Publications

Found 22 results
Filters: Author is M. Liu  [Clear All Filters]
2016
Z. Cheng, Dai, L. L., Liu, Q., Liu, M., Wang, Q., Li, P. F., Wang, H., Jia, L. Q., An, L., Cheng, Z., Dai, L. L., Liu, Q., Liu, M., Wang, Q., Li, P. F., Wang, H., Jia, L. Q., and An, L., Correlation between polymorphisms in the glucocorticoid receptor gene NR3C1 and susceptibility to asthma in a Chinese population from the Henan Province, vol. 15, p. -, 2016.
Z. Cheng, Dai, L. L., Liu, Q., Liu, M., Wang, Q., Li, P. F., Wang, H., Jia, L. Q., An, L., Cheng, Z., Dai, L. L., Liu, Q., Liu, M., Wang, Q., Li, P. F., Wang, H., Jia, L. Q., and An, L., Correlation between polymorphisms in the glucocorticoid receptor gene NR3C1 and susceptibility to asthma in a Chinese population from the Henan Province, vol. 15, p. -, 2016.
L. Lu, Wei, P., Cao, Y., Zhang, Q., Liu, M., Liu, X. D., Wang, Z. L., Zhang, P. Y., Lu, L., Wei, P., Cao, Y., Zhang, Q., Liu, M., Liu, X. D., Wang, Z. L., and Zhang, P. Y., Effect of total peony glucoside pretreatment on NF-κB and ICAM-1 expression in myocardial tissue of rat with myocardial ischemia-reperfusion injury, vol. 15, no. 4, p. -, 2016.
Conflicts of interest The authors declare no conflict of interest. ACKNOWLEDGMENTS We thank the anonymous reviewers for reviewing this manuscript. REFERENCES Boyd JH, Mathur S, Wang Y, Bateman RM, et al (2006). Toll-like receptor stimulation in cardiomyoctes decreases contractility and initiates an NF-kappaB dependent inflammatory response. Cardiovasc. Res. 72: 384-393. http://dx.doi.org/10.1016/j.cardiores.2006.09.011 Chen JY, Wu HX, Chen Y, Zhang LL, et al (2012). Paeoniflorin inhibits proliferation of fibroblast-like synoviocytes through suppressing G-protein-coupled receptor kinase 2. Planta Med. 78: 665-671. http://dx.doi.org/10.1055/s-0031-1298327 Di Paola R, Mazzon E, Paterniti I, Impellizzeri D, et al (2011). Olprinone, a PDE3 inhibitor, modulates the inflammation associated with myocardial ischemia-reperfusion injury in rats. Eur. J. Pharmacol. 650: 612-620. http://dx.doi.org/10.1016/j.ejphar.2010.10.043 Frantz S, Tillmanns J, Kuhlencordt PJ, Schmidt I, et al (2007). Tissue-specific effects of the nuclear factor kappaB subunit p50 on myocardial ischemia-reperfusion injury. Am. J. Pathol. 171: 507-512. http://dx.doi.org/10.2353/ajpath.2007.061042 Gu Q, Yang XP, Bonde P, DiPaula A, et al (2006). Inhibition of TNF-alpha reduces myocardial injury and proinflammatory pathways following ischemia-reperfusion in the dog. J. Cardiovasc. Pharmacol. 48: 320-328. http://dx.doi.org/10.1097/01.fjc.0000250079.46526.38 Hu ZC, Chen YD, Ren YH, et al (2011). Methylprednisolone improves microcirculation in streptozotocin-induced diabetic rats after myocardial ischemia/reperfusion. Chin. Med. J. (Engl.) 124: 923-929. Ji YY, Wang ZD, Wang SF, Wang BT, et al (2015). Ischemic preconditioning ameliorates intestinal injury induced by ischemia-reperfusion in rats. World J. Gastroenterol. 21: 8081-8088. Jin C, Cleveland JC, Ao L, Li J, et al (2014). Human myocardium releases heat shock protein 27 (HSP27) after global ischemia: the proinflammatory effect of extracellular HSP27 through toll-like receptor (TLR)-2 and TLR4. Mol. Med. 20: 280-289. http://dx.doi.org/10.2119/molmed.2014.00058 Jin YC, Kim CW, Kim YM, Nizamutdinova IT, et al (2009). Cryptotanshinone, a lipophilic compound of Salvia miltiorrriza root, inhibits TNF-alpha-induced expression of adhesion molecules in HUVEC and attenuates rat myocardial ischemia/reperfusion injury in vivo. Eur. J. Pharmacol. 614: 91-97. http://dx.doi.org/10.1016/j.ejphar.2009.04.038 Liang X, Huang J, Lin X, Qin F, et al (2014). The effect of 17-methoxyl-7-hydroxy-benzene-furanchalcone on NF-κB and the inflammatory response during myocardial ischemia reperfusion injury in rats. J. Cardiovasc. Pharmacol. 63: 68-75. http://dx.doi.org/10.1097/FJC.0000000000000027 Liang Z, Liu LF, Yao TM, Huo Y, et al (2012). Cardioprotective effects of Guanxinshutong (GXST) against myocardial ischemia/ reperfusion injury in rats. J. Geriatr. Cardiol. 9: 130-136. http://dx.doi.org/10.3724/SP.J.1263.2011.11261 Long J, Gao M, Kong Y, Shen X, et al (2012). Cardioprotective effect of total paeony glycosides against isoprenaline-induced myocardial ischemia in rats. Phytomedicine 19: 672-676. http://dx.doi.org/10.1016/j.phymed.2012.03.004 Lungkaphin A, Pongchaidecha A, Palee S, Arjinajarn P, et al (2015). Pinocembrin reduces cardiac arrhythmia and infarct size in rats subjected to acute myocardial ischemia/reperfusion. Appl. Physiol. Nutr. Metab. 