Publications
Found 72 results
Filters: Author is L. Li [Clear All Filters]
“High-throughput, low-cost, and event-specific polymerase chain reaction detection of herbicide tolerance in genetically modified soybean A2704-12”, vol. 13, pp. 696-703, 2014.
, “Homing of chloromethylbenzoyl ammonia-labeled bone marrow mesenchymal stem cells in an immune-mediated bone marrow failure mouse model in vivo”, vol. 13, pp. 11-21, 2014.
, “New support vector machine-based method for microRNA target prediction”, vol. 13, pp. 4165-4176, 2014.
, “A novel synthetic Cry1Ab gene resists rice insect pests”, vol. 13, pp. 2394-2408, 2014.
, “Polymorphisms in the XRCC1 gene are associated with treatment response to platinum chemotherapy in advanced non-small cell lung cancer patients based on meta-analysis”, vol. 13, pp. 3772-3786, 2014.
, “Resveratrol, an activator of SIRT1, upregulates AMPK and improves cardiac function in heart failure”, vol. 13, pp. 323-335, 2014.
, “Association between IL-1RN gene polymorphisms and susceptibility to ankylosing spondylitis: a large Human Genome Epidemiology review and meta-analysis”, vol. 12, pp. 1720-1730, 2013.
, “Bicluster and regulatory network analysis of differentially expressed genes in adenocarcinoma and squamous cell carcinoma”, vol. 12, pp. 1710-1719, 2013.
, “Effect of the ARG1 gene on arsenic resistance of 293T cells”, vol. 12, pp. 6825-6837, 2013.
, “Expression of glutamine synthetase in Tegillarca granosa (Bivalvia, Arcidae) hemocytes stimulated by Vibrio parahaemolyticus and lipopolysaccharides”, vol. 12, pp. 1143-1154, 2013.
, Avila C, Suarez MF, Gomez-Maldonado J and Canovas FM (2001). Spatial and temporal expression of two cytosolic glutamine synthetase genes in Scots pine: functional implications on nitrogen metabolism during early stages of conifer development. Plant J. 25: 93-102.
http://dx.doi.org/10.1046/j.1365-313x.2001.00938.x
PMid:11169185
Avisar N, Shiftan L, Ben-Dror I, Havazelet N, et al. (1999). A silencer element in the regulatory region of glutamine synthetase controls cell type-specific repression of gene induction by glucocorticoids. J. Biol. Chem. 274: 11399- 11407.
http://dx.doi.org/10.1074/jbc.274.16.11399
PMid:10196233
Bao Y, Li L, Wu Q and Zhang G (2009a). Cloning, characterization, and expression analysis of extracellular copper/zinc superoxide dismutase gene from bay scallop Argopecten irradians. Fish Shellfish Immunol. 27: 17-25.
http://dx.doi.org/10.1016/j.fsi.2008.11.014
PMid:19084069
Bao Y, Li L, Xu F and Zhang G (2009b). Intracellular copper/zinc superoxide dismutase from bay scallop Argopecten irradians: its gene structure, mRNA expression and recombinant protein. Fish Shellfish Immunol. 27: 210-220.
http://dx.doi.org/10.1016/j.fsi.2009.04.005
PMid:19426808
Baruah K, Ranjan J, Sorgeloos P and Bossier P (2010). Efficacy of heterologous and homologous heat shock protein 70s as protective agents to Artemia franciscana challenged with Vibrio campbellii. Fish Shellfish Immunol. 29: 733-739.
http://dx.doi.org/10.1016/j.fsi.2010.07.011
PMid:20643210
Brown JR, Masuchi Y, Robb FT and Doolittle WF (1994). Evolutionary relationships of bacterial and archaeal glutamine synthetase genes. J. Mol. Evol. 38: 566-576.
http://dx.doi.org/10.1007/BF00175876
PMid:7916055
Caizzi R, Bozzetti MP, Caggese C and Ritossa F (1990). Homologous nuclear genes encode cytoplasmic and mitochondrial glutamine synthetase in Drosophila melanogaster. J. Mol. Biol. 212: 17-26.
