Publications

Found 5 results
Filters: Author is M.X. Fang  [Clear All Filters]
2013
X. M. He, Fang, M. X., Zhang, Z. T., Hu, Y. S., Jia, X. Z., He, D. L., Liang, S. D., Nie, Q. H., and Zhang, X. Q., Characterization of chicken natural resistance-associated macrophage protein encoding genes (Nramp1 and Nramp2) and association with salmonellosis resistance, vol. 12, pp. 618-630, 2013.
Ates O, Dalyan L, Musellim B, Hatemi G, et al. (2009). NRAMP1 (SLC11A1) gene polymorphisms that correlate with autoimmune versus infectious disease susceptibility in tuberculosis and rheumatoid arthritis. Int. J. Immunogenet. 36: 15-19. http://dx.doi.org/10.1111/j.1744-313X.2008.00814.x PMid:19055603   Baker ST, Barton CH and Biggs TE (2000). A negative autoregulatory link between Nramp1 function and expression. J. Leukoc. Biol. 67: 501-507. PMid:10770282   Barshes NR, Lee TR, Goss JA, Goodpastor SE, et al. (2006). Slc11a1 (formerly Nramp1) polymorphisms and susceptibility to post-transplant lymphoproliferative disease following pediatric liver transplantation. Transpl. Infect. Dis. 8: 108-112. http://dx.doi.org/10.1111/j.1399-3062.2006.00139.x PMid:16734634   Blackwell JM and Searle S (1999). Genetic regulation of macrophage activation: understanding the function of Nramp1 (=Ity/Lsh/Bcg). Immunol. Lett. 65: 73-80. http://dx.doi.org/10.1016/S0165-2478(98)00127-8   Blackwell JM, Searle S, Goswami T and Miller EN (2000). Understanding the multiple functions of Nramp1. Microbes. Infect. 2: 317-321. http://dx.doi.org/10.1016/S1286-4579(00)00295-1   Blackwell JM, Searle S, Mohamed H and White JK (2003). Divalent cation transport and susceptibility to infectious and autoimmune disease: continuation of the Ity/Lsh/Bcg/Nramp1/Slc11a1 gene story. Immunol. Lett. 85: 197-203. http://dx.doi.org/10.1016/S0165-2478(02)00231-6   Blasco H, Vourc'h P, Nadjar Y, Ribourtout B, et al. (2011). Association between divalent metal transport 1 encoding gene (SLC11A2) and disease duration in amyotrophic lateral sclerosis. J. Neurol. Sci. 303: 124-127. http://dx.doi.org/10.1016/j.jns.2010.12.018 PMid:21276595   Boyer E, Bergevin I, Malo D, Gros P, et al. (2002). Acquisition of Mn(II) in addition to Fe(II) is required for full virulence of Salmonella enterica serovar Typhimurium. Infect. Immun. 70: 6032-6042. http://dx.doi.org/10.1128/IAI.70.11.6032-6042.2002 PMid:12379679 PMCid:130432   Canonne-Hergaux F, Gruenheid S, Ponka P and Gros P (1999). Cellular and subcellular localization of the Nramp2 iron transporter in the intestinal brush border and regulation by dietary iron. Blood 93: 4406-4417. PMid:10361139   Canonne-Hergaux F, Calafat J, Richer E, Cellier M, et al. (2002). Expression and subcellular localization of NRAMP1 in human neutrophil granules. Blood 100: 268-275. http://dx.doi.org/10.1182/blood.V100.1.268 PMid:12070036   Cellier MF, Courville P and Campion C (2007). Nramp1 phagocyte intracellular metal withdrawal defense. Microbes. Infect. 9: 1662-1670. http://dx.doi.org/10.1016/j.micinf.2007.09.006 PMid:18024118   Cohen A, Nevo Y and Nelson N (2003). The first external loop of the metal ion transporter DCT1 is involved in metal ion binding and specificity. Proc. Natl. Acad. Sci. U. S. A. 100: 10694-10699. http://dx.doi.org/10.1073/pnas.1934572100 PMid:12954986 PMCid:196866   Courville P, Chaloupka R and Cellier MF (2006). Recent progress in structure-function analyses of Nramp proton-dependent metal-ion transporters. Biochem. Cell Biol. 84: 960-978. http://dx.doi.org/10.1139/o06-193 PMid:17215883   Ganguly I, Sharma A, Singh R, Deb SM, et al. (2008). Association of microsatellite (GT)n polymorphism at 3'UTR of NRAMP1 with the macrophage function following challenge with Brucella LPS in buffalo (Bubalus bubalis). Vet. Microbiol. 