Publications

Found 13 results
Filters: Author is S. Ercisli  [Clear All Filters]
2012
G. Agar, Yildirim, N., and Ercisli, S., Genetic and biochemical differentiation in Vitis vinifera (Kabarcik) populations grown at different altitudes in Coruh Valley, vol. 11, pp. 211-220, 2012.
Alleweldt G and Dettweiler E (1994). The Genetic Resources of Vitis: World List of Grapevine Collections. 2nd edn. Geilweilerhof. Institute for Grape Breeding, Siebeldingen. Barrett SCH and Kohn JR (1991). Genetic and Evolutionary Consequences of Small Population Size in Plants: Implications for Conservation. In: Genetics and Conservation of Rare Plants (Falk DA and Holsinger KE, eds.). Oxford University Press, Oxford, 3-30. Baur B and Raboud C (1988). Life history of the snail Arianta arbustorum along an altitudinal gradient. J. Anim. Ecol. 57: 71-87. http://dx.doi.org/10.2307/4764 Bockelmann AC, Reusch TBH, Bijsma R and Bakker JP (2003). Habitat differentiation vs. isolation-by-distance: the genetic population structure of Elymus athericus in European salt marshes. Mol. Ecol. 12: 505-515. http://dx.doi.org/10.1046/j.1365-294X.2003.01706.x PMid:12535100 Bonnin I, Colas B, Bacles C, Holl AC, et al. (2002). Population structure of an endangered species living in contrasted habitats: Parnassia palustris (Saxifragaceae). Mol. Ecol. 11: 979-990. http://dx.doi.org/10.1046/j.1365-294X.2002.01499.x PMid:12030977 Buckler ES, Thornsberry JM and Kresovich S (2001). Molecular diversity, structure and domestication of grasses. Genet. Res. 77: 213-218. http://dx.doi.org/10.1017/S0016672301005158 Cheon CP, Chung MY, Chung SG and Chung MG (2002). Allozyme variation of a small subshrub Ardisia japonica (Myrsinaceae) in north eastern Asia. Silvae Genet. 51: 1-6. Despres L, Loriot S and Gaudeul M (2002). Geographic pattern of genetic variation in the European globeflower Trollius europaeus L. (Ranunculaceae) inferred from amplified fragment length polymorphism markers. Mol. Ecol. 11: 2337-2347. http://dx.doi.org/10.1046/j.1365-294X.2002.01618.x Doebley J (1989). Isozymic evidence and evolution of crop plants. In: Isozymes in Plant Biology (Soltis ED and Soltis PM, eds.). Dioscorides, Portland, 165-191. http://dx.doi.org/10.1007/978-94-009-1840-5_9 Erich G and Johann JS (2002). Phenotypic and isozyme variation in Cystopteris fragilis (Pteridophyta) along an altitudinal gradient in Switzerland. Flora 197: 203-213. http://dx.doi.org/10.1078/0367-2530-00031 Feng FJ, Wang FY and Li CS (2004). Genetic differentiation of Pinus koraiensis under different altitude conditions in Changbai Mountains. J. Northeast Univ. 32: 1-3. Gail R, Dennis F, Stuart DM and Rogers HJ (1998). Genome size is negatively correlated with altitude in natural populations of Dactylis glomerata. Ann. Bot. 82: 99-105. http://dx.doi.org/10.1006/anbo.1998.0751 Galet P (2000). Dictionnaire Encyclopédique des Cepages. Hachette Pratique, Paris. Gaudeul M, Taberlet P and Till-Bottraud I (2000). Genetic diversity in an endangered alpine plant, Eryngium alpinum L. (Apiaceae), inferred from amplified fragment length polymorphism markers. Mol. Ecol. 9: 1625-1637. http://dx.doi.org/10.1046/j.1365-294x.2000.01063.x PMid:11050557 Ge S, Oliveira GC, Schaal BA, Gao LZ, et al. (1999). RAPD variation within and between natural populations of the wild rice Oryza rufipogon from China and Brazil. Heredity 82 (Pt 6): 638-644. http://dx.doi.org/10.1046/j.1365-2540.1999.00516.x PMid:10383685 George T, Latha J, George V, Klyanaraman SK, et al. (2001). Analysis of phenotypic and genetic variations among populations of Oryza malampuzhaensis show evidence of altitude-dependent genetic changes. Can. J. Bot. 79: 1090-1098. Gugerli F, Eichenberger K and Schneller JJ (1999). Promiscuity in populations of the cushion plant Saxifraga oppositifolia in the Swiss Alps as inferred from random amplified polymorphic DNA (RAPD). Mol. Ecol. 8: 453-461. http://dx.doi.org/10.1046/j.1365-294X.1999.00586.x Heath D and Williams DR (1979). Life at High Altitude. Edward Arnold, London. Hernández-Verdugo S, Luna-Reyes R and Oyama K (2001). Genetic structure and differentiation of wild and domesticated populations of Capsicum annuum from Mexico. Plant Syst. Evol. 226: 129-142. http://dx.doi.org/10.1007/s006060170061 Heum M, Murrhy JP and Phillips TD (1994). A comparison of RAPD and isozyme analyses for determining the genetic relationships among Avena sterilis L. accessions. Theor. Appl. Genet. 87: 689-696. Hou G, Abblett GR, Pauls KP and Rajcan I (2006). Environmental effects on fatty acid levels in soybean seed oil. Jaocs 83: 759-763. http://dx.doi.org/10.1007/s11746-006-5011-4 Hsiao JY and Lee SM (1999). Genetic diversity and microgeographic differentiation of Yushan cane (Yushania niitakayamensis; Poaceae) in Taiwan. Mol. Ecol. 8: 263-270. http://dx.doi.org/10.1046/j.1365-294X.1999.00563.x Huff DR, Peakall R and Smouse PE (1993). RAPD variation within and among natural populations of outcrossing buffalograss [Buchloë dactyloides (Nutt.) Engelm.]. Theor. Appl. Genet. 