http://dx.doi.org/10.1016/0022-2836(90)90301-2
Eisenberg D, Almassy RJ, Janson CA, Chapman MS, et al. (1987). Some evolutionary relationships of the primary biological catalysts glutamine synthetase and RuBisCO. Cold Spring Harb. Symp. Quant. Biol. 52: 483-490.
http://dx.doi.org/10.1101/SQB.1987.052.01.055
PMid:2900091
Eisenberg D, Gill HS, Pfluegl GM and Rotstein SH (2000). Structure-function relationships of glutamine synthetases. Biochim. Biophys. Acta 1477: 122-145.
http://dx.doi.org/10.1016/S0167-4838(99)00270-8
Fahrner J, Labruyere WT, Gaunitz C, Moorman AF, et al. (1993). Identification and functional characterization of regulatory elements of the glutamine synthetase gene from rat liver. Eur. J. Biochem. 213: 1067-1073.
http://dx.doi.org/10.1111/j.1432-1033.1993.tb17854.x
PMid:8099326
Fucci L, Piscopo A, Aniello F, Branno M, et al. (1995). Cloning and characterization of a developmentally regulated sea urchin cDNA encoding glutamine synthetase. Gene 152: 205-208.
http://dx.doi.org/10.1016/0378-1119(94)00719-9
Hayward BE, Hussain A, Wilson RH, Lyons A, et al. (1986). The cloning and nucleotide sequence of cDNA for an amplified glutamine synthetase gene from the Chinese hamster. Nucleic Acids Res. 14: 999-1008.
http://dx.doi.org/10.1093/nar/14.2.999
PMid:2868445 PMCid:339478
Kumada Y, Benson DR, Hillemann D, Hosted TJ, et al. (1993). Evolution of the glutamine synthetase gene, one of the oldest existing and functioning genes. Proc. Natl. Acad. Sci. U. S. A. 90: 3009-3013.
http://dx.doi.org/10.1073/pnas.90.7.3009
PMid:8096645 PMCid:46226
Kuo CF and Darnell JE Jr (1989). Mouse glutamine synthetase is encoded by a single gene that can be expressed in a localized fashion. J. Mol. Biol. 208: 45-56.
http://dx.doi.org/10.1016/0022-2836(89)90086-7
Murray BW, Busby ER, Mommsen TP and Wright PA (2003). Evolution of glutamine synthetase in vertebrates: multiple glutamine synthetase genes expressed in rainbow trout (Oncorhynchus mykiss). J. Exp. Biol. 206: 1511-1521.
http://dx.doi.org/10.1242/jeb.00283
PMid:12654890
Myohara M, Niva CC and Lee JM (2006). Molecular approach to annelid regeneration: cDNA subtraction cloning reveals various novel genes that are upregulated during the large-scale regeneration of the oligochaete, Enchytraeus japonensis. Dev. Dyn. 235: 2051-2070.
http://dx.doi.org/10.1002/dvdy.20849
PMid:16724321
Shatters RG and Kahn ML (1989). Glutamine synthetase II in Rhizobium: reexamination of the proposed horizontal transfer of DNA from eukaryotes to prokaryotes. J. Mol. Evol. 29: 422-428.
http://dx.doi.org/10.1007/BF02602912
PMid:2575672
Smartt CT, Kiley LM, Hillyer JF, Dasgupta R, et al. (2001). Aedes aegypti glutamine synthetase: expression and gene structure. Gene 274: 35-45.
http://dx.doi.org/10.1016/S0378-1119(01)00618-7
Smith OP, Marinov AD, Chan KM and Ferrier MD (2004). Cloning and sequencing of cDNA encoding glutamine synthetase from the sea anemone Aiptasia pallida. Hydrobiologia 530-531: 267-272.
http://dx.doi.org/10.1007/s10750-004-2634-z
Tanguy A, Boutet I and Moraga D (2005). Molecular characterization of the glutamine synthetase gene in the Pacific oyster Crassostrea gigas: expression study in response to xenobiotic exposure and developmental stage. Biochim. Biophys. Acta 1681: 116-125.