129: 188-196. http://dx.doi.org/10.1016/j.vetmic.2007.10.033 PMid:18078724   Gazouli M, Atsaves V, Mantzaris G, Economou M, et al. (2008). Role of functional polymorphisms of NRAMP1 gene for the development of Crohn's disease. Inflamm. Bowel. Dis. 14: 1323-1330. http://dx.doi.org/10.1002/ibd.20488 PMid:18454481   Gruenheid S, Cellier M, Vidal S and Gros P (1995). Identification and characterization of a second mouse Nramp gene. Genomics 25: 514-525. http://dx.doi.org/10.1016/0888-7543(95)80053-O   Gruenheid S, Canonne-Hergaux F, Gauthier S, Hackam DJ, et al. (1999). The iron transport protein NRAMP2 is an integral membrane glycoprotein that colocalizes with transferrin in recycling endosomes. J. Exp. Med. 189: 831-841. http://dx.doi.org/10.1084/jem.189.5.831 PMid:10049947 PMCid:2192949   Gunshin H, Mackenzie B, Berger UV, Gunshin Y, et al. (1997). Cloning and characterization of a mammalian proton-coupled metal-ion transporter. Nature 388: 482-488. http://dx.doi.org/10.1038/41343 PMid:9242408   Hu J, Bumstead N, Skamene E, Gros P, et al. (1996). Structural organization, sequence, and expression of the chicken NRAMP1 gene encoding the natural resistance-associated macrophage protein 1. DNA Cell Biol. 15: 113-123. http://dx.doi.org/10.1089/dna.1996.15.113 PMid:8634139   Hu J, Bumstead N, Barrow P, Sebastiani G, et al. (1997). Resistance to salmonellosis in the chicken is linked to NRAMP1 and TNC. Genome Res. 7: 693-704. PMid:9253598   Jabado N, Jankowski A, Dougaparsad S, Picard V, et al. (2000). Natural resistance to intracellular infections: natural resistance-associated macrophage protein 1 (Nramp1) functions as a pH-dependent manganese transporter at the phagosomal membrane. J. Exp. Med. 192: 1237-1248. http://dx.doi.org/10.1084/jem.192.9.1237 PMid:11067873 PMCid:2193348   Jabado N, Cuellar-Mata P, Grinstein S and Gros P (2003). Iron chelators modulate the fusogenic properties of Salmonella-containing phagosomes. Proc. Natl. Acad. Sci. U. S. A. 100: 6127-6132. http://dx.doi.org/10.1073/pnas.0937287100 PMid:12711734 PMCid:156337   Kishi F, Yoshida T and Aiso S (1996). Location of NRAMP1 molecule on the plasma membrane and its association with microtubules. Mol. Immunol. 33: 1241-1246. http://dx.doi.org/10.1016/S0161-5890(96)00088-0   Lam-Yuk-Tseung S, Govoni G, Forbes J and Gros P (2003). Iron transport by Nramp2/DMT1: pH regulation of transport by 2 histidines in transmembrane domain 6. Blood 101: 3699-3707. http://dx.doi.org/10.1182/blood-2002-07-2108 PMid:12522007   Lam-Yuk-Tseung S, Camaschella C, Iolascon A and Gros P (2006). A novel R416C mutation in human DMT1 (SLC11A2) displays pleiotropic effects on function and causes microcytic anemia and hepatic iron overload. Blood Cells Mol. Dis. 36: 347-354. http://dx.doi.org/10.1016/j.bcmd.2006.01.011 PMid:16584902   Leung KH, Yip SP, Wong WS, Yiu LS, et al. (2007). Sex- and age-dependent association of SLC11A1 polymorphisms with tuberculosis in Chinese: a case control study. BMC Infect. Dis. 7: 19. http://dx.doi.org/10.1186/1471-2334-7-19 PMid:17371589 PMCid:1847518   Liu W, Kaiser MG and Lamont SJ (2003). Natural resistance-associated macrophage protein 1 gene polymorphisms and response to