86: 927-934. http://dx.doi.org/10.1007/BF00211043 Hug LA and Roger AJ (2007). The impact of fossils and taxon sampling on ancient molecular dating analyses. Mol. Biol. Evol. 24: 1889-1897. http://dx.doi.org/10.1093/molbev/msm115 PMid:17556757 Jaccard P (1908). Nouvelles recherches sur la distribution florale. Bull. Soc. Vaudoise Sci. Nat. 44: 223-270. Landergott U, Holderegger R, Kozlowski G and Schneller JJ (2001). Historical bottlenecks decrease genetic diversity in natural populations of Dryopteris cristata. Heredity 87: 344-355. http://dx.doi.org/10.1046/j.1365-2540.2001.00912.x PMid:11737281 Li JC, Ke Y and Li BS (1998). The variation of genetic diversity of Quercus aquifolioides in different elevations. Acta Bot. Sin. 40: 761-767. http://dx.doi.org/10.1093/abbs/40.8.761 PMid:18685793 Lin RC, Ding ZS, Li LB and Kuang TY (2001). A rapid and efficient DNA minipreparation suitable for screening transgenic plants. Plant Mol. Biol. 19: 379a-379e. http://dx.doi.org/10.1007/BF02772839 McLellan AJ, Prati D, Kaltz O and Schmid B (1997). Structure and Analysis of Phenotypic and Genetic Variation in Clonal Plants. In: The Ecology and Evolution of Clonal Plants (de Kroon H and Van Groenendael JM, eds.). Backhuys, Leiden, 185-210. Meimberg H, Thalhammer S, Brachmann A and Heubl G (2006). Comparative analysis of a translocated copy of the trnK intron in carnivorous family Nepenthaceae. Mol. Phylogenet. Evol. 39: 478-490. http://dx.doi.org/10.1016/j.ympev.2005.11.023 PMid:16414286 Nybom, H and Bartish IV (2000). Effects of life history traits and sampling strategies on genetic diversity estimates obtained with RAPD markers in plants. Persp. Plant Ecol. Evol. Syst. 3: 93-114. http://dx.doi.org/10.1078/1433-8319-00006 Otero-Arnaiz A, Casas A, Hamrick JL and Cruse-Sanders J (2005). Genetic variation and evolution of Polaskia chichipe (Cactaceae) under domestication in the Tehuacan Valley, central Mexico. Mol. Ecol. 14: 1603-1611. http://dx.doi.org/10.1111/j.1365-294X.2005.02494.x PMid:15836636 Oyama K, Hernández-Verdugo S, Sánchez C, González- Rodríguez A, et al. (2006). Genetic structure of wild and domesticated populations of Capsicum annuum (Solanaceae) from Northwestern Mexico analyzed by RAPDs. Genet. Resour. Crop Evol. 53: 553-562. http://dx.doi.org/10.1007/s10722-004-2363-1 Pickersgill B (1969). The Domestication of Peppers. In: The Domestication and Exploitation of Plants and Animals (Ucko PJ and Dimbley GW, eds.). Duckworth, London, 443-450. Rath P, Rajeseger G, Cheng JG and Kumar PP (1998). Phylogenetic analysis of Dipterocarpus using random amplified polymorphic DNA markers. Ann. Bot. 82: 61-65. http://dx.doi.org/10.1006/anbo.1998.0652 Sabrina R and Sabri S (1999). Genetic diversity in natural Cupressus sempervirens L. populations in Turkey. Biochem. Syst. Ecol. 27: 799-814. http://dx.doi.org/10.1016/S0305-1978(99)00028-9 Semang K, Bjornstad A and Stedje B (2003). Genetic diversity and differentiation in Ethiopian populations of Phytolacca dodecandra as revealed by AFLP and RAPD analyses. Genet. Resour. Crop Evol. 50: 649-661. http://dx.doi.org/10.1023/A:1024447404492 Shimizu Y, Ando M and Sakai F (2002). Clonal structure of natural populations of Cryptomeria japonica growing at different positions on slopes, detected using RAPD markers. Biochem. Syst. Ecol. 30: 733-748. http://dx.doi.org/10.1016/S0305-1978(01)00109-0 Sun Y, Xia N and Stapleton CMA (2005). Relationship between Bambusa species (Poaceae, Bambusoidae) revealed by random amplified polymorphic DNA. Biochem. Syst. Ecol. 34: 417-423. http://dx.doi.org/10.1016/j.bse.2005.10.015 Vivier MA and Pretorius IS (2002). Genetically tailored grapevines for the wine industry. Trends Biotechnol. 20: 472-478. http://dx.doi.org/10.1016/S0167-7799(02)02058-9 Yan T, Yan X and Zu Y (1999). A primaryly discuss on the adaptive mechanism at different altitude level of Rhodiola sachalinensis population. Bull. Bot. R 19: 201-206. Young AG, Hill JH, Murray BG and Peakall R (2002). Breeding system, genetic diversity and clonal structure in the sub-alpine forb Rutidosis leiolepis F. Muell. (Asteraceae). Biol. Conserv. 106: 71-78. http://dx.doi.org/10.1016/S0006-3207(01)00230-0 Zeder MA, Emshwiller E, Smith BD and Bradley DG (2006). Documenting domestication: the intersection of genetics and archaeology. Trends Genet. 22: 139-155. http://dx.doi.org/10.1016/j.tig.2006.01.007 PMid:16458995 Zhao LF, Li S, Pan Y, Yan GG, et al. (2001). Population differentiation of Psathyrostachys huashanina along an altitudinal gradient detected by random amplified polymorphic DNA. Acta Bot. Boreali-Occidentalia Sin. 21: 391-400. Zohary D and Hope M (2000). The Domestication of the Plants in the Old World: The Origin and Spread of Cultivated Plants in West Asia, Europe and Nile Valley. 3rd edn. Oxford University Press, Oxford.
2011
S. Ercisli, Agar, G., Yildirim, N., Karlidag, H., Duralija, B., and Vokurka, A., Genetic diversity in wild sweet cherries (Prunus avium) in Turkey revealed by SSR markers, vol. 10, pp. 1211-1219, 2011.