40: 1031-1037. http://dx.doi.org/10.1139/apnm-2015-0108 Shen B, Li J, Gao L, Zhang J, et al (2013). Role of CC-chemokine receptor 5 on myocardial ischemia-reperfusion injury in rats. Mol. Cell. Biochem. 378: 137-144. http://dx.doi.org/10.1007/s11010-013-1604-z Wei G, Guan Y, Yin Y, Duan J, et al (2013). Anti-inflammatory effect of protocatechuic aldehyde on myocardial ischemia/reperfusion injury in vivo and in vitro. Inflammation 36: 592-602. http://dx.doi.org/10.1007/s10753-012-9581-z Wu ZY, Wang ZW, Hu R, Zhou Z, et al (2015). Role of Nrf2 signal pathway in rats with deep hypothermia ischemia/reperfusion injury undergoing remote postconditioning. Genet. Mol. Res. 14: 492-499. http://dx.doi.org/10.4238/2015.January.26.2 Wu ZY, Yao Y, Hu R, Dai FF, et al (2016). Cyclic adenosine monophosphate-protein kinase A signal pathway may be involved in pulmonary aquaporin-5 expression in ischemia/reperfusion rats following deep hypothermia cardiac arrest. Genet. Mol. Res. 15: 15017377. http://dx.doi.org/10.4238/gmr.15017377 Xu H, Wang D, Peng C, Huang X, et al (2014). Rabbit sera containing compound danshen dripping pill attenuate leukocytes adhesion to TNF-alpha--activated human umbilical vein endothelial cells by suppressing endothelial ICAM-1 and VCAM-1 expression through NF-kappaB signaling pathway. J. Cardiovasc. Pharmacol. 63: 323-332. http://dx.doi.org/10.1097/FJC.0000000000000046 Xu HY, Chen ZW, Wu YM, et al (2012). Antitumor activity of total paeony glycoside against human chronic myelocytic leukemia K562 cell lines in vitro and in vivo. Med. Oncol. 29: 1137-1147. http://dx.doi.org/10.1007/s12032-011-9909-9 Xu JH, Zhao YY, Wang JK, Yuan ZG, et al (2010). Effects of mouse recombinant bone morphogenetic protein-7 transfection on cell apoptosis, NF-kappaB, and downstream genes in cultured primary cardiomyocytes after simulated ischemia and reperfusion injury. J. Cardiovasc. Pharmacol. 56: 69-77. http://dx.doi.org/10.1097/FJC.0b013e3181e0badc Yin H, Chao L, Chao J, et al (2008). Nitric oxide mediates cardiac protection of tissue kallikrein by reducing inflammation and ventricular remodeling after myocardial ischemia/reperfusion. Life Sci. 82: 156-165. http://dx.doi.org/10.1016/j.lfs.2007.10.021 Zeng M, Yan H, Chen Y, Zhao HJ, et al (2012). Suppression of NF-κB reduces myocardial no-reflow. PLoS One 7: e47306. http://dx.doi.org/10.1371/journal.pone.0047306 Zhao N, Liu YY, Wang F, Hu BH, et al (2010). Cardiotonic pills, a compound Chinese medicine, protects ischemia-reperfusion-induced microcirculatory disturbance and myocardial damage in rats. Am. J. Physiol. Heart Circ. Physiol. 298: H1166-H1176. http://dx.doi.org/10.1152/ajpheart.01186.2009
L. Lu, Wei, P., Cao, Y., Zhang, Q., Liu, M., Liu, X. D., Wang, Z. L., Zhang, P. Y., Lu, L., Wei, P., Cao, Y., Zhang, Q., Liu, M., Liu, X. D., Wang, Z. L., and Zhang, P. Y., Effect of total peony glucoside pretreatment on NF-κB and ICAM-1 expression in myocardial tissue of rat with myocardial ischemia-reperfusion injury, vol. 15, no. 4, p. -, 2016.
Conflicts of interest The authors declare no conflict of interest. ACKNOWLEDGMENTS We thank the anonymous reviewers for reviewing this manuscript. REFERENCES Boyd JH, Mathur S, Wang Y, Bateman RM, et al (2006). Toll-like receptor stimulation in cardiomyoctes decreases contractility and initiates an NF-kappaB dependent inflammatory response. Cardiovasc. Res. 72: 384-393. http://dx.doi.org/10.1016/j.cardiores.2006.09.011 Chen JY, Wu HX, Chen Y, Zhang LL, et al (2012). Paeoniflorin inhibits proliferation of fibroblast-like synoviocytes through suppressing G-protein-coupled receptor kinase 2. Planta Med. 78: 665-671. http://dx.doi.org/10.1055/s-0031-1298327 Di Paola R, Mazzon E, Paterniti I, Impellizzeri D, et al (2011). Olprinone, a PDE3 inhibitor, modulates the inflammation associated with myocardial ischemia-reperfusion injury in rats. Eur. J. Pharmacol. 650: 612-620. http://dx.doi.org/10.1016/j.ejphar.2010.10.043 Frantz S, Tillmanns J, Kuhlencordt PJ, Schmidt I, et al (2007). Tissue-specific effects of the nuclear factor kappaB subunit p50 on myocardial ischemia-reperfusion injury. Am. J. Pathol. 171: 507-512. http://dx.doi.org/10.2353/ajpath.2007.061042 Gu Q, Yang XP, Bonde P, DiPaula A, et al (2006). Inhibition of TNF-alpha reduces myocardial injury and proinflammatory pathways following ischemia-reperfusion in the dog. J. Cardiovasc. Pharmacol. 48: 320-328. http://dx.doi.org/10.1097/01.fjc.0000250079.46526.38 Hu ZC, Chen YD, Ren YH, et al (2011). Methylprednisolone improves microcirculation in streptozotocin-induced diabetic rats after myocardial ischemia/reperfusion. Chin. Med. J. (Engl.) 124: 923-929. Ji YY, Wang ZD, Wang SF, Wang BT, et al (2015). Ischemic preconditioning ameliorates intestinal injury induced by ischemia-reperfusion in rats. World J. Gastroenterol. 