http://dx.doi.org/10.1016/j.bbaexp.2004.10.010
PMid:15627503
Trapido-Rosenthal HG, Linser PJ, Greenberg RM, Gleeson RA, et al. (1993). cDNA clones from the olfactory organ of the spiny lobster encode a protein related to eukaryotic glutamine synthetase. Gene 129: 275-278.
http://dx.doi.org/10.1016/0378-1119(93)90279-C
Wang X and Quinn PJ (2010). Lipopolysaccharide: Biosynthetic pathway and structure modification. Prog. Lipid Res. 49: 97-107.
http://dx.doi.org/10.1016/j.plipres.2009.06.002
PMid:19815028
Wang Y, Kudoh J, Kubota R, Asakawa S, et al. (1996). Chromosomal mapping of a family of human glutamine synthetase genes: functional gene (GLUL) on 1q25, pseudogene (GLULP) on 9p13, and three related genes (GLULL1, GLULL2, GLULL3) on 5q33, 11p15, and 11q24. Genomics 37: 195-199.
http://dx.doi.org/10.1006/geno.1996.0542
PMid:8921392
“Expression profile of insulin-like growth factor system genes in muscle tissues during the postnatal development growth stage in ducks”, vol. 12, pp. 4500-4514, 2013.
, “A high-throughput, high-quality plant genomic DNA extraction protocol”, vol. 12, pp. 4526-4539, 2013.
, “Nested clade phylogeographical analysis of the finless porpoise (Neophocaena phocaenoides) inhabiting Chinese and Japanese coasts”, vol. 12, pp. 2528-2536, 2013.
, “Overexpression of an alternative oxidase gene, OsAOX1a, improves cold tolerance in Oryza sativa L.”, vol. 12, pp. 5424-5432, 2013.
, “Quantitative detection of the rice false smut pathogen Ustilaginoidea virens by real-time PCR”, vol. 12, pp. 6433-6441, 2013.
, “Relationship between dilated cardiomyopathy and the E23K and I337V polymorphisms in the Kir6.2 subunit of the KATP channel”, vol. 12, pp. 4383-4392, 2013.
, , “Lack of an association between the XRCC1 Arg399Gln polymorphism and gastric cancer based on a meta-analysis”, vol. 11, pp. 3852-3860, 2012.
,
Bray F, Sankila R, Ferlay J and Parkin DM (2002). Estimates of cancer incidence and mortality in Europe in 1995. Eur. J. Cancer 38: 99-166.
http://dx.doi.org/10.1016/S0959-8049(01)00350-1
Capella G, Pera G, Sala N, Agudo A, et al. (2008). DNA repair polymorphisms and the risk of stomach adenocarcinoma and severe chronic gastritis in the EPIC-EURGAST study. Int. J. Epidemiol. 37: 1316-1325.
http://dx.doi.org/10.1093/ije/dyn145
PMid:18641418
Chen B, Zhou Y, Yang P and Wu XT (2012). Polymorphisms of XRCC1 and gastric cancer susceptibility: a meta-analysis. Mol. Biol. Rep. 39: 1305-1313.
http://dx.doi.org/10.1007/s11033-011-0863-6
PMid:21604176
DerSimonian R and Laird N (1986). Meta-analysis in clinical trials. Control. Clin. Trials 7: 177-188.
http://dx.doi.org/10.1016/0197-2456(86)90046-2
Duarte MC, Colombo J, Rossit AR, Caetano A, et al. (2005). Polymorphisms of DNA repair genes XRCC1 and XRCC3, interaction with environmental exposure and risk of chronic gastritis and gastric cancer. World J. Gastroenterol. 11: 6593-6600.