Anonymous (2009). The World Conservation Union. Available at [www.iucn.org]. Accessed March 15, 2011. Aradhya MK, Liana Y, Zee FT and Manshardt RM (1998). Genetic variability in Macadamia. Genet. Res. Crop Evol. 45: 19-32. doi:10.1023/A:1008634103954 Baytop T (1984). Therapy with Medicinal Plants in Turkey. Istanbul University Publication, Turkey. Benjak A, Ercisli S, Vokurka A, Maletic E, et al. (2005). Genetic relationships among grapevine cultivars native to Croatia, Greece and Turkey. Vitis 44: 73-77. Bouhadida M, Casas AM, Gonzalo MJ, Arus P, et al. (2009). Molecular characterization and genetic diversity of Prunus rootstocks. Sci. Hortic. 120: 237-245. doi:10.1016/j.scienta.2008.11.015 Cheng Z and Huang H (2009). SSR fingerprinting Chinese peach cultivars and landraces (Prunus persica) and analysis of their genetic relationships. Sci. Hortic. 120: 188-193. doi:10.1016/j.scienta.2008.10.008 Cipriani G, Lot G, Huang WG, Marrazzo MT, et al. (1999). AC/GT and AG/CT microsatellite repeats in peach (Prunus persica (L) Batsch): isolation, characterisation and cross-species amplification in Prunus. Theor. Appl. Genet. 99: 65-72. doi:10.1007/s001220051209 Clarke JB and Tobutt KR (2003). Development and characterization of polymorphic microsatellites from Prunus avium ‘Napoleon’. Mol. Ecol. Notes 3: 578-580. doi:10.1046/j.1471-8286.2003.00517.x Dirlewanger E, Cosson P, Tavaud M, Aranzana MJ, et al. (2002). Development of microsatellite markers in peach [Prunus persica (L.) Batsch] and their use in genetic diversity analysis in peach and sweet cherry, Prunus avium L.). Theor. Appl. Genet. 105: 127-138. doi:10.1007/s00122-002-0867-7 PMid:12582570 Downey SL and Iezzoni AF (2000). Polymorphic DNA markers in black cherry (Prunus serotina) are identified using sequences from sweet cherry, peach and sour cherry. J. Am. Soc. Hortic. Sci. 125: 76-80. Doyle JJ and Doyle JL (1987). A rapid DNA isolation procedure for small quantities of fresh leaf tissue. Phytochem. Bull. 19: 11-15. Ercisli S (2004). A short review of the fruit germplasm resources of Turkey. Genet. Res. Crop Evol. 51: 419-435. doi:10.1023/B:GRES.0000023458.60138.79 Guarino C, Santoro S, De SL and Cipriani G (2009). Prunus avium: nuclear DNA study in wild populations and sweet cherry cultivars. Genome 52: 320-337. doi:10.1139/G09-007 PMid:19370088 Gulen H, Ipek A, Ergin S, Akcay ME, et al. (2010). Assessment of genetic relationships among 29 introduced and 49 local sweet cherry accessions in Turkey using AFLP and SSR markers. J. Hortic. Sci. Biotechnol. 85: 427-431. Halilova H and Ercisli S (2010). Several physico-chemical characteristics of cherry laurel (Laurocerasus officinalis Roem) fruits. Biotechnol. Biotechnol. Equip. 24: 1970-1973. doi:10.2478/V10133-010-0059-6 Kacar AY, Iezzoni A and Cetiner S (2005). Sweet cherry cultivar identification by using SSR markers. J. Biol. Sci. 5: 616-619. doi:10.3923/jbs.2005.616.619 Kafkas S, Ozgen M, Dogan Y, Ozcan B, et al. (2008). Molecular characterization of mulberry accessions in Turkey by AFLP markers. J. Am. Soc. Hortic. Sci. 133: 593-597. Lacis G, Rashal I, Ruisa S, Trajkovski V, et al. (2009). Assessment of genetic diversity of Latvian and Swedish sweet cherry (Prunus avium L.) genetic resources collections by using SSR (microsatellite) markers. Sci. Hortic. 121: 451-457. doi:10.1016/j.scienta.2009.03.016 Messina R, Lain O, Marrazzo MT, Cipriani G, et al. (2004). New set of microsatellite loci isolated in apricot. Mol. Ecol. Notes 4: 432-434. doi:10.1111/j.1471-8286.2004.00674.x Mnejja M, Garcia-Mas J, Howad W and Arús P (2005). Development and transportability across Prunus species of 42 polymorphic almond microsatellites. Mol. Ecol. Notes 5: 531-535. doi:10.1111/j.1471-8286.2005.00977.x Olmstead JW, Sebolt AM, Cabrera A, Sooriyapathirana SS, et al. (2008). Construction of an intra-specific sweet cherry (Prunus avium L.) genetic linkage map and synteny analysis with the Prunus reference map. Tree Genet. Genom. 4: 897-910. doi:10.1007/s11295-008-0161-1 Powell W, Morgante M, Andre C, Hanafey M, et al. (1996). The comparison of RFLP, RAPD, AFLP and SSR (microsatellite) markers for germplasm analysis. Mol. Breed. 2: 225-238. doi:10.1007/BF00564200 Rohlf FJ (1998). NTSYS-PC Numerical Taxonomy and Multivariate Analysis System. Exeter Software, Setauket, New York. Schueler S, Tusch A, Schuster M and Ziegenhagen B (2003). Characterization of microsatellites in wild and sweet cherry (Prunus avium L.) - markers for individual identification and reproductive processes. Genome 46: 95-102. doi:10.1139/g02-107 PMid:12669801 Sefc KM, Lopez MS, Lefort F, Botta R, et al. (2000). Microsatellites variability in grapevine cultivars from different European regions and evaluation of assignment testing to assess the geographic origin of cultivars. Theor. Appl. Genet. 100: 498-505. doi:10.1007/s001220050065 Sneath PH and Sokal RR (1973). Numerical Taxonomy. Freeman, San Francisco. Sosinski B, Gannavarapu M, Hager LD, Beck LE, et al. (2000). Characterisation of microsatellite markers in peach (Prunus persica (L.) Batsch). Theor. Appl. Genet. 