21: 8081-8088. Jin C, Cleveland JC, Ao L, Li J, et al (2014). Human myocardium releases heat shock protein 27 (HSP27) after global ischemia: the proinflammatory effect of extracellular HSP27 through toll-like receptor (TLR)-2 and TLR4. Mol. Med. 20: 280-289. http://dx.doi.org/10.2119/molmed.2014.00058 Jin YC, Kim CW, Kim YM, Nizamutdinova IT, et al (2009). Cryptotanshinone, a lipophilic compound of Salvia miltiorrriza root, inhibits TNF-alpha-induced expression of adhesion molecules in HUVEC and attenuates rat myocardial ischemia/reperfusion injury in vivo. Eur. J. Pharmacol. 614: 91-97. http://dx.doi.org/10.1016/j.ejphar.2009.04.038 Liang X, Huang J, Lin X, Qin F, et al (2014). The effect of 17-methoxyl-7-hydroxy-benzene-furanchalcone on NF-κB and the inflammatory response during myocardial ischemia reperfusion injury in rats. J. Cardiovasc. Pharmacol. 63: 68-75. http://dx.doi.org/10.1097/FJC.0000000000000027 Liang Z, Liu LF, Yao TM, Huo Y, et al (2012). Cardioprotective effects of Guanxinshutong (GXST) against myocardial ischemia/ reperfusion injury in rats. J. Geriatr. Cardiol. 9: 130-136. http://dx.doi.org/10.3724/SP.J.1263.2011.11261 Long J, Gao M, Kong Y, Shen X, et al (2012). Cardioprotective effect of total paeony glycosides against isoprenaline-induced myocardial ischemia in rats. Phytomedicine 19: 672-676. http://dx.doi.org/10.1016/j.phymed.2012.03.004 Lungkaphin A, Pongchaidecha A, Palee S, Arjinajarn P, et al (2015). Pinocembrin reduces cardiac arrhythmia and infarct size in rats subjected to acute myocardial ischemia/reperfusion. Appl. Physiol. Nutr. Metab. 40: 1031-1037. http://dx.doi.org/10.1139/apnm-2015-0108 Shen B, Li J, Gao L, Zhang J, et al (2013). Role of CC-chemokine receptor 5 on myocardial ischemia-reperfusion injury in rats. Mol. Cell. Biochem. 378: 137-144. http://dx.doi.org/10.1007/s11010-013-1604-z Wei G, Guan Y, Yin Y, Duan J, et al (2013). Anti-inflammatory effect of protocatechuic aldehyde on myocardial ischemia/reperfusion injury in vivo and in vitro. Inflammation 36: 592-602. http://dx.doi.org/10.1007/s10753-012-9581-z Wu ZY, Wang ZW, Hu R, Zhou Z, et al (2015). Role of Nrf2 signal pathway in rats with deep hypothermia ischemia/reperfusion injury undergoing remote postconditioning. Genet. Mol. Res. 14: 492-499. http://dx.doi.org/10.4238/2015.January.26.2 Wu ZY, Yao Y, Hu R, Dai FF, et al (2016). Cyclic adenosine monophosphate-protein kinase A signal pathway may be involved in pulmonary aquaporin-5 expression in ischemia/reperfusion rats following deep hypothermia cardiac arrest. Genet. Mol. Res. 15: 15017377. http://dx.doi.org/10.4238/gmr.15017377 Xu H, Wang D, Peng C, Huang X, et al (2014). Rabbit sera containing compound danshen dripping pill attenuate leukocytes adhesion to TNF-alpha--activated human umbilical vein endothelial cells by suppressing endothelial ICAM-1 and VCAM-1 expression through NF-kappaB signaling pathway. J. Cardiovasc. Pharmacol. 63: 323-332. http://dx.doi.org/10.1097/FJC.0000000000000046 Xu HY, Chen ZW, Wu YM, et al (2012). Antitumor activity of total paeony glycoside against human chronic myelocytic leukemia K562 cell lines in vitro and in vivo. Med. Oncol. 29: 1137-1147. http://dx.doi.org/10.1007/s12032-011-9909-9 Xu JH, Zhao YY, Wang JK, Yuan ZG, et al (2010). Effects of mouse recombinant bone morphogenetic protein-7 transfection on cell apoptosis, NF-kappaB, and downstream genes in cultured primary cardiomyocytes after simulated ischemia and reperfusion injury. J. Cardiovasc. Pharmacol. 56: 69-77. http://dx.doi.org/10.1097/FJC.0b013e3181e0badc Yin H, Chao L, Chao J, et al (2008). Nitric oxide mediates cardiac protection of tissue kallikrein by reducing inflammation and ventricular remodeling after myocardial ischemia/reperfusion. Life Sci. 82: 156-165. http://dx.doi.org/10.1016/j.lfs.2007.10.021 Zeng M, Yan H, Chen Y, Zhao HJ, et al (2012). Suppression of NF-κB reduces myocardial no-reflow. PLoS One 7: e47306. http://dx.doi.org/10.1371/journal.pone.0047306 Zhao N, Liu YY, Wang F, Hu BH, et al (2010). Cardiotonic pills, a compound Chinese medicine, protects ischemia-reperfusion-induced microcirculatory disturbance and myocardial damage in rats. Am. J. Physiol. Heart Circ. Physiol. 298: H1166-H1176. http://dx.doi.org/10.1152/ajpheart.01186.2009
Y. Liu, Yu, D., Wang, Q., Liu, H., Guan, S., Liu, M., Liu, Y., Yu, D., Wang, Q., Liu, H., Guan, S., and Liu, M., Isolation and characterization of novel polymorphic microsatellite loci in Perinereis aibuhitensis, vol. 15, p. -, 2016.