PMid:16425350
Egger M, Davey SG, Schneider M and Minder C (1997). Bias in meta-analysis detected by a simple, graphical test. BMJ 315: 629-634.
http://dx.doi.org/10.1136/bmj.315.7109.629
PMid:9310563 PMCid:2127453
Geng J, Zhang YW, Huang GC and Chen LB (2008). XRCC1 genetic polymorphism Arg399Gln and gastric cancer risk: A meta-analysis. World J. Gastroenterol. 14: 6733-6737.
http://dx.doi.org/10.3748/wjg.14.6733
PMid:19034980 PMCid:2773319
Geng J, Zhang Q, Zhu C, Wang J, et al. (2009). XRCC1 genetic polymorphism Arg399Gln and prostate cancer risk: a meta-analysis. Urology 74: 648-653.
http://dx.doi.org/10.1016/j.urology.2009.02.046
PMid:19428062
Gonzalez CA and Lopez-Carrillo L (2010). Helicobacter pylori, nutrition and smoking interactions: their impact in gastric carcinogenesis. Scand. J. Gastroenterol. 45: 6-14.
http://dx.doi.org/10.3109/00365520903401959
PMid:20030576
Hirschhorn JN, Lohmueller K, Byrne E and Hirschhorn K (2002). A comprehensive review of genetic association studies. Genet. Med. 4: 45-61.
http://dx.doi.org/10.1097/00125817-200203000-00002
PMid:11882781
Huang WY, Chow WH, Rothman N, Lissowska J, et al. (2005). Selected DNA repair polymorphisms and gastric cancer in Poland. Carcinogenesis 26: 1354-1359.
http://dx.doi.org/10.1093/carcin/bgi084
PMid:15802298
Hung RJ, Hall J, Brennan P and Boffetta P (2005). Genetic polymorphisms in the base excision repair pathway and cancer risk: a HuGE review. Am. J. Epidemiol. 162: 925-942.
http://dx.doi.org/10.1093/aje/kwi318
PMid:16221808
Kiyohara C, Takayama K and Nakanishi Y (2006). Association of genetic polymorphisms in the base excision repair pathway with lung cancer risk: a meta-analysis. Lung. Cancer 54: 267-283.
http://dx.doi.org/10.1016/j.lungcan.2006.08.009
PMid:16982113
Lau J, Ioannidis JP and Schmid CH (1997). Quantitative synthesis in systematic reviews. Ann. Intern. Med. 127: 820-826.
PMid:9382404
Lee PN and Hamling J (2009). The relation between smokeless tobacco and cancer in Northern Europe and North America. A commentary on differences between the conclusions reached by two recent reviews. BMC Cancer 9: 256.
http://dx.doi.org/10.1186/1471-2407-9-256
PMid:19638246 PMCid:3087330
Lee SG, Kim B, Choi J, Kim C, et al. (2002). Genetic polymorphisms of XRCC1 and risk of gastric cancer. Cancer Lett. 187: 53-60.
http://dx.doi.org/10.1016/S0304-3835(02)00381-6
Lei YC, Hwang SJ, Chang CC, Kuo HW, et al. (2002). Effects on sister chromatid exchange frequency of polymorphisms in DNA repair gene XRCC1 in smokers. Mutat. Res. 519: 93-101.
http://dx.doi.org/10.1016/S1383-5718(02)00127-4
Li WQ, Zhang L, Ma JL, Zhang Y, et al. (2009). Association between genetic polymorphisms of DNA base excision repair genes and evolution of precancerous gastric lesions in a Chinese population. Carcinogenesis 30: 500-505.
http://dx.doi.org/10.1093/carcin/bgp018
PMid:19147860
Lindahl T (2000). Suppression of spontaneous mutagenesis in human cells by DNA base excision-repair. Mutat. Res. 462: 129-135.
http://dx.doi.org/10.1016/S1383-5742(00)00024-7
Lunn RM, Langlois RG, Hsieh LL, Thompson CL, et al. (1999). XRCC1 polymorphisms: effects on aflatoxin B1-DNA adducts and glycophorin A variant frequency. Cancer Res. 59: 2557-2561.
PMid:10363972
Malfertheiner P, Bornschein J and Selgrad M (2010). Role of Helicobacter pylori infection in gastric cancer pathogenesis: a chance for prevention. J. Dig. Dis. 11: 2-11.
http://dx.doi.org/10.1111/j.1751-2980.2009.00408.x
PMid:20132425
Mantel N and Haenszel W (1959). Statistical aspects of the analysis of data from retrospective studies of disease. J. Natl. Cancer Inst. 22: 719-748.