101: 421-428. doi:10.1007/s001220051499 Struss D, Ahmad R, Southwick SM and Boritzki M (2003). Analysis of sweet cherry (Prunus avium L.) cultivars using SSR and AFLP markers. J. Am. Soc. Hortic. Sci. 128: 904-909. Turkoglu Z, Bilgener S, Ercisli S, Bakir M, et al. (2010). Simple sequence repeat-based assessment of genetic relationships among Prunus rootstocks. Genet. Mol. Res. 9: 2156-2165. doi:10.4238/vol9-4gmr957 PMid:21053179 Vaughan SP and Russell K (2004). Characterization of novel microsatellites and development of multiplex PCR for large-scale population studies in wild cherry; Prunus avium. Mol. Ecol. Notes 4: 429-431. doi:10.1111/j.1471-8286.2004.00673.x Webster AD (1996). The Taxonomic Classification of Sweet and Sour Cherries and a Brief History of Their Cultivation. In: Cherries: Crop Physiology, Production and Uses (Webster AD and Looney NE, eds). CAB International, Wallingford, 3-24. Wünsch A (2009). SSR Markers for fingerprinting Prunus species. Acta Hortic. 814: 689-694. Wünsch A and Hormaza JI (2002). Molecular characterisation of sweet cherry (Prunus avium L.) genotypes using peach [Prunus persica (L.) Batsch] SSR sequences. Heredity 89: 56-63. PMid:12080370 Wünsch A and Hormaza JI (2004). Molecular evaluation of genetic diversity and S-allele composition of local Spanish sweet cherry (Prunus avium L.) cultivars. Genet. Res. Crop Evol. 51: 635-641. doi:10.1023/B:GRES.0000024649.06681.43 Wünsch A, Gella R and Hormaza JI (2004). Molecular characterization of rootstocks for sweet cherry (Prunus avium L.). Acta Hortic. 658: 599-602. Xuan H, Wang R, Buchele M, Moller O, et al. (2009). Microsatellite markers (SSR) as a tool to assist in identification of sweet (Prunus avium) and sour cherry (Prunus cerasus). Acta Hortic. 839: 507-514.4
S. Ercisli, Gadze, J., Agar, G., Yildirim, N., and Hizarci, Y., Genetic relationships among wild pomegranate (Punica granatum genotypes from Coruh Valley in Turkey, vol. 10, pp. 459-464, 2011.
Armstrong J, Gibbs A, Peakall R and Weiller G (1994). The RAPDistance Package. Available at [http://life.anu.edu.au/molecular/software/rapd.html]. Accessed April 23, 2010.   Briard M, Le Clerc V, Mausset AE and Veret A (2001). A comparative study on the use of ISSR, microsatellites and RAPD markers for varietal identification of carrot genotypes. Acta Hortic. 546: 377-385.   Durgac C, Ozgen M, Simsek O, Kacar YA, et al. (2008). Molecular and pomological diversity among pomegranate (Punica granatum L.) cultivars in Eastern Mediterranean region of Turkey. Afr. J. Biotechnol. 7: 1294-1301.   Ercan N, Ozvardar S, Gonulsen N, Baldiran E, et al. (1992). Determination of Suitable Pomegranate Cultivars for Aegean Region. Proceedings of 1st National Horticultural Congress, Izmir, 553-557.   Ercisli S (2004). A short review of the fruit germplasm resources of Turkey. Genet. Res. Crop Evol. 51: 419-435. http://dx.doi.org/10.1023/B:GRES.0000023458.60138.79   Ercisli S, Agar G, Orhan E, Yildirim N, et al. (2007). Interspecific variability of RAPD and fatty acid composition of some pomegranate cultivars (Punica granatum L.) growing in Southern Anatolia Region in Turkey. Biochem. Syst. Ecol. 35: 764-769. http://dx.doi.org/10.1016/j.bse.2007.05.014   Ercisli S, Orhan E, Yildirim N and Agar G (2008). Comparison of sea buckthorn genotypes (Hippophae rhamnoides L.) based on RAPD and FAME data. Turk. J. Agr. Forest. 32: 363-368.   Jaiswal V, DerMarderosian A and Porter JR (2010). Anthocyanins and polyphenol oxidase from dried arils of pomegranate (Punica granatum L.). Food Chem. 118: 11-16. http://dx.doi.org/10.1016/j.foodchem.2009.01.095   Lin RC, Ding ZS, Li LB and Kuang TY (2001). A rapid and efficient DNA minipreparation suitable for screening transgenic plants. Plant Mol. Biol. Rep. 19: 379a-379e. http://dx.doi.org/10.1007/BF02772839   Mars M (1996). Pomegranate Genetic Resources in the Meditaerranean Region. In: First MESFIN Plant Genetic Resources Meeting, Tenerife, 345-354.   Narzary D, Kamalesh SM, Rana TS and Ranade SA (2009). Analysis of genetic diversity among wild pomegranates in Western Himalayas, using PCR methods. Sci. Hortic. 121: 237-242. http://dx.doi.org/10.1016/j.scienta.2009.01.035   Ozguven AI, Tatli H, Coskun M and Dasgan Y (1997). Mediterranean and Aegean pomegranate varieties under ecological conditions of Adana, Turkey. Acta Hortic. 441: 345-348.   Ozkan Y (2005). Investigations on physical and chemical characteristics of some pomegranate genotypes (Punica granatum L.) of Tokat province in Turkey. Asian J. Chem. 17: 939-942.   Polat AA, Durgac C, Kamiloglu O, Mansuroglu M, et al. (1999). Studies on Determination of Pomological Characteristics of Some Pomegranate Types Grown in Kirikhan District of Hatay Province. Proceedings of 3rd National Horticultural Congress, Ankara, 746-750.   Sarkhosh A, Zamani Z, Fatahi R and Ebadi A (2006). RAPD markers reveal polymorphism among some Iranian pomegranate (Punica granatum L.) genotypes. Sci. Hortic. 111: 24-29. http://dx.doi.org/10.1016/j.scienta.2006.07.033   Zamani Z, Sarkhosh A, Fatahi R and Ebadi A (2007). Genetic relationships among pomegranate genotypes studied by fruit characteristics and RAPD markers. J. Hortic. Sci. Biotechnol. 82: 11-18.