vaccine against or challenge with Salmonella enteritidis in young chicks. Poult. Sci. 82: 259-266. PMid:12619803   Mackenzie B and Hediger MA (2004). SLC11 family of H+-coupled metal-ion transporters NRAMP1 and DMT1. Pflugers Arch. 447: 571-579. http://dx.doi.org/10.1007/s00424-003-1141-9 PMid:14530973   Mackenzie B, Ujwal ML, Chang MH, Romero MF, et al. (2006). Divalent metal-ion transporter DMT1 mediates both H+ -coupled Fe2+ transport and uncoupled fluxes. Pflugers Arch. 451: 544-558. http://dx.doi.org/10.1007/s00424-005-1494-3 PMid:16091957   Peracino B, Wagner C, Balest A, Balbo A, et al. (2006). Function and mechanism of action of Dictyostelium Nramp1 (Slc11a1) in bacterial infection. Traffic 7: 22-38. http://dx.doi.org/10.1111/j.1600-0854.2005.00356.x PMid:16445684   Rose PP, Hanna SL, Spiridigliozzi A, Wannissorn N, et al. (2011). Natural resistance-associated macrophage protein is a cellular receptor for sindbis virus in both insect and mammalian hosts. Cell Host Microbe 10: 97-104. http://dx.doi.org/10.1016/j.chom.2011.06.009 PMid:21843867 PMCid:3164510   Stiles KM and Kielian M (2011). Alphavirus entry: NRAMP leads the way. Cell Host Microbe 10: 92-93. http://dx.doi.org/10.1016/j.chom.2011.07.008 PMid:21843864 PMCid:3163168   Tandy S, Williams M, Leggett A, Lopez-Jimenez M, et al. (2000). Nramp2 expression is associated with pH-dependent iron uptake across the apical membrane of human intestinal Caco-2 cells. J. Biol. Chem. 275: 1023-1029. http://dx.doi.org/10.1074/jbc.275.2.1023 PMid:10625641   Touret N, Furuya W, Forbes J, Gros P, et al. (2003). Dynamic traffic through the recycling compartment couples the metal transporter Nramp2 (DMT1) with the transferrin receptor. J. Biol. Chem. 278: 25548-25557. http://dx.doi.org/10.1074/jbc.M212374200 PMid:12724326   Trinder D, Macey DJ and Olynyk JK (2000). The new iron age. Int. J. Mol. Med. 6: 607-612. PMid:11078817
2011
H. P. Xu, He, X. M., Fang, M. X., Hu, Y. S., Jia, X. Z., Nie, Q. H., and Zhang, X. Q., Molecular cloning, expression and variation analyses of the dopamine D2 receptor gene in pig breeds in China, vol. 10, pp. 3371-3384, 2011.
Baskerville TA and Douglas AJ (2010). Dopamine and oxytocin interactions underlying behaviors: potential contributions to behavioral disorders. CNS Neurosci. Ther. 16: e92-123. http://dx.doi.org/10.1111/j.1755-5949.2010.00154.x PMid:20557568   Blasi G, Lo Bianco L, Taurisano P, Gelao B, et al. (2009). Functional variation of the dopamine D2 receptor gene is associated with emotional control as well as brain activity and connectivity during emotion processing in humans. J. Neurosci. 29: 14812-14819. http://dx.doi.org/10.1523/JNEUROSCI.3609-09.2009 PMid:19940176 PMCid:2834475   Bunzow JR, Van Tol HH, Grandy DK, Albert P, et al. (1988). Cloning and expression of a rat D2 dopamine receptor cDNA. Nature 336: 783-787. http://dx.doi.org/10.1038/336783a0 PMid:2974511   Dal Toso R, Sommer B, Ewert M, Herb A, et al. (1989). The dopamine D2 receptor: two molecular forms generated by alternative splicing. EMBO J. 8: 4025-4034. PMid:2531656 PMCid:401577   Duan J, Wainwright MS, Comeron JM, Saitou N, et al. (2003). Synonymous mutations in the human dopamine receptor D2 (DRD2) affect mRNA stability and synthesis of the receptor. Hum. Mol. Genet. 