PMid:13655060
Marintchev A, Mullen MA, Maciejewski MW, Pan B, et al. (1999). Solution structure of the single-strand break repair protein XRCC1 N-terminal domain. Nat. Struct. Biol. 6: 884-893.
http://dx.doi.org/10.1038/12347
PMid:10467102
Miao X, Zhang X, Zhang L, Guo Y, et al. (2006). Adenosine diphosphate ribosyl transferase and x-ray repair cross-complementing 1 polymorphisms in gastric cardia cancer. Gastroenterology 131: 420-427.
http://dx.doi.org/10.1053/j.gastro.2006.05.050
PMid:16890595
Munafo MR, Clark TG and Flint J (2004). Assessing publication bias in genetic association studies: evidence from a recent meta-analysis. Psychiatry Res. 129: 39-44.
http://dx.doi.org/10.1016/j.psychres.2004.06.011
PMid:15572183
Palli D, Polidoro S, D'Errico M, Saieva C, et al. (2010). Polymorphic DNA repair and metabolic genes: a multigenic study on gastric cancer. Mutagenesis 25: 569-575.
http://dx.doi.org/10.1093/mutage/geq042
PMid:20817763
Parkin DM, Bray F, Ferlay J and Pisani P (2005). Global cancer statistics, 2002. CA Cancer J. Clin. 55: 74-108.
http://dx.doi.org/10.3322/canjclin.55.2.74
PMid:15761078
Qu T, Morii E, Oboki K, Lu Y, et al. (2005). Micronuclei in EM9 cells expressing polymorphic forms of human XRCC1. Cancer Lett. 221: 91-95.
http://dx.doi.org/10.1016/j.canlet.2004.08.013
PMid:15797631
Ratnasinghe LD, Abnet C, Qiao YL, Modali R, et al. (2004). Polymorphisms of XRCC1 and risk of esophageal and gastric cardia cancer. Cancer Lett. 216: 157-164.
http://dx.doi.org/10.1016/j.canlet.2004.03.012
PMid:15533591
Ruzzo A, Canestrari E, Maltese P, Pizzagalli F, et al. (2007). Polymorphisms in genes involved in DNA repair and metabolism of xenobiotics in individual susceptibility to sporadic diffuse gastric cancer. Clin. Chem. Lab. Med. 45: 822-828.
http://dx.doi.org/10.1515/CCLM.2007.143
PMid:17617021
Saadat M and Ansari-Lari M (2009). Polymorphism of XRCC1 (at codon 399) and susceptibility to breast cancer, a meta-analysis of the literatures. Breast Cancer Res. Treat. 115: 137-144.
http://dx.doi.org/10.1007/s10549-008-0051-0
PMid:18481169
Shen H, Xu Y, Qian Y, Yu R, et al. (2000). Polymorphisms of the DNA repair gene XRCC1 and risk of gastric cancer in a Chinese population. Int. J. Cancer 88: 601-606.
http://dx.doi.org/10.1002/1097-0215(20001115)88:4<601::AID-IJC13>3.0.CO;2-C
Song CG, Lu HS, Huang CM, Liu X, et al. (2006). Relationship between gene polymorphism of XRCC1 Arg399Gln and the risk of gastric cancer patients in Fujian. Zhonghua Shiyan Waike Zazhi. 23: 1021.