2010
E. Yildirim, Yildirim, N., Ercisli, S., Agar, G., and Karlidag, H., Genetic relationships among turnip (Brassica rapa var. rapa) genotypes, vol. 9, pp. 987-993, 2010.
Akbulut M, Ercisli S and Karlidag H (2009). RAPD-based study of genetic variation and relationships among wild fig genotypes in Turkey. Genet. Mol. Res. 8: 1109-1115. http://dx.doi.org/10.4238/vol8-3gmr634 PMid:19768673   Armstrong J, Gibbs A, Peakall R and Weiller G (1994). The RAPDistance Package. Available at [http://life.anu.edu.au/molecular/software/rapd.htm]. Accessed July 4, 2008.   Badenes ML, Martínez-Calvo J and Llácer G (1998). Analysis of apricot germplasm from the European ecogeographical group. Euphytica 102: 93-99. http://dx.doi.org/10.1023/A:1018332312570   Benjak A, Ercisli S, Vokurka A, Maletic E, et al. (2005). Genetic relationships among grapevine cultivars native to Croatia, Greece and Turkey. Vitis 44: 73-77.   Cartea ME, Soengas P, Picoaga A and Ordas A (2005). Relationships among Brassica napus (L.) germplasm from Spain and Great Britain as determined by RAPD markers. Genet. Res. Crop Evol. 52: 655-662. http://dx.doi.org/10.1007/s10722-003-6014-8   Cassian R and Echeverrigaray S (2000). Discrimination among cultivars of cabbage using randomly amplified polymorphic DNA markers. HortScience 35: 1155-1158.   dos Santos JB, Nienhuis J, Skroch P, Tivang J, et al. (1994). Comparison of RAPD and RFLP genetic markers in determining genetic similarity among Brassica oleracea L. genotypes. Theor. Appl. Genet. 87: 909-915.   Ercisli S (2004). A short review of the fruit germplasm resources of Turkey. Genet. Res. Crop Evol. 51: 419-435. http://dx.doi.org/10.1023/B:GRES.0000023458.60138.79   Ercisli S, Agar G, Orhan E, Yildirim N, et al. (2007). Interspecific variability of RAPD and fatty acid composition of some pomegranate cultivars (Punica granatum L.) growing in Southern Anatolia Region in Turkey. Biochem. Syst. Ecol. 35: 764-769. http://dx.doi.org/10.1016/j.bse.2007.05.014   Gottlieb LD (1984). Genetics and morphological evolution in plants. Am. Nat. 123: 681-709. http://dx.doi.org/10.1086/284231   Halldén C, Nilsson NO, Rading IM and Säll T (1994). Evaluation of RFLP and RAPD markers in a comparison of Brassica napus breeding lines. Theor. Appl. Genet. 88: 123-128. http://dx.doi.org/10.1007/BF00222404   Ilgin M, Kafkas S and Ercisli S (2009). Molecular characterization of plum cultivars by AFLP markers. Biotechnol. Biotechnol. Eq. 23: 1189-1193.   Khakwani AA, Shiraishi M, Zubair M, Baloch MS, et al. (2005). Effect of seedling age and water depth on morphological and physiological aspects of transplanted rice under high temperature. J. Zhejiang. Univ. Sci. B 6: 389-395. PMid:15822153 PMCid:1389756   Kresovich S, Williams JGK, McFerson JR, Routman EJ, et al. (1992). Characterization of genetic identities and relationships of Brassica oleracea L. via a random amplified polymorphic DNA assay. Theor. Appl. Genet. 85: 190-196. http://dx.doi.org/10.1007/BF00222859   Lin RC, Ding ZS, Li LB and Kuang TY (2001). A rapid and efficient DNA minipreparation suitable for screening transgenic plants. Plant Mol. Biol. Rep. 19: 379a-379e. http://dx.doi.org/10.1007/BF02772839   Mailer RJ, Scarth R and Fristensky B (1994). Discrimination among cultivars of rapeseed (Brassica napus L.) using DNA polymorphisms amplified from arbitrary primers. Theor. Appl. Genet. 87: 697-704. http://dx.doi.org/10.1007/BF00222895   O'Neill R, Snowdon R and Köhler W (2003). Population genetics aspects of biodiversity. Prog. Bot. 64: 115-137. http://dx.doi.org/10.1007/978-3-642-55819-1_7   Padilla G, Cartea ME, Rodríguez VM and Ordás A (2005). Genetic diversity in a germplasm collection of Brassica rapa subsp rapa L. from northwestern Spain. Euphytica 145: 171-180. http://dx.doi.org/10.1007/s10681-005-0895-x   Rabbani MA, Iwabushi A, Murakami Y, Suzuki T, et al. (1998). Genetic diversity in mustard (Brassica juncea L.) germplasm from Pakistan as determined by RAPDs. Euphytica 103: 235-242. http://dx.doi.org/10.1023/A:1018304921526   Reif JC, Zhang P, Dreisigacker S, Warburton ML, et al. (2005). Wheat genetic diversity trends during domestication and breeding. Theor. Appl. Genet. 110: 859-864. http://dx.doi.org/10.1007/s00122-004-1881-8 PMid:15690175   Ren J, McFerson JR, Li R, Kresovich S, et al. (1995). Identities and relationships among Chinese vegetable Brassicas as determined by random amplified polymorphic DNA markers. J. Am. Soc. Hortic. Sci. 120: 548-555.   Seyis F, Snowdon RJ, Lühs W and Friedt W (2003). Molecular characterization of novel resynthesized rapeseed (Brassica napus) lines and analysis of their genetic diversity in comparison with spring rapeseed cultivars. Plant Breed. 122: 473-478. http://dx.doi.org/10.1111/j.1439-0523.2003.00859.x   Tanhuanpaa P, Vilkki J, Vilkki J and Pulli S (1993). Genetic polymorphism at RAPD loci in spring turnip rape (Brassica rapa ssp oleifera). Agric. Sci. Finland 2: 303-310.