Y. Liu, Yu, D., Wang, Q., Liu, H., Guan, S., Liu, M., Liu, Y., Yu, D., Wang, Q., Liu, H., Guan, S., and Liu, M., Isolation and characterization of novel polymorphic microsatellite loci in Perinereis aibuhitensis, vol. 15, p. -, 2016.
W. J. Zhang, Guo, P., Liu, M., Yang, B. L., Wang, J. H., Jiang, J., Zhang, W. J., Guo, P., Liu, M., Yang, B. L., Wang, J. H., and Jiang, J., Isolation, identification, and optimal cultivation of a marine bacterium antagonistic to Magnaporthe grisea, vol. 15, p. -, 2016.
W. J. Zhang, Guo, P., Liu, M., Yang, B. L., Wang, J. H., Jiang, J., Zhang, W. J., Guo, P., Liu, M., Yang, B. L., Wang, J. H., and Jiang, J., Isolation, identification, and optimal cultivation of a marine bacterium antagonistic to Magnaporthe grisea, vol. 15, p. -, 2016.
2015
M. Liu, Xu, L. - J., and Wu, J. - X., Changes of circulating CD4+CD25+CD127low regulatory T cells in patients with acute coronary syndrome and its significance, vol. 14, pp. 15930-15936, 2015.
J. Sun, Li, J., Liu, M., Zhang, B. B., Li, D. M., Wang, M., Zhang, C., Li, W. B., Su, A. Y., and Wu, X. X., Construction and analysis of a suppression subtractive hybridization library of regeneration-related genes in soybean, vol. 14, pp. 763-773, 2015.
Q. Li, Chen, C. - F., Wang, D. - Y., Lü, Y. - T., Huan, Y., Liu, M., Ge, R. - C., Chen, X. - W., Qi, H. - S., An, L., Hu, X., Li, Q., Chen, C. - F., Wang, D. - Y., Lü, Y. - T., Huan, Y., Liu, M., Ge, R. - C., Chen, X. - W., Qi, H. - S., An, L., Hu, X., Li, Q., Chen, C. - F., Wang, D. - Y., Lü, Y. - T., Huan, Y., Liu, M., Ge, R. - C., Chen, X. - W., Qi, H. - S., An, L., and Hu, X., Transplantation of umbilical cord blood mononuclear cells increases levels of nerve growth factor in the cerebrospinal fluid of patients with autism, vol. 14, pp. 8725-8732, 2015.
Q. Li, Chen, C. - F., Wang, D. - Y., Lü, Y. - T., Huan, Y., Liu, M., Ge, R. - C., Chen, X. - W., Qi, H. - S., An, L., Hu, X., Li, Q., Chen, C. - F., Wang, D. - Y., Lü, Y. - T., Huan, Y., Liu, M., Ge, R. - C., Chen, X. - W., Qi, H. - S., An, L., Hu, X., Li, Q., Chen, C. - F., Wang, D. - Y., Lü, Y. - T., Huan, Y., Liu, M., Ge, R. - C., Chen, X. - W., Qi, H. - S., An, L., and Hu, X., Transplantation of umbilical cord blood mononuclear cells increases levels of nerve growth factor in the cerebrospinal fluid of patients with autism, vol. 14, pp. 8725-8732, 2015.
Q. Li, Chen, C. - F., Wang, D. - Y., Lü, Y. - T., Huan, Y., Liu, M., Ge, R. - C., Chen, X. - W., Qi, H. - S., An, L., Hu, X., Li, Q., Chen, C. - F., Wang, D. - Y., Lü, Y. - T., Huan, Y., Liu, M., Ge, R. - C., Chen, X. - W., Qi, H. - S., An, L., Hu, X., Li, Q., Chen, C. - F., Wang, D. - Y., Lü, Y. - T., Huan, Y., Liu, M., Ge, R. - C., Chen, X. - W., Qi, H. - S., An, L., and Hu, X., Transplantation of umbilical cord blood mononuclear cells increases levels of nerve growth factor in the cerebrospinal fluid of patients with autism, vol. 14, pp. 8725-8732, 2015.
2012
X. Chen, Su, Y. Q., Wang, J., Liu, M., Niu, S. F., Zhong, S. P., and Qiu, F., Isolation and identification of the immune-relevant ribosomal protein L10 (RPL10/QM-like gene) from the large yellow croaker Pseudosciaena crocea (Pisces: Sciaenidae), vol. 11, pp. 3755-3765, 2012.