12: 205-216. http://dx.doi.org/10.1093/hmg/ddg055 PMid:12554675   Grandy DK, Marchionni MA, Makam H, Stofko RE, et al. (1989). Cloning of the cDNA and gene for a human D2 dopamine receptor. Proc. Natl. Acad. Sci. U. S. A. 86: 9762-9766. http://dx.doi.org/10.1073/pnas.86.24.9762 PMid:2532362 PMCid:298581   Guiramand J, Montmayeur JP, Ceraline J, Bhatia M, et al. (1995). Alternative splicing of the dopamine D2 receptor directs specificity of coupling to G-proteins. J. Biol. Chem. 270: 7354-7358. http://dx.doi.org/10.1074/jbc.270.13.7354 PMid:7706278   Hearn MG, Ren Y, McBride EW, Reveillaud I, et al. (2002). A Drosophila dopamine 2-like receptor: Molecular characterization and identification of multiple alternatively spliced variants. Proc. Natl. Acad. Sci. U. S. A. 99: 14554- 14559. http://dx.doi.org/10.1073/pnas.202498299 PMid:12391323 PMCid:137921   Jungerius BJ, Gu J, Crooijmans RP, van der Poel JJ, et al. (2005). Estimation of the extent of linkage disequilibrium in seven regions of the porcine genome. Anim. Biotechnol. 16: 41-54. http://dx.doi.org/10.1081/ABIO-200053402 PMid:15926262   Kalani MY, Vaidehi N, Hall SE, Trabanino RJ, et al. (2004). The predicted 3D structure of the human D2 dopamine receptor and the binding site and binding affinities for agonists and antagonists. Proc. Natl. Acad. Sci. U. S. A. 101: 3815-3820. http://dx.doi.org/10.1073/pnas.0400100101 PMid:14999101 PMCid:374327   Korchounov A, Meyer MF and Krasnianski M (2010). Postsynaptic nigrostriatal dopamine receptors and their role in movement regulation. J. Neural. Transm. 117: 1359-1369. http://dx.doi.org/10.1007/s00702-010-0454-z PMid:21076988 PMCid:3000910   Kruger J and Rehmsmeier M (2006). RNAhybrid: microRNA target prediction easy, fast and flexible. Nucleic Acids Res. 34: W451-W454. http://dx.doi.org/10.1093/nar/gkl243 PMid:16845047 PMCid:1538877   Levavi-Sivan B, Aizen J and Avitan A (2005). Cloning, characterization and expression of the D2 dopamine receptor from the tilapia pituitary. Mol. Cell Endocrinol. 236: 17-30. http://dx.doi.org/10.1016/j.mce.2005.03.010 PMid:15876479   Lindgren N, Usiello A, Goiny M, Haycock J, et al. (2003). Distinct roles of dopamine D2L and D2S receptor isoforms in the regulation of protein phosphorylation at presynaptic and postsynaptic sites. Proc. Natl. Acad. Sci. U. S. A. 100: 4305-4309. http://dx.doi.org/10.1073/pnas.0730708100 PMid:12651945 PMCid:153088   Livak KJ and Schmittgen TD (2001). Analysis of relative gene expression data using real-time quantitative PCR and the 2-ΔΔCt method. Methods 25: 402-408. http://dx.doi.org/10.1006/meth.2001.1262 PMid:11846609   Mack KJ, Todd RD and O'Malley KL (1991). The mouse dopamine D2A receptor gene: sequence homology with the rat and human genes and expression of alternative transcripts. J. Neurochem. 57: 795-801. http://dx.doi.org/10.1111/j.1471-4159.1991.tb08221.x PMid:1861151   Missale C, Nash SR, Robinson SW, Jaber M, et al. (1998). Dopamine receptors: from structure to function. Physiol. Rev. 78: 189-225. PMid:9457173   Montmayeur JP, Bausero P, Amlaiky N, Maroteaux L, et al. (1991). Differential expression of the mouse D2 dopamine receptor isoforms. FEBS Lett. 278: 239-243. http://dx.doi.org/10.1016/0014-5793(91)80125-M   Moyer RA, Wang D, Papp AC, Smith RM, et al. (2011). Intronic polymorphisms affecting alternative splicing of human dopamine D2 receptor are associated with cocaine abuse. Neuropsychopharmacology 36: 753-762. http://dx.doi.org/10.1038/npp.2010.208 PMid:21150907 PMCid:3055737   Myeong H, Jeoung D, Kim H, Ha JH, et al. (2000). Genomic analysis and functional expression of canine dopamine D2 receptor. Gene 257: 99-107. http://dx.doi.org/10.1016/S0378-1119(00)00384-X   Nakano M, Hasunuma I, Okada R, Yamamoto K, et al. (2010). Molecular cloning of bullfrog D2 dopamine receptor cDNA: Tissue distribution of three isoforms of D2 dopamine receptor mRNA. Gen. Comp. Endocrinol. 