E. Orhan and Ercisli, S., Genetic relationships between selected Turkish mulberry genotypes (Morus spp) based on RAPD markers, vol. 9, pp. 2176-2183, 2010.
Awasthi AK, Nagaraja GM, Naik GV, Kanginakudru S, et al. (2004). Genetic diversity and relationships in mulberry (genus Morus) as revealed by RAPD and ISSR marker assays. BMC Genet. 5: 1. http://dx.doi.org/10.1186/1471-2156-5-1 PMid:14715088 PMCid:343270   Ercisli S (2004). A short review of the fruit germplasm resources of Turkey. Genet. Resour. Crop Evol. 51: 419-435. http://dx.doi.org/10.1023/B:GRES.0000023458.60138.79   Ercisli S and Orhan E (2007). Chemical composition of white (Morus alba), red (Morus rubra) and black (Morus nigra) mulberry fruits. Food Chem. 103: 1380-1384. http://dx.doi.org/10.1016/j.foodchem.2006.10.054   Ercisli S and Orhan E (2008). Some physico-chemical characteristics of black mulberry (Morus nigra L.) genotypes from Northeast Anatolia region of Turkey. Sci. Hort. 116: 41-46. http://dx.doi.org/10.1016/j.scienta.2007.10.021   Felsenstein J (1993). PHYLIP (Phylogeny Inference Package) User Manual. University of Washington, Seattle. PMCid:202139   Kafkas S, Özen M, Doğan, Özcan B, et al. (2008). Molecular characterization of mulberry accessions in Turkey by AFLP markers. J. Am. Soc. Hort. Sci. 133: 593-597.   Kar PK, Srivastava PP, Awasthi AK and Awasthi SR (2008). Genetic variability and association of ISSR markers with some biochemical traits in mulberry (Morus spp.) genetic resources available in India. Tree Genet. Genomes 4: 75-83. http://dx.doi.org/10.1007/s11295-007-0089-x   Lin RC, Ding ZS, Li LB and Kuang TY (2001). A rapid and efficient DNA minipreparation suitable for screening transgenic plants. Plant Mol. Biol. Rep. 19: 379a-379e. http://dx.doi.org/10.1007/BF02772839   Vijayan K (2004). Genetic relationships of Japanese and Indian mulberry (Morus spp.) genotypes revealed by DNA fingerprinting. Plant Syst. Evol. 243: 221-232. http://dx.doi.org/10.1007/s00606-003-0078-y   Vijayan K and Chatterjee SN (2003). SSR profiling of Indian cultivars of mulberry (Morus spp.) and its relevance to breeding programs. Euphytica 131: 53-63. http://dx.doi.org/10.1023/A:1023098908110   Vijayan K, Srivastava PP and Awasthi AK (2004a). Analysis of phylogenetic relationship among five mulberry (Morus) species using molecular markers. Genome 47: 439-448. http://dx.doi.org/10.1139/g03-147 PMid:15190361   Vijayan K, Awasthi AK, Srivastava PP and Saratchandra B (2004b). Genetic analysis of Indian mulberry varieties through molecular markers. Hereditas 141: 8-14. http://dx.doi.org/10.1111/j.1601-5223.2004.01813.x PMid:15383066   Vijayan K, Kar PK, Tikader A, Srivastava PP, et al. (2004c). Molecular evaluation of genetic variability in wild populations of mulberry (Morus serrata Roxb.). Plant Breed. 123: 568-572. http://dx.doi.org/10.1111/j.1439-0523.2004.01035.x   Zhao W, Zhou Z, Miao X, Wang S, et al. (2006). Genetic relatedness among cultivated and wild mulberry (Moraceae: Morus) as revealed by inter-simple sequence repeat analysis in China. Can. J. Plant Sci. 86: 251-257. http://dx.doi.org/10.4141/P04-110   Zhao W, Wang Y, Chen T, Jia G, et al. (2007). Genetic structure of mulberry from different ecotypes revealed by ISSRs in China: an implications for conservation of local mulberry varieties. Sci. Hort. 155: 47-55. http://dx.doi.org/10.1016/j.scienta.2007.07.017
N. Yildirim, Ercisli, S., Agar, G., Orhan, E., and Hizarci, Y., Genetic variation among date plum (Diospyros lotus) genotypes in Turkey, vol. 9, pp. 981-986, 2010.