Chavez-Rios R and Vargas-Mejia M (2000). Isolation and identification of L10 gene from Entamoeba histolytica homologous to Wilms' tumor suppressor. Arch. Med. Res. 31: S305-S306. http://dx.doi.org/10.1016/S0188-4409(00)00118-1   Chen X, Wu CW, Zhong SP, Zeng FR, et al. (2011). Molecular characterization and structure analysis of RPL10/QM-like protein from the red drum Sciaenops ocellatus (Sciaenidae). Genet. Mol. Res. 10: 576-587. http://dx.doi.org/10.4238/vol10-2gmr1134 PMid:21491368   Chou MY, Hsiao CD, Chen SC, Chen IW, et al. (2008). Effects of hypothermia on gene expression in zebrafish gills: upregulation in differentiation and function of ionocytes as compensatory responses. J. Exp. Biol. 211: 3077-3084. http://dx.doi.org/10.1242/jeb.019950 PMid:18805806   dos Santos NM, Taverne-Thiele JJ, Barnes AC, van Muiswinkel WB, et al. (2001). The gill is a major organ for antibody secreting cell production following direct immersion of sea bass (Dicentrarchus labrax, L.) in a Photobacterium damselae ssp. piscicida bacterin: an ontogenetic study. Fish Shellfish Immunol. 11: 65-74. http://dx.doi.org/10.1006/fsim.2000.0295 PMid:11271603   Dowdy SF, Lai KM, Weissman BE, Matsui Y, et al. (1991). The isolation and characterization of a novel cDNA demonstrating an altered mRNA level in nontumorigenic Wilms' microcell hybrid cells. Nucleic Acids Res. 19: 5763-5769. http://dx.doi.org/10.1093/nar/19.20.5763 PMid:1658743 PMCid:328988   Eisinger DP, Dick FA and Trumpower BL (1997). Qsr1p, a 60S ribosomal subunit protein, is required for joining of 40S and 60S subunits. Mol. Cell Biol. 17: 5136-5145. PMid:9271391 PMCid:232364   Green H, Canfield AE, Hillarby MC, Grant ME, et al. (2000). The ribosomal protein QM is expressed differentially during vertebrate endochondral bone development. J. Bone Miner. Res. 15: 1066-1075. http://dx.doi.org/10.1359/jbmr.2000.15.6.1066 PMid:10841175   Haugarvoll E, Bjerkas I, Nowak BF, Hordvik I, et al. (2008). Identification and characterization of a novel intraepithelial lymphoid tissue in the gills of Atlantic salmon. J. Anat. 213: 202-209. http://dx.doi.org/10.1111/j.1469-7580.2008.00943.x PMid:19172734 PMCid:2526113   Hwang JS, Goo TW, Yun EY, Lee JH, et al. (2000). Tissue-/stage-dependent expression of a cloned Bombyx mandarina QM homologue. Biomol. Eng. 16: 211-215. http://dx.doi.org/10.1016/S1389-0344(00)00056-3   Jin S, Cai WQ and Wang GL (2002). Studies on the pathogenic bacteria diseases of cultured Pseudosciaena crocea. J. Zhejiang Ocean Univ. 21: 225-230.   Kaneko K, Kobayashi H, Onodera O, Miyatake T, et al. (1992). Genomic organization of a cDNA (QM) demonstrating an altered mRNA level in nontumorigenic Wilms' microcell hybrid cells and its localization to Xq28. Hum. Mol. Genet. 1: 529-533. http://dx.doi.org/10.1093/hmg/1.7.529 PMid:1339145   Koppang EO, Hordvik I, Bjerkas I, Torvund J, et al. (2003). Production of rabbit antisera against recombinant MHC class II β chain and identification of immunoreactive cells in Atlantic salmon (Salmo salar). Fish Shellfish Immunol. 14: 115-132. http://dx.doi.org/10.1006/fsim.2002.0424 PMid:12526876   Li N, Yang Z, Bai J, Fu X, et al. (2010). A shared antigen among Vibrio species: outer membrane protein-OmpK as a versatile Vibriosis vaccine candidate in Orange-spotted grouper (Epinephelus coioides). Fish Shellfish Immunol. 28: 952-956. http://dx.doi.org/10.1016/j.fsi.2010.02.010 PMid:20170736   Liu M and Sadovy de Mitcheson Y (2008). Profile of a fishery collapse: why mariculture failed to save the large yellow croaker. Fish Fish. 9: 219-242. http://dx.doi.org/10.1111/j.1467-2979.2008.00278.x   Livak KJ and Schmittgen TD (2001). Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods 25: 402-408.   Mao Y, Xu B, Su YQ, Zhang ZW, et al. (2010). Cloning and mRNA expression of macrophage migration inhibitory factor (MIF) gene of large yellow croaker (Pseudosciaena crocea). Acta Oceanol. Sin. 29: 63-73. http://dx.doi.org/10.1007/s13131-010-0037-8   Oh C, De Zoysa M, Nikapitiya C, Whang I, et al. (2010). Tumor suppressor QM-like gene from disk abalone (Haliotis discus discus): molecular characterization and transcriptional analysis upon immune challenge. Fish Shellfish Immunol. 29: 494-500. http://dx.doi.org/10.1016/j.fsi.2010.05.007 PMid:20580829   Ohta Y, Landis E, Boulay T, Phillips RB, et al. (2004). Homologs of CD83 from elasmobranch and teleost fish. J. Immunol. 173: 4553-4560. PMid:15383588   Rocha CS, Santos AA, Machado JP and Fontes EP (2008). The ribosomal protein L10/QM-like protein is a component of the NIK-mediated antiviral signaling. Virology 380: 165-169. http://dx.doi.org/10.1016/j.virol.2008.08.005 PMid:18789471   Sambrook J and David WR (2001). Molecular Cloning 3. Cold Spring Harbor Laboratory Press, Cold Spring Harbor.   Scotto-Lavino E, Du G and Frohman MA (2006). 5' end cDNA amplification using classic RACE. Nat. Protoc. 