168: 143- 148. http://dx.doi.org/10.1016/j.ygcen.2010.04.016 PMid:20417207   Neve KA, Neve RL, Fidel S, Janowsky A, et al. (1991). Increased abundance of alternatively spliced forms of D2 dopamine receptor mRNA after denervation. Proc. Natl. Acad. Sci. U. S. A. 88: 2802-2806. http://dx.doi.org/10.1073/pnas.88.7.2802 PMid:1826366 PMCid:51327   O'Malley KL, Mack KJ, Gandelman KY and Todd RD (1990). Organization and expression of the rat D2A receptor gene: identification of alternative transcripts and a variant donor splice site. Biochemistry 29: 1367-1371. http://dx.doi.org/10.1021/bi00458a003 PMid:2139794   Obadiah J, Avidor-Reiss T, Fishburn CS, Carmon S, et al. (1999). Adenylyl cyclase interaction with the D2 dopamine receptor family; differential coupling to Gi, Gz, and Gs. Cell Mol. Neurobiol. 19: 653-664. http://dx.doi.org/10.1023/A:1006988603199 PMid:10384262   Pasqualini C, Weltzien FA, Vidal B, Baloche S, et al. (2009). Two distinct dopamine D2 receptor genes in the European eel: molecular characterization, tissue-specific transcription, and regulation by sex steroids. Endocrinology 150: 1377-1392. http://dx.doi.org/10.1210/en.2008-0578 PMid:18974275   Pivonello R, Ferone D, Lombardi G, Colao A, et al. (2007). Novel insights in dopamine receptor physiology. Eur. J. Endocrinol. 156 (Suppl 1): S13-S21. http://dx.doi.org/10.1530/eje.1.02353 PMid:17413183   Ramírez AR, Castro MA, Angulo C, Ramió L, et al. (2009). The presence and function of dopamine type 2 receptors in boar sperm: a possible role for dopamine in viability, capacitation, and modulation of sperm motility. Biol. Reprod. 80: 753-761. http://dx.doi.org/10.1095/biolreprod.108.070961 PMid:19074002   Sasabe T and Ishiura S (2010). Alcoholism and alternative splicing of candidate genes. Int. J. Environ. Res. Public Health 7: 1448-1466. http://dx.doi.org/10.3390/ijerph7041448 PMid:20617039 PMCid:2872348   Schnell SA, You S, Foster DN and El Halawani ME (1999). Molecular cloning and tissue distribution of an avian D2 dopamine receptor mRNA from the domestic turkey (Maleagris gallopavo). J. Comp. Neurol. 407: 543-554. http://dx.doi.org/10.1002/(SICI)1096-9861(19990517)407:4<543::AID-CNE6>3.0.CO;2-O   Seeman P, Nam D, Ulpian C, Liu IS, et al. (2000). New dopamine receptor, D2(Longer), with unique TG splice site, in human brain. Brain Res. Mol. Brain Res. 76: 132-141. http://dx.doi.org/10.1016/S0169-328X(99)00343-5   Senogles SE, Heimert TL, Odife ER and Quasney MW (2004). A region of the third intracellular loop of the short form of the D2 dopamine receptor dictates Gi coupling specificity. J. Biol. Chem. 279: 1601-1606. http://dx.doi.org/10.1074/jbc.M309792200 PMid:14581469   Shi L and Javitch JA (2002). The binding site of aminergic G protein-coupled receptors: the transmembrane segments and second extracellular loop. Annu. Rev. Pharmacol. Toxicol. 42: 437-467. http://dx.doi.org/10.1146/annurev.pharmtox.42.091101.144224 PMid:11807179   Taylor TD, Noguchi H, Totoki Y, Toyoda A, et al. (2006). Human chromosome 11 DNA sequence and analysis including novel gene identification. Nature 440: 497-500. http://dx.doi.org/10.1038/nature04632 PMid:16554811   Usiello A, Baik JH, Rougé-Pont F, Picetti R, et al. (2000). Distinct functions of the two isoforms of dopamine D2 receptors. Nature 408: 199-203. http://dx.doi.org/10.1038/35041572 PMid:11089973   Wiedmann RT, Smith TP and Nonneman DJ (2008). SNP discovery in swine by reduced representation and high throughput pyrosequencing. BMC Genet. 