Armstrong J, Gibbs A, Peakall R and Weiller G (1994). The RAPDistance Package. Australian National University, Canberra. Available at [http://life.anu.edu.au/molecular/software/rapd.htm]. Accessed July 4, 2008.   Asins MJ and Carbonell EA (1989). Distribution of genetic variability in a durum wheat world collection. Theor. Appl. Genet. 77: 287-294. http://dx.doi.org/10.1007/BF00266199   Ayaz FA, Kadioglu A and Hayirlioglu S (1995). Determination of some mono- and disaccharides in the fruits of Diospyros lotus L. using gas chromatography. Tr. J. Botany 19: 493-495.   Badenes M, Garcés A, Romero C, Romero M, et al. (2003). Genetic diversity of introduced and local Spanish persimmon cultivars revealed by RAPD markers. Genet. Res. Crop Evol. 50: 579-585. http://dx.doi.org/10.1023/A:1024474719036   Baytop T (1984). Türkiye'de Bitkiler ile Tedavi. No. 3255. Istanbul Üniversitesi Yayinlari, Istanbul.   Ercisli S (2004). A short review of the fruit germplasm resources of Turkey. Genet. Res. Crop Evol. 51: 419-435. http://dx.doi.org/10.1023/B:GRES.0000023458.60138.79   Ercisli S and Akbulut M (2009). Persimmon cultivation and genetic resources in Turkey. Acta Hortic. 833: 35-38.   Glew RH, Ayaz FA, Millson M, Huang HS, et al. (2005). Changes in sugars, acids and fatty acids in naturally parthenocarpic date plum persimmon (Diospyros lotus L.) fruit during maturation and ripening. Eur. Food Res. Technol. 221: 113-118. http://dx.doi.org/10.1007/s00217-005-1201-9   Gonçalves ED, Trevisan R, Silva JA and Rombaldi CV (2004). Genetic variability study and browning in 'Fuyu' (Diospyrus kaki) persimmon after cold storage. Rev. Bras. Frutic. 26: 555-557. http://dx.doi.org/10.1590/S0100-29452004000300045   Lin RC, Ding ZC, Li LB and Kuang TY (2001). A rapid and efficient DNA minipreparation suitable for screening transgenic plants. Plant Mol. Biol. Rep. 19: 379a-379e. http://dx.doi.org/10.1007/BF02772839   Onur C and Onur S (1995). Persimmon (Diospyros kaki) Selection from Black Sea Region of Turkey. In: Proceedings of the IInd National Horticulture Congress, 3-6 October, Adana, 588-590.   Onur S (1990). Persimmon [in Turkish]. Derim 7: 4-47.   Paterson AH, Tanksley SD and Sorrells ME (1991). DNA markers in plant improvement. Adv. Agron. 46: 39-90. http://dx.doi.org/10.1016/S0065-2113(08)60578-7   Vijayan K, Tikader A, Kar PK, Srivastava PP, et al. (2006). Assessment of genetic relationships between wild and cultivated Mulberry (Morus) species using PCR based markers. Genet. Res. Crop Evol. 53: 873-882. http://dx.doi.org/10.1007/s10722-004-6148-3   Williams JG, Kubelik AR, Livak KJ, Rafalski JA, et al. (1990). DNA polymorphisms amplified by arbitrary primers are useful as genetic markers. Nucleic Acids Res. 18: 6531-6535. http://dx.doi.org/10.1093/nar/18.22.6531 PMid:1979162 PMCid:332606   Yaltirik F (1978). Diospyros L. In: Davis: the Flora of Turkey and the East Aegean Islands. Vol. 6. Edinburg University Press, Edinburgh, 142-143.   Yamagishi M, Matsumoto S, Nakatsuka A and Itamura H (2005). Identification of persimmon (Diospyrus kaki) cultivars and phenetic relationships between Diospyros species by more effective RAPD analysis. Sci. Hortic. 105: 283-290. http://dx.doi.org/10.1016/j.scienta.2005.01.020
Z. Turkoglu, Bilgener, S., Ercisli, S., Bakır, M., Bakır, M., Koc, A., Akbulut, M., Gercekcioglu, R., Gunes, M., and Esitken, A., Simple sequence repeat-based assessment of genetic relationships among Prunus rootstocks, vol. 9, pp. 2156-2165, 2010.
Aradhya MK, Liana Y, Zee FT and Manshardt RM (1998). Genetic variability in Macadamia. Genet. Resour. Crop Evol. 45: 19-32. http://dx.doi.org/10.1023/A:1008634103954   Aranzana MJ, Pineda A, Cosson P, Dirlewanger E, et al. (2003). A set of simple-sequence repeat (SSR) markers covering the Prunus genome. Theor. Appl. Genet. 106: 819-825. PMid:12647055   Bouhadida M, Casas AM, Gonzalo MJ, Arus P, et al. (2009). Molecular characterization and genetic diversity of Prunus rootstocks. Sci. Hortic. 120: 237-245. http://dx.doi.org/10.1016/j.scienta.2008.11.015   Bowcock AM, Ruiz-Linares A, Tomfohrde J, Minch E, et al. (1994). High resolution of human evolutionary trees with polymorphic microsatellites. Nature 368: 455-457. http://dx.doi.org/10.1038/368455a0 PMid:7510853   Casas AM, Igartua E, Balaguer G and Moreno MA (1999). Genetic diversity of Prunus rootstocks analyzed by RAPD markers. Euphytica 110: 139-149. http://dx.doi.org/10.1023/A:1003745311408   Cheng Z and Huang H (2009). SSR fingerprinting Chinese peach cultivars and landraces (Prunus persica) and analysis of their genetic relationships. Sci. Hortic. 120: 188-193. http://dx.doi.org/10.1016/j.scienta.2008.10.008   Cipriani G, Lot G, Huang WG, Marrazzo MT, et al. (1999). AC/GT and AG/CT microsatellite repeats in peach (Prunus persica (L) Batsch): isolation, characterisation and cross-species amplification in Prunus. Theor. App. Genet. 99: 65-72. http://dx.doi.org/10.1007/s001220051209   Dirlewanger E, Cosson P, Tavaud M, Aranzana J, et al. (2002). Development of microsatellite markers in peach [Prunus persica (L.) Batsch] and their use in genetic diversity analysis in peach and sweet cherry (Prunus avium L.). Theor. Appl. Genet. 105: 127-138. http://dx.doi.org/10.1007/s00122-002-0867-7 PMid:12582570   Dosba F, Bernhard R and Zanetto A (1994). Importance des ressources génétiques des Prunus. C.R. Acad. Agric. Fr. 80: 45-57.   