Wang B, Wang D, Huang G, Zhang C, et al. (2010). XRCC1 polymorphisms and risk of colorectal cancer: a meta-analysis. Int. J. Colorectal Dis. 25: 313-321.
http://dx.doi.org/10.1007/s00384-009-0866-0
PMid:20033188
Wang C, Sun Y and Han R (2008). XRCC1 genetic polymorphisms and bladder cancer susceptibility: a meta-analysis. Urology 72: 869-872.
http://dx.doi.org/10.1016/j.urology.2007.12.059
PMid:18336890
Wang Y, Spitz MR, Zhu Y, Dong Q, et al. (2003). From genotype to phenotype: correlating XRCC1 polymorphisms with mutagen sensitivity. DNA Repair 2: 901-908.
http://dx.doi.org/10.1016/S1568-7864(03)00085-5
Yan L, Yanan D, Donglan S, Na W, et al. (2009). Polymorphisms of XRCC1 gene and risk of gastric cardiac adenocarcinoma. Dis. Esophagus 22: 396-401.
http://dx.doi.org/10.1111/j.1442-2050.2008.00912.x
PMid:19673050
Zhang Z, Miao XP, Tan W, Guo YL, et al. (2006). Correlation of genetic polymorphisms in DNA repair genes ADPRT and XRCC1 to risk of gastric cancer. Ai Zheng 25: 7-10.
PMid:16405741
“Meta-analysis of epidemiological studies demonstrates significant association of PTGS2 polymorphism rs689470 and no significant association of rs20417 with prostate cancer”, vol. 11, pp. 1642-1650, 2012.
, Balistreri CR, Caruso C, Carruba G, Miceli V, et al. (2010). A pilot study on prostate cancer risk and pro-inflammatory genotypes: pathophysiology and therapeutic implications. Curr. Pharm. Des. 16: 718-724.
http://dx.doi.org/10.2174/138161210790883877
PMid:20388081
Cao H, Xu Z, Long H, Li XQ, et al. (2010). The -765C allele of the cyclooxygenase-2 gene as a potential risk factor of colorectal cancer: a meta-analysis. Tohoku J. Exp. Med. 222: 15-21.
http://dx.doi.org/10.1620/tjem.222.15
PMid:20808059
Cheng I, Liu X, Plummer SJ, Krumroy LM, et al. (2007). COX2 genetic variation, NSAIDs, and advanced prostate cancer risk. Br. J. Cancer 97: 557-561.
http://dx.doi.org/10.1038/sj.bjc.6603874
PMid:17609663 PMCid:2360347
Danforth KN, Hayes RB, Rodriguez C, Yu K, et al. (2008). Polymorphic variants in PTGS2 and prostate cancer risk: results from two large nested case-control studies. Carcinogenesis 29: 568-572.
http://dx.doi.org/10.1093/carcin/bgm253
PMid:17999989
DerSimonian R and Laird N (1986). Meta-analysis in clinical trials. Control Clin. Trials 7: 177-188.
http://dx.doi.org/10.1016/0197-2456(86)90046-2
Dossus L, Kaaks R, Canzian F, Albanes D, et al. (2010). PTGS2 and IL6 genetic variation and risk of breast and prostate cancer: results from the Breast and Prostate Cancer Cohort Consortium (BPC3). Carcinogenesis 31: 455-461.
http://dx.doi.org/10.1093/carcin/bgp307
PMid:19965896 PMCid:2832545
Egger M, Davey SG, Schneider M and Minder C (1997). Bias in meta-analysis detected by a simple, graphical test. BMJ 315: 629-634.
http://dx.doi.org/10.1136/bmj.315.7109.629
PMid:9310563 PMCid:2127453
Gupta S, Srivastava M, Ahmad N, Bostwick DG, et al. (2000). Over-expression of cyclooxygenase-2 in human prostate adenocarcinoma. Prostate 42: 73-78.
http://dx.doi.org/10.1002/(SICI)1097-0045(20000101)42:1<73::AID-PROS9>3.0.CO;2-G
Hiatt RA, Armstrong MA, Klatsky AL and Sidney S (1994). Alcohol consumption, smoking, and other risk factors and prostate cancer in a large health plan cohort in California (United States). Cancer Causes Control 5: 66-72.
http://dx.doi.org/10.1007/BF01830728
PMid:7510134
Hori S, Butler E and McLoughlin J (2011). Prostate cancer and diet: food for thought? BJU Int. 107: 1348-1359.
http://dx.doi.org/10.1111/j.1464-410X.2010.09897.x
PMid:21518228
Ioannidis JP, Boffetta P, Little J, O'Brien TR, et al. (2008). Assessment of cumulative evidence on genetic associations: interim guidelines. Int. J. Epidemiol. 37: 120-132.