9: 81. http://dx.doi.org/10.1186/1471-2156-9-81 PMid:19055830 PMCid:2612698   Zhang Y, Bertolino A, Fazio L, Blasi G, et al. (2007). Polymorphisms in human dopamine D2 receptor gene affect gene expression, splicing, and neuronal activity during working memory. Proc. Natl. Acad. Sci. U. S. A. 104: 20552- 20557. http://dx.doi.org/10.1073/pnas.0707106104 PMid:18077373 PMCid:2154469   Zimin AV, Delcher AL, Florea L, Kelley DR, et al. (2009). A whole-genome assembly of the domestic cow, Bos taurus. Genome Biol. 10: R42. http://dx.doi.org/10.1186/gb-2009-10-4-r42 PMid:19393038 PMCid:2688933
H. P. Xu, Zeng, H., Zhang, D. X., Jia, X. L., Luo, C. L., Fang, M. X., Nie, Q. H., and Zhang, X. Q., Polymorphisms associated with egg number at 300 days of age in chickens, vol. 10, pp. 2279-2289, 2011.
Al Kahtane, Chaiseha Y and El Halawani M (2003). Dopaminergic regulation of avian prolactin gene transcription. J. Mol. Endocrinol. 31: 185-196. http://dx.doi.org/10.1677/jme.0.0310185 PMid:12914535 Caldwell SR, Johnson AF, Yule TD, Grimes JL, et al. (1999). Increased egg production in juvenile turkey hens after active immunization with vasoactive intestinal peptide. Poult. Sci. 78: 899-901. PMid:10438136 Chaiseha Y, Youngren OM and El Halawani ME (2004). Expression of vasoactive intestinal peptide receptor messenger RNA in the hypothalamus and pituitary throughout the turkey reproductive cycle. Biol. Reprod. 70: 593-599. http://dx.doi.org/10.1095/biolreprod.103.022715 PMid:14568918 Chatterjee R, Sharma RP, Bhattacharya TK, Niranjan M, et al. (2010). Microsatellite variability and its relationship with growth, egg production, and immunocompetence traits in chickens. Biochem. Genet. 48: 71-82. http://dx.doi.org/10.1007/s10528-009-9296-5 PMid:20094843 Chen CF, Shiue YL, Yen CJ, Tang PC, et al. (2007). Laying traits and underlying transcripts, expressed in the hypothalamus and pituitary gland, that were associated with egg production variability in chickens. Theriogenology 68: 1305-1315. http://dx.doi.org/10.1016/j.theriogenology.2007.08.032 PMid:17931698 Cui JX, Du HL, Liang Y, Deng XM, et al. (2006). Association of polymorphisms in the promoter region of chicken prolactin with egg production. Poult. Sci. 85: 26-31. PMid:16493942 Dhillon SS, Gingerich S and Belsham DD (2009). Neuropeptide Y induces gonadotropin-releasing hormone gene expression directly and through conditioned medium from mHypoE-38 NPY neurons. Regul. Pept. 156: 96-103. http://dx.doi.org/10.1016/j.regpep.2009.04.005 PMid:19371763 Dunn IC, Miao YW, Morris A, Romanov MN, et al. (2004). A study of association between genetic markers in candidate genes and reproductive traits in one generation of a commercial broiler breeder hen population. Heredity 92: 128-134. http://dx.doi.org/10.1038/sj.hdy.6800396 PMid:14679392 El Halawani ME, Silsby JL, Rozenboim I and Pitts GR (1995). Increased egg production by active immunization against vasoactive intestinal peptide in the turkey (Meleagris gallopavo). Biol. Reprod. 52: 179-183. http://dx.doi.org/10.1095/biolreprod52.1.179 PMid:7711177 El Halawani ME, Pitts GR, Sun S, Silsby JL, et al. (1996). Active immunization against vasoactive intestinal peptide prevents photo-induced prolactin secretion in turkeys. Gen. Comp. Endocrinol. 