Downey SL and Iezzoni AF (2000). Polymophic DNA markers in black cherry (Prunus serotina) are identified using sequences from sweet cherry, peach and sour cherry. J. Am. Soc. Hortic. Sci. 125: 76-80.   Duminil J and Di Michele M (2009). Plant species delimitation: a comparison of morphological and molecular markers. Plant Biosyst. 143: 528-542. http://dx.doi.org/10.1080/11263500902722964   Ercisli S (2004). A short review of the fruit germplasm resources of Turkey. Genet. Resour. Crop Evol. 51: 419-435. http://dx.doi.org/10.1023/B:GRES.0000023458.60138.79   Ercisli S, Agar G, Orhan E, Yildirim N, et al. (2007). Interspecific variability of RAPD and fatty acid composition of some pomegranate cultivars (Punica granatum L.) growing in Southern Anatolia Region in Turkey. Biochem. Syst. Ecol. 35: 764-769. http://dx.doi.org/10.1016/j.bse.2007.05.014   Ilgin M, Kafkas S and Ercisli S (2009). Molecular characterization of plum cultivars by AFLP markers. Biotechnol. Biotechnol. Eq. 23: 1189-1193.   Lacis G, Rashal I, Ruisa S, Trajkovski V, et al. (2009). Assessment of genetic diversity of Latvian and Swedish sweet cherry (Prunus avium L.) genetic resources collections by using SSR (microsatellite) markers. Sci. Hortic. 121: 451-457. http://dx.doi.org/10.1016/j.scienta.2009.03.016   Lalli DA, Abbott AG, Zhebentyayeva TN, Badenes ML, et al. (2008). A genetic linkage map for an apricot (Prunus armeniaca L.). BC1 population mapping plum pox virus resistance. Tree Genet. Genomes 4: 481-493. http://dx.doi.org/10.1007/s11295-007-0125-x   Maghuly F, Fernandez EB, Ruthner S, Pedryc A, et al. (2005). Microsatellite variability in apricots (Prunus armeniaca L.) reflects their geographic origin and breeding history. Tree Genet. Genome 1: 151-165. http://dx.doi.org/10.1007/s11295-005-0018-9   Messina R, Lain O, Marrazzo MT, Cipriani G, et al. (2004). New set of microsatellite loci isolated in apricot. Mol. Ecol. Notes 4: 432-434. http://dx.doi.org/10.1111/j.1471-8286.2004.00674.x   Minch E, Ruiz-Linares A, Goldstein DB, Feldman M, et al. (1995). Microsat (Version 1.4d): A Computer Program for Calculating Various Statistics on Microsatellite Allele Data. Stanford University Medical Center, Stanford. PMCid:41596   Mnejja M, Garcia-Mas J, Howad W and Arús P (2005). Development and transportability across Prunus species of 42 polymorphic almond microsatellites. Mol. Ecol. Notes 5: 531-535. http://dx.doi.org/10.1111/j.1471-8286.2005.00977.x   Paetkau D, Calvert W, Stirling I and Strobeck C (1995). Microsatellite analysis of population structure in Canadian polar bears. Mol. Ecol. 4: 347-354. http://dx.doi.org/10.1111/j.1365-294X.1995.tb00227.x PMid:7663752   Rehder A (1940). A Manual of Cultivated Trees and Shrubs Hardy in North America Exclusive of the Subtropical and Warmer Temperate Regions. 2nd edn. Macmillan, New York, 162.   Rohlf FJ (1988). NTSYS-PC Numerical Taxonomy and Multivariate Analysis System. Exeter Publishing, New York.   Rom RC (1982). A new philosophy for peach rootstock development. Fruit Variety J. 36: 34-37.   Romero C, Pedryc A, Munoz V, Llacer G, et al. (2003). Genetic diversity of different apricot geographical groups determined by SSR markers. Genome 46: 244-252. http://dx.doi.org/10.1139/g02-128 PMid:12723040   Sefc KM, Lopez MS, Lefort F, Botta R, et al. (2000). Microsatellites variability in grapevine cultivars from different European regions and evaluation of assignment testing to assess the geographic origin of cultivars. Theor. Appl. Genet. 100: 498-505. http://dx.doi.org/10.1007/s001220050065   Sneath PH and Sokal RR (1973). Numerical Taxonomy. Freeman, San Francisco.   Sosinski B, Gannavarapu M, Hager LD, Beck LE, et al. (2000). Characterisation of microsatellite markers in peach [Prunus persica (L.) Batsch]. Theor. Appl. Genet. 101: 421-428. http://dx.doi.org/10.1007/s001220051499   Struss D, Ahmad R, Southwick SM and Boritzki M (2003). Analysis of sweet cherry (Prunus avium L.) cultivars using SSR and AFLP marker. J. Am. Soc. Hortic. Sci. 128: 904-909.   Wagner HW and Sefc KM (1999). Identity 1.0. Centre for Applied Genetics. University of Agricultural Science, Vienna.   Wünsch A (2009). SSR markers for fingerprinting Prunus species. Acta Hortic. 814: 689-694.   Wünsch A and Hormaza JI (2002). Molecular characterisation of sweet cherry (Prunus avium L.) genotypes using peach [Prunus persica (L.) Batsch] SSR sequences. Heredity 89: 56-63. PMid:12080370   Wünsch A and Hormaza JI (2004). Molecular evaluation of genetic diversity and S allele composition of local Spanish sweet cherry (Prunus avium L.) cultivars. Genet. Resour. Crop Evol. 51: 635-641. http://dx.doi.org/10.1023/B:GRES.0000024649.06681.43   Wünsch A, Gella R and Hormaza JI (2004). Molecular characterization of rootstocks for sweet cherry (Prunus avium L.). Acta Hortic. 658: 599-602.   Xuan H, Wang R, Büchele M, Möller O, et al. (2009). Microsatellite markers (SSR) as a tool to assist in identification of sweet (Prunus avium) and sour cherry (Prunus cerasus). Acta Hortic. 839: 507-514.   Yamamoto T, Mochida K, Imai T, Haji T, et al. (2003). Parentage analysis in Japanese peaches using SSR markers. Breed. Sci. 53: 35-40. http://dx.doi.org/10.1270/jsbbs.53.35   Yilmaz KU, Ercisli S, Asma BM, Dogan Y, et al. (2009). Genetic relatedness in Prunus genus revealed by inter-simple sequence repeat markers. HortScience 44: 293-297.   Zamani Z, Sarkhosh A, Fatahi R and Ebadi A (2007). Genetic relationships among pomegranate genotypes studied by fruit characteristics and RAPD markers. J. Hortic. Sci. Biotech. 82: 11-18.