1: 2555-2562. http://dx.doi.org/10.1038/nprot.2006.480 PMid:17406509   Tanguy A, Guo X and Ford SE (2004). Discovery of genes expressed in response to Perkinsus marinus challenge in Eastern (Crassostrea virginica) and Pacific (C. gigas) oysters. Gene 338: 121-131. http://dx.doi.org/10.1016/j.gene.2004.05.019 PMid:15302413   Tobback E, Hermans K, Decostere A, Van den Broeck W, et al. (2010). Interactions of virulent and avirulent Yersinia ruckeri strains with isolated gill arches and intestinal explants of rainbow trout Oncorhynchus mykiss. Dis. Aquat. Organ. 90: 175-179. http://dx.doi.org/10.3354/dao02230 PMid:20815325   Wang J, Su YQ, Zhang ZX, Li M, et al. (2001). Bacterial pathogenetic biology of cultured Pseudosciaena crocea in southern Fujian. J. Xiamen Univ. 40: 85-91.   Wen Y, Shao JZ, Pan XX and Xiang LX (2005). Molecular cloning, characterization and expression analysis of QM gene from grass carp (Ctenopharyngodon idellus) homologous to Wilms' tumor suppressor. Comp. Biochem. Physiol. B Biochem. Mol. Biol. 141: 356-365. http://dx.doi.org/10.1016/j.cbpc.2005.04.007 PMid:15936234   Wool IG (1996). Extraribosomal functions of ribosomal proteins. Trends Biochem. Sci. 21: 164-165. PMid:8871397   Workenhe ST, Rise ML, Kibenge MJ and Kibenge FS (2010). The fight between the teleost fish immune response and aquatic viruses. Mol. Immunol. 47: 2525-2536. http://dx.doi.org/10.1016/j.molimm.2010.06.009 PMid:20797792   Xu J, Wu S and Zhang X (2008). Novel function of QM protein of shrimp (Penaeus japonicus) in regulation of phenol oxidase activity by interaction with hemocyanin. Cell Physiol. Biochem. 21: 473-480. http://dx.doi.org/10.1159/000129640 PMid:18453755   Zhou F, Jiang S, Huang J, Qiu L, et al. (2011). Molecular analysis of the QM gene from Penaeus monodon and its expression on the different ovarian stages of development. Mol. Biol. Rep. 38: 1921-1927. http://dx.doi.org/10.1007/s11033-010-0312-y PMid:20872074
2011
H. L. Wei, Pei, J. R., Jiang, C. X., Zhou, L. W., Lan, T., Liu, M., and Wang, T., Analysis of glutathione peroxidase 1 gene polymorphism and Keshan disease in Heilongjiang Province, China, vol. 10, pp. 2996-3001, 2011.
Chen X (1986). Selenium and cardiomyopathy (Keshan disease). Acta Pharmacol. Toxicol. 59 (Suppl 7): 325-330. http://dx.doi.org/10.1111/j.1600-0773.1986.tb02772.x Group KDPaT (1976). Selenium and water-soil causality of Keshan Disease. J. Hygiene Res. 3: 259-263. Hamanishi T, Furuta H, Kato H, Doi A, et al. (2004). Functional variants in the glutathione peroxidase-1 (GPx-1) gene are associated with increased intima-media thickness of carotid arteries and risk of macrovascular diseases in Japanese type 2 diabetic patients. Diabetes 53: 2455-2460. http://dx.doi.org/10.2337/diabetes.53.9.2455 PMid:15331559 He HFL and Yuan Q (2001). Cloning and sequence analysis of human glutathione peroxidase 1. Chin. Pharm. J. 36: 343-345. Hu YJ and Diamond AM (2003). Role of glutathione peroxidase 1 in breast cancer: loss of heterozygosity and allelic differences in the response to selenium. Cancer Res. 63: 3347-3351. PMid:12810669 Kote-Jarai Z, Durocher F, Edwards SM, Hamoudi R, et al. (2002). Association between the GCG polymorphism of the selenium dependent GPX1 gene and the risk of young onset prostate cancer. Prostate Cancer Prostatic Dis. 5: 189- 192. http://dx.doi.org/10.1038/sj.pcan.4500569 PMid:12496980 Lei C, Niu X, Wei J, Zhu J, et al. (2009). Interaction of glutathione peroxidase-1 and selenium in endemic dilated cardiomyopathy. Clin. Chim. Acta 399: 102-108. http://dx.doi.org/10.1016/j.cca.2008.09.025 PMid:18940188 Lei XG, Cheng WH and McClung JP (2007). Metabolic regulation and function of glutathione peroxidase-1. Annu. Rev. Nutr. 27: 41-61. http://dx.doi.org/10.1146/annurev.nutr.27.061406.093716 PMid:17465855 Matsuzawa D, Hashimoto K, Shimizu E, Fujisaki M, et al. (2005). Functional polymorphism of the glutathione peroxidase 1 gene is associated with personality traits in healthy subjects. Neuropsychobiology 52: 68-70. http://dx.doi.org/10.1159/000086607 PMid:15990458 Rotruck JT, Pope AL and Garther H (1973). Selenium: biochemical role as a component of glutathione peroxidase. Science 179: 588-590. http://dx.doi.org/10.1126/science.179.4073.588 PMid:4686466 Venardos KM, Perkins A, Headrick J and Kaye DM (2007). Myocardial ischemia-reperfusion injury, antioxidant enzyme systems, and selenium: a review. Curr. Med. Chem. 14: 1539-1549. http://dx.doi.org/10.2174/092986707780831078 PMid:17584062 WHO (1973). Trace elements in human nutrition. Report of a WHO expert committee. World Health Organ Tech. Rep. Ser. 532: 1-65. PMid:4202138 Yang J, Wang T, Wu C and Liu C (2010). Selenium level surveillance for the year 2007 of Keshan disease in endemic areas and analysis on surveillance results between 2003 and 2007. Biol. Trace Elem. Res. 138: 53-59. http://dx.doi.org/10.1007/s12011-010-8609-1 PMid:20180046 Yu W (1999). Review of Chinese research on Keshan Disease. Chin. J. Epidemiol. 20: 11-14. Zhu LZ, Xia YM and Yang GQ (1982). Blood glutathione peroxidase activities of populations in Keshan Disease affected and non-affected areas. Acta Nutr. Sin. 4: 229-233.