http://dx.doi.org/10.1093/ije/dym159
PMid:17898028
Kirschenbaum A, Klausner AP, Lee R, Unger P, et al. (2000). Expression of cyclooxygenase-1 and cyclooxygenase-2 in the human prostate. Urology 56: 671-676.
http://dx.doi.org/10.1016/S0090-4295(00)00674-9
Kosaka T, Miyata A, Ihara H, Hara S, et al. (1994). Characterization of the human gene (PTGS2) encoding prostaglandin-endoperoxide synthase 2. Eur. J. Biochem. 221: 889-897.
http://dx.doi.org/10.1111/j.1432-1033.1994.tb18804.x
PMid:8181472
Lee LM, Pan CC, Cheng CJ, Chi CW, et al. (2001). Expression of cyclooxygenase-2 in prostate adenocarcinoma and benign prostatic hyperplasia. Anticancer Res. 21: 1291-1294.
PMid:11396201
Liang Y, Liu JL, Wu Y, Zhang ZY, et al. (2011). Cyclooxygenase-2 polymorphisms and susceptibility to esophageal cancer: a meta-analysis. Tohoku J. Exp. Med. 223: 137-144.
http://dx.doi.org/10.1620/tjem.223.137
PMid:21304218
Liu JL, Liang Y, Wang ZN, Zhou X, et al. (2010). Cyclooxygenase-2 polymorphisms and susceptibility to gastric carcinoma: a meta-analysis. World J. Gastroenterol. 16: 5510-5517.
http://dx.doi.org/10.3748/wjg.v16.i43.5510
PMid:21086572 PMCid:2988247
Madaan S, Abel PD, Chaudhary KS, Hewitt R, et al. (2000). Cytoplasmic induction and over-expression of cyclooxygenase-2 in human prostate cancer: implications for prevention and treatment. BJU Int. 86: 736-741.
http://dx.doi.org/10.1046/j.1464-410x.2000.00867.x
PMid:11069387
Mahmud S, Franco E and Aprikian A (2004). Prostate cancer and use of nonsteroidal anti-inflammatory drugs: systematic review and meta-analysis. Br. J. Cancer 90: 93-99.
http://dx.doi.org/10.1038/sj.bjc.6601416
PMid:14710213 PMCid:2395299
Mantel N and Haenszel W (1959). Statistical aspects of the analysis of data from retrospective studies of disease. J. Natl. Cancer Inst. 22: 719-748.
PMid:13655060
Masferrer JL, Leahy KM, Koki AT, Zweifel BS, et al. (2000). Antiangiogenic and antitumor activities of cyclooxygenase-2 inhibitors. Cancer Res. 60: 1306-1311.
PMid:10728691
McArdle PA, Mir K, Almushatat AS, Wallace AM, et al. (2006). Systemic inflammatory response, prostate-specific antigen and survival in patients with metastatic prostate cancer. Urol. Int. 77: 127-129.
http://dx.doi.org/10.1159/000093905
PMid:16888416
Murad A, Lewis SJ, Smith GD, Collin SM, et al. (2009). PTGS2-899G>C and prostate cancer risk: a population-based nested case-control study (ProtecT) and a systematic review with meta-analysis. Prostate Cancer Prostatic Dis. 12: 296-300.
http://dx.doi.org/10.1038/pcan.2009.18
PMid:19488068
O'Byrne KJ and Dalgleish AG (2001). Chronic immune activation and inflammation as the cause of malignancy. Br. J. Cancer 85: 473-483.
http://dx.doi.org/10.1054/bjoc.2001.1943
PMid:11506482 PMCid:2364095
Panguluri RC, Long LO, Chen W, Wang S, et al. (2004). COX-2 gene promoter haplotypes and prostate cancer risk. Carcinogenesis 25: 961-966.
http://dx.doi.org/10.1093/carcin/bgh100
PMid:14754878
Shacter E and Weitzman SA (2002). Chronic inflammation and cancer. Oncology 16: 217-26, 229.
