). Mapping of QTLs association with important agronomic traits using three populations derived from super hybrid rice Xieyou9308. Euphytica 184: 1-13. http://dx.doi.org/10.1007/s10681-011-0456-4 Lincoln SE, Daly MJ and Lander E (1992). Constructing Genetic Map with Mapmaker/ Exp 3:0 Whitehead Institute Technical report. 3rd edn. Whitehead Institute, Cambridge. Long LH, Shu K, et al (2000). Increasing outcrossing rate of indica hybrid rice. J. Hunan Agric. Univ. 26: 205-208. Lou J, Yue GH, Yang WQ, Mei HW, et al (2014). Mapping QTLs influencing stigma exertion in rice. Bulg. J. Agric. Sci. 20: 1450-1456. McCouch SR, et al (2008). Gene nomenclature system for rice. Rice 1: 72-84. http://dx.doi.org/10.1007/s12284-008-9004-9 Miyata M, Yamamoto T, Komori T, Nitta N, et al (2007). Marker-assisted selection and evaluation of the QTL for stigma exsertion under japonica rice genetic background. Theor. Appl. Genet. 114: 539-548. http://dx.doi.org/10.1007/s00122-006-0454-4 Songpig H, Ying Z, Lin Z, Xudong Z, et al (2009). QTL analysis of floral traits of rice (Oryza sativa L.) under well-watered and drought stress conditions. Genes Genomics 31: 173-181. http://dx.doi.org/10.1007/BF03191150 Takano-kai N, Doi K, Yoshimura A, et al (2011). GS3 participates in stigma exertion as well as seed length in rice. Breed. Sci. 61: 244-250. http://dx.doi.org/10.1270/jsbbs.61.244 Tian DC, Huang SK, Duan YG, Wang YH, et al (2004). The relationship between flowering and pollination time and outcrossing rate of male sterile lines in hybrid rice seed production. Hybrid Rice 19: 50-54. Toojinda T, Tragoonrung S, Vanavichit A, Siangliw JL, et al (2005). Molecular breeding for rainfed lowland rice in the Mekong region. Plant Prod. Sci. 8: 330-333. http://dx.doi.org/10.1626/pps.8.330 Uga Y, Fukuta Y, Cai HW, Iwata H, et al (2003). Mapping QTLs influencing rice floral morphology using recombinant inbred lines derived from a cross between Oryza sativa L. and Oryza rufipogon Griff. Theor. Appl. Genet. 107: 218-226. http://dx.doi.org/10.1007/s00122-003-1227-y Wang J, et al (2009). Inclusive composite interval mapping of quantitative trait genes. Acta Agron. Sin. 35: 239-245. http://dx.doi.org/10.3724/SP.J.1006.2009.00239 Yan WG, Li Y, Agrama HA, Luo D, et al (2009). Association mapping of stigma and spikelet characteristics in rice (Oryza sativa L.). Mol. Breed. 24: 277-292. http://dx.doi.org/10.1007/s11032-009-9290-y Yu XQ, Mei HW, Luo LJ, Liu GL, et al (2006). Dissection of additive, epistatic effect and Q x E interaction of quantitative trait loci influencing stigma exsertion under water stress in rice. Yi Chuan Xue Bao 33: 542-550. http://dx.doi.org/10.1016/S0379-4172(06)60083-8 Zhang Y, Luo L, Liu T, Xu C, et al (2009). Four rice QTL controlling number of spikelets per panicle expressed the characteristics of single Mendelian gene in near isogenic backgrounds. Theor. Appl. Genet. 118: 1035-1044. http://dx.doi.org/10.1007/s00122-008-0960-7