R. H. Wu, Wang, P., Yang, L., Li, Y., Liu, Y., and Liu, M., A potential indicator of denervated muscle atrophy: the ratio of myostatin to follistatin in peripheral blood, vol. 10, pp. 3914-3923, 2011.
Amthor H, Nicholas G, McKinnell I, Kemp CF, et al. (2004). Follistatin complexes Myostatin and antagonises Myostatin-mediated inhibition of myogenesis. Dev. Biol. 270: 19-30. http://dx.doi.org/10.1016/j.ydbio.2004.01.046 PMid:15136138   Diel P, Schiffer T, Geisler S, Hertrampf T, et al. (2010). Analysis of the effects of androgens and training on myostatin propeptide and follistatin concentrations in blood and skeletal muscle using highly sensitive immuno PCR. Mol. Cell Endocrinol. 330: 1-9. http://dx.doi.org/10.1016/j.mce.2010.08.015 PMid:20801187   Dinh P, Hazel A, Palispis W, Suryadevara S, et al. (2009). Functional assessment after sciatic nerve injury in a rat model. Microsurgery 29: 644-649. http://dx.doi.org/10.1002/micr.20685 PMid:19653327   Gilson H, Schakman O, Kalista S, Lause P, et al. (2009). Follistatin induces muscle hypertrophy through satellite cell proliferation and inhibition of both myostatin and activin. Am. J. Physiol. Endocrinol. Metab. 297: E157-E164. http://dx.doi.org/10.1152/ajpendo.00193.2009 PMid:19435857   Hill JJ, Davies MV, Pearson AA, Wang JH, et al. (2002). The myostatin propeptide and the follistatin-related gene are inhibitory binding proteins of myostatin in normal serum. J. Biol. Chem. 277: 40735-40741. http://dx.doi.org/10.1074/jbc.M206379200 PMid:12194980   Lakshman KM, Bhasin S, Corcoran C, Collins-Racie LA, et al. (2009). Measurement of myostatin concentrations in human serum: Circulating concentrations in young and older men and effects of testosterone administration. Mol. Cell Endocrinol. 302: 26-32. http://dx.doi.org/10.1016/j.mce.2008.12.019 PMid:19356623   Lee SJ (2010). Extracellular regulation of myostatin: A molecular rheostat for muscle mass. Immunol. Endocr. Metab. Agents Med. Chem. 10: 183-194. http://dx.doi.org/10.2174/187152210793663748 PMid:21423813 PMCid:3060380   Lee SJ and McPherron AC (2001). Regulation of myostatin activity and muscle growth. Proc. Natl. Acad. Sci. U. S. A. 98: 9306-9311. http://dx.doi.org/10.1073/pnas.151270098 PMid:11459935 PMCid:55416   Lee SJ, Lee YS, Zimmers TA, Soleimani A, et al. (2010). Regulation of muscle mass by follistatin and activins. Mol. Endocrinol. 24: 1998-2008. http://dx.doi.org/10.1210/me.2010-0127 PMid:20810712 PMCid:2954636   Liu M, Zhang D, Shao C, Liu J, et al. (2007). Expression pattern of myostatin in gastrocnemius muscle of rats after sciatic nerve crush injury. Muscle Nerve 35: 649-656. http://dx.doi.org/10.1002/mus.20749 PMid:17326119   Matzuk MM, Lu N, Vogel H, Sellheyer K, et al. (1995). Multiple defects and perinatal death in mice deficient in follistatin. Nature 374: 360-363. http://dx.doi.org/10.1038/374360a0 PMid:7885475   McPherron AC, Lawler AM and Lee SJ (1997). Regulation of skeletal muscle mass in mice by a new TGF-beta superfamily member. Nature 387: 83-90. http://dx.doi.org/10.1038/387083a0 PMid:9139826   Rodino-Klapac LR, Haidet AM, Kota J, Handy C, et al. (2009). Inhibition of myostatin with emphasis on follistatin as a therapy for muscle disease. Muscle Nerve 39: 283-296. http://dx.doi.org/10.1002/mus.21244 PMid:19208403 PMCid:2717722   Thies RS, Chen T, Davies MV, Tomkinson KN, et al. (2001). GDF-8 propeptide binds to GDF-8 and antagonizes biological activity by inhibiting GDF-8 receptor binding. Growth Factors 18: 251-259. http://dx.doi.org/10.3109/08977190109029114 PMid:11519824   Thompson TB, Lerch TF, Cook RW, Woodruff TK, et al. (2005). The structure of the follistatin:activin complex reveals antagonism of both type I and type II receptor binding. Dev. Cell 9: 535-543. http://dx.doi.org/10.1016/j.devcel.2005.09.008 PMid:16198295   Ueno N, Ling N, Ying SY, Esch F, et al. (1987). Isolation and partial characterization of follistatin: a single-chain Mr 35,000 monomeric protein that inhibits the release of follicle-stimulating hormone. Proc. Natl. Acad. Sci. U. S. A. 84: 8282-8286. http://dx.doi.org/10.1073/pnas.84.23.8282 PMid:3120188 PMCid:299526   Wallimann T, Wyss M, Brdiczka D, Nicolay K, et al. (1992). Intracellular compartmentation, structure and function of creatine kinase isoenzymes in tissues with high and fluctuating energy demands: the 'phosphocreatine circuit' for cellular energy homeostasis. Biochem. J. 281: 21-40. PMid:1731757 PMCid:1130636   Whittemore LA, Song K, Li X, Aghajanian J, et al. (2003). Inhibition of myostatin in adult mice increases skeletal muscle mass and strength. Biochem. Biophys. Res. Commun. 300: 965-971. http://dx.doi.org/10.1016/S0006-291X(02)02953-4   Wolfman NM, McPherron AC, Pappano WN, Davies MV, et al. (2003). Activation of latent myostatin by the BMP-1/ tolloid family of metalloproteinases. Proc. Natl. Acad. Sci. U. S. A. 100: 15842-15846. http://dx.doi.org/10.1073/pnas.2534946100 PMid:14671324 PMCid:307655   Zhang D, Liu M, Ding F and Gu X (2006). Expression of myostatin RNA transcript and protein in gastrocnemius muscle of rats after sciatic nerve resection. J. Muscle Res. Cell Motil. 27: 37-44. http://dx.doi.org/10.1007/s10974-005-9050-5 PMid:16450055
2010
Y. Liu, Zhou, Y. L., Qian, Y. Y., Wang, Y. J., Ding, F., Gu, X. S., and Liu, M., The noggin2 gene of Gekko japonicus (Gekkonidae) is down-regulated in the spinal cord after tail amputation, vol. 9, pp. 1606-1614, 2010.