104: 76-83. http://dx.doi.org/10.1006/gcen.1996.0143 PMid:8921358 Emsley A (1997). Integration of classical and molecular approaches of genetic selection: egg production. Poult. Sci. 76: 1127-1130. PMid:9251140 Hansen C, Yi N, Zhang YM, Xu S, et al. (2005). Identification of QTL for production traits in chickens. Anim. Biotechnol. 16: 67-79. http://dx.doi.org/10.1081/ABIO-200055016 PMid:15926264 Hirayama S, Bajari TM, Nimpf J and Schneider WJ (2003). Receptor-mediated chicken oocyte growth: differential expression of endophilin isoforms in developing follicles. Biol. Reprod. 68: 1850-1860. http://dx.doi.org/10.1095/biolreprod.102.012427 PMid:12606338 Kim MH, Seo DS and Ko Y (2004). Relationship between egg productivity and insulin-like growth factor-I genotypes in Korean native Ogol chickens. Poult. Sci. 83: 1203-1208. PMid:15285513 Klenke U, Constantin S and Wray S (2010). Neuropeptide Y directly inhibits neuronal activity in a subpopulation of gonadotropin-releasing hormone-1 neurons via Y1 receptors. Endocrinology 151: 2736-2746. http://dx.doi.org/10.1210/en.2009-1198 PMid:20351316    PMCid:2875836 Kuo YM, Shiue YL, Chen CF, Tang PC, et al. (2005). Proteomic analysis of hypothalamic proteins of high and low egg production strains of chickens. Theriogenology 64: 1490-1502. http://dx.doi.org/10.1016/j.theriogenology.2005.03.020 PMid:16182870 Leska A and Dusza L (2007). Seasonal changes in the hypothalamo-pituitary-gonadal axis in birds. Reprod. Biol. 7: 99- 126. PMid:17873963 Lewis PD and Gous RM (2006). Effect of final photoperiod and twenty-week body weight on sexual maturity and early egg production in broiler breeders. Poult. Sci. 85: 377-383. PMid:16553263 Liu HK, Lilburn MS, Koyyeri B, Anderson JW, et al. (2004). Preovulatory surge patterns of luteinizing hormone, progesterone, and estradiol-17beta in broiler breeder hens fed ad libitum or restricted fed. Poult. Sci. 83: 823-829. PMid:15141842 Luo PT, Yang RQ and Yang N (2007). Estimation of genetic parameters for cumulative egg numbers in a broiler dam line by using a random regression model. Poult. Sci. 86: 30-36. PMid:17179412 Proudman JA, Scanes CG, Johannsen SA, Berghman LR, et al. (2006). Comparison of the ability of the three endogenous GnRHs to stimulate release of follicle-stimulating hormone and luteinizing hormone in chickens. Domest. Anim. Endocrinol. 31: 141-153. http://dx.doi.org/10.1016/j.domaniend.2005.10.002 PMid:16300920 Reddy IJ, David CG and Raju SS (2007). Effect of suppression of plasma prolactin on luteinizing hormone concentration, intersequence pause days and egg production in domestic hen. Domest. Anim. Endocrinol. 33: 167-175. http://dx.doi.org/10.1016/j.domaniend.2006.05.002 PMid:16787735 Reutens AT and Begley CG (2002). Endophilin-1: a multifunctional protein. Int. J. Biochem. Cell Biol. 34: 1173-1177. http://dx.doi.org/10.1016/S1357-2725(02)00063-8 Rodríguez S, Gaunt TR, Dennison E, Chen XH, et al. (2006). Replication of IGF2-INS-TH*5 haplotype effect on obesity in older men and study of related phenotypes. Eur. J. Hum. Genet. 14: 109-116. PMid:16251897 Sartsoongnoen N, Kosonsiriluk S, Prakobsaeng N, Songserm T, et al. (2008). The dopaminergic system in the brain of the native Thai chicken, Gallus domesticus: localization and differential expression across the reproductive cycle. Gen. Comp. Endocrinol. 159: 107-115. http://dx.doi.org/10.1016/j.ygcen.2008.08.002 PMid:18765240 Sasaki O, Odawara S, Takahashi H, Nirasawa K, et al. (2004). Genetic mapping of quantitative trait loci affecting body weight, egg character and egg production in F2 intercross chickens. Anim. Genet. 35: 188-194. http://dx.doi.org/10.1111/j.1365-2052.2004.01133.x PMid:15147389 Schmidt A, Wolde M, Thiele C, Fest W, et al. (1999). Endophilin I mediates synaptic vesicle formation by transfer of arachidonate to lysophosphatidic acid. Nature 401: 133-141. http://dx.doi.org/10.1038/43613 PMid:10490020 Schreiweis MA, Hester PY, Settar P and Moody DE (2006). Identification of quantitative trait loci associated with egg quality, egg production, and body weight in an F2 resource population of chickens. Anim. Genet. 37: 106-112. http://dx.doi.org/10.1111/j.1365-2052.2005.01394.x PMid:16573524 Shacham S, Harris D, Ben-Shlomo H, Cohen I, et al. (2001). Mechanism of GnRH receptor signaling on gonadotropin release and gene expression in pituitary gonadotrophs. Vitam. Horm. 63: 63-90. http://dx.doi.org/10.1016/S0083-6729(01)63003-6 Sharp PJ (2005). Photoperiodic regulation of seasonal breeding in birds. Ann. Acad. Sci. 1040: 189-199. http://dx.doi.org/10.1196/annals.1327.024 PMid:15891024 Shiue YL, Chen LR, Chen CF, Chen YL, et al. (2006). Identification of transcripts related to high egg production in the chicken hypothalamus and pituitary gland. Theriogenology 66: 1274-1283. http://dx.doi.org/10.1016/j.theriogenology.2006.03.037 PMid:16725186 Soñez MC, Soñez CA, Mugnaini MT, Haedo M, et al. (2010). Effects of differential pulse frequencies of chicken gonadotrophin-releasing hormone-I (cGnRH-I) on laying hen gonadotrope responses in vitro. Biotech. Histochem. 85: 355-363. http://dx.doi.org/10.3109/10520290903368774 Tuiskula-Haavisto M, Honkatukia M, Vilkki J, de Koning DJ, et al. (2002). Mapping of quantitative trait loci affecting quality and production traits in egg layers. Poult. Sci. 81: 919-927. PMid:12162350 Tuiskula-Haavisto M, de Koning DJ, Honkatukia M, Schulman NF, et al. (2004). Quantitative trait loci with parent-of-origin effects in chicken. Genet. Res. 84: 57-66. http://dx.doi.org/10.1017/S0016672304006950 PMid:15663259 Xu H, Shen X, Zhou M, Fang M, et al. (2010a). The genetic effects of the dopamine D1 receptor gene on chicken egg production and broodiness traits. BMC Genet. 11: 17. http://dx.doi.org/10.1186/1471-2156-11-17 PMid:20199684    PMCid:2848132 Xu HP, Shen X, Zhou M, Luo CL, et al. (2010b). The dopamine D2 receptor gene polymorphisms associated with chicken broodiness. Poult. Sci. 89: 428-438. http://dx.doi.org/10.3382/ps.2009-00428 PMid:20181857 Zhang K, Calabrese P, Nordborg M and Sun F (2002). Haplotype block structure and its applications to association studies: power and study designs. Am. J. Hum. Genet. 71: 1386-1394. http://dx.doi.org/10.1086/344780 PMid:12439824 Zhou M, Lei M, Rao Y, Nie Q, et al. (2008a). Polymorphisms of vasoactive intestinal peptide receptor-1 gene and their genetic effects on broodiness in chickens. Poult. Sci. 87: 893-903. http://dx.doi.org/10.3382/ps.2007-00495 PMid:18420979 Zhou M, Liang F, Rao Y and Zeng H (2008b). Association of twelve polymorphisms of the VIPR-1 gene with chicken early egg production traits. Chinese J. Anim. Vet. Sci. 39: 1147-1152. Zhou M, Du Y, Nie Q, Liang Y, et al. (2010). Associations between polymorphisms in the chicken VIP gene, egg production and broody traits. Br. Poult. Sci. 51: 195-203. http://dx.doi.org/10.1080/00071661003745786 PMid:20461580