Alibardi L (1995). Muscle differentiation and morphogenesis in the regenerating tail of lizards. J. Anat. 186: 143-151. PMid:7649809 PMCid:1167280   Aspenberg P, Jeppsson C and Economides AN (2001). The bone morphogenetic proteins antagonist noggin inhibits membranous ossification. J. Bone Miner. Res. 16: 497-500. http://dx.doi.org/10.1359/jbmr.2001.16.3.497 PMid:11277267   Bachiller D, Klingensmith J, Kemp C, Belo JA, et al. (2000). The organizer factors chordin and noggin are required for mouse forebrain development. Nature 403: 658-661. http://dx.doi.org/10.1038/35001072 PMid:10688202   Brockes JP (1997). Amphibian limb regeneration: rebuilding a complex structure. Science 276: 81-87. http://dx.doi.org/10.1126/science.276.5309.81 PMid:9082990   Chernoff EA, Stocum DL, Nye HL and Cameron JA (2003). Urodele spinal cord regeneration and related processes. Dev. Dyn. 226: 295-307. http://dx.doi.org/10.1002/dvdy.10240 PMid:12557207   Echeverri K and Tanaka EM (2002). Ectoderm to mesoderm lineage switching during axolotl tail regeneration. Science 298: 1993-1996. http://dx.doi.org/10.1126/science.1077804 PMid:12471259   Egar M, Simpson SB and Singer M (1970). The growth and differentiation of the regenerating spinal cord of the lizard, Anolis carolinensis. J. Morphol. 131: 131-151. http://dx.doi.org/10.1002/jmor.1051310202 PMid:5425076   Eroshkin FM, Ermakova GV, Bayramov AV and Zaraisky AG (2006). Multiple noggins in vertebrate genome: cloning and expression of noggin2 and noggin4 in Xenopus laevis. Gene Expr. Patterns 6: 180-186. http://dx.doi.org/10.1016/j.modgep.2005.06.007 PMid:16168719   Fletcher RB, Watson AL and Harland RM (2004). Expression of Xenopus tropicalis noggin1 and noggin2 in early development: two noggin genes in a tetrapod. Gene Expr. Patterns 5: 225-230. http://dx.doi.org/10.1016/j.modgep.2004.08.001 PMid:15567718   Fürthauer M, Thisse B and Thisse C (1999). Three different noggin genes antagonize the activity of bone morphogenetic proteins in the zebrafish embryo. Dev. Biol. 214: 181-196. http://dx.doi.org/10.1006/dbio.1999.9401 PMid:10491267   Kulessa H, Turk G and Hogan BL (2000). Inhibition of Bmp signaling affects growth and differentiation in the anagen hair follicle. EMBO J. 19: 6664-6674. http://dx.doi.org/10.1093/emboj/19.24.6664 PMid:11118201 PMCid:305899   Lamb TM, Knecht AK, Smith WC, Stachel SE, et al. (1993). Neural induction by the secreted polypeptide noggin. Science 262: 713-718. http://dx.doi.org/10.1126/science.8235591 PMid:8235591   Liu Y, Ding F, Liu M, Jiang M, et al. (2006). EST-based identification of genes expressed in brain and spinal cord of Gekko japonicus, a species demonstrating intrinsic capacity of spinal cord regeneration. J. Mol. Neurosci. 29: 21-28. http://dx.doi.org/10.1385/JMN:29:1:21   McMahon JA, Takada S, Zimmerman LB, Fan CM, et al. (1998). Noggin-mediated antagonism of BMP signaling is required for growth and patterning of the neural tube and somite. Genes Dev. 12: 1438-1452. http://dx.doi.org/10.1101/gad.12.10.1438 PMid:9585504 PMCid:316831   Reddi AH (2001). Interplay between bone morphogenetic proteins and cognate binding proteins in bone and cartilage development: noggin, chordin and DAN. Arthritis Res. 3: 1-5. http://dx.doi.org/10.1186/ar133 PMid:11178121 PMCid:128877   Simpson SB Jr (1968). Morphology of the regenerated spinal cord in the lizard, Anolis carolinensis. J. Comp. Neurol. 134: 193-210. http://dx.doi.org/10.1002/cne.901340207 PMid:5712416   Smith WC and Harland RM (1992). Expression cloning of noggin, a new dorsalizing factor localized to the Spemann organizer in Xenopus embryos. Cell 70: 829-840. http://dx.doi.org/10.1016/0092-8674(92)90316-5   Valenzuela DM, Economides AN, Rojas E, Lamb TM, et al. (1995). Identification of mammalian noggin and its expression in the adult nervous system. J. Neurosci. 15: 6077-6084. PMid:7666191   Zimmerman LB, De Jesus-Escobar JM and Harland RM (1996). The Spemann organizer signal noggin binds and inactivates bone morphogenetic protein 4. Cell 86: 599-606. http://dx.doi.org/10.1016/S0092-8674(00)80133-6