PMid:11866137
Shahedi K, Lindstrom S, Zheng SL, Wiklund F, et al. (2006). Genetic variation in the COX-2 gene and the association with prostate cancer risk. Int. J. Cancer 119: 668-672.
http://dx.doi.org/10.1002/ijc.21864
PMid:16506214
Tsujii M and DuBois RN (1995). Alterations in cellular adhesion and apoptosis in epithelial cells overexpressing prostaglandin endoperoxide synthase 2. Cell 83: 493-501.
http://dx.doi.org/10.1016/0092-8674(95)90127-2
Uotila P, Valve E, Martikainen P, Nevalainen M, et al. (2001). Increased expression of cyclooxygenase-2 and nitric oxide synthase-2 in human prostate cancer. Urol. Res. 29: 23-28.
http://dx.doi.org/10.1007/s002400000148
PMid:11310211
Wu GY, Hasenberg T, Magdeburg R, Bonninghoff R, et al. (2009). Association between EGF, TGF-beta1, VEGF gene polymorphism and colorectal cancer. World J. Surg. 33: 124-129.
http://dx.doi.org/10.1007/s00268-008-9784-5
PMid:19011936
Wu HC, Chang CH, Ke HL, Chang WS, et al. (2011). Association of cyclooxygenase 2 polymorphic genotypes with prostate cancer in taiwan. Anticancer Res. 31: 221-225.
PMid:21273602
Yoshimura R, Sano H, Masuda C, Kawamura M, et al. (2000). Expression of cyclooxygenase-2 in prostate carcinoma. Cancer 89: 589-596.
http://dx.doi.org/10.1002/1097-0142(20000801)89:3<589::AID-CNCR14>3.0.CO;2-C
Yu KD, Chen AX, Yang C, Qiu LX, et al. (2010). Current evidence on the relationship between polymorphisms in the COX-2 gene and breast cancer risk: a meta-analysis. Breast Cancer Res. Treat. 122: 251-257.
http://dx.doi.org/10.1007/s10549-009-0688-3
PMid:20033767
“Nine polymorphic STR loci in the HLA region in the Shaanxi Han population of China”, vol. 11, pp. 2534-2538, 2012.
,
Cullen M, Malasky M, Harding A and Carrington M (2003). High-density map of short tandem repeats across the human major histocompatibility complex. Immunogenetics 54: 900-910.
PMid:12671742
Fiorentino F, Kahraman S, Karadayi H, Biricik A, et al. (2005). Short tandem repeats haplotyping of the HLA region in preimplantation HLA matching. Eur. J. Hum. Genet. 13: 953-958.
http://dx.doi.org/10.1038/sj.ejhg.5201435
PMid:15886713
Foissac A, Crouau-Roy B, Faure S, Thomsen M, et al. (1997). Microsatellites in the HLA region: on overview. Tissue Antigens 49: 197-214.
http://dx.doi.org/10.1111/j.1399-0039.1997.tb02740.x
PMid:9098926
Foissac A, Salhi M and Cambon-Thomsen A (2000). Microsatellites in the HLA region: 1999 update. Tissue Antigens 55: 477-509.
http://dx.doi.org/10.1034/j.1399-0039.2000.550601.x
PMid:10902606
Gill P, Brinkmann B, d'Aloja E, Andersen J, et al. (1997). Considerations from the European DNA profiling group (EDNAP) concerning STR nomenclature. Forensic Sci. Int. 87: 185-192.
http://dx.doi.org/10.1016/S0379-0738(97)00111-4
Gourraud PA, Mano S, Barnetche T, Carrington M, et al. (2004). Integration of microsatellite characteristics in the MHC region: a literature and sequence based analysis. Tissue Antigens 64: 543-555.
http://dx.doi.org/10.1111/j.1399-0039.2004.00317.x
PMid:15496197
Guo SW and Thompson EA (1992). Performing the exact test of Hardy-Weinberg proportion for multiple alleles. Biometrics 48: 361-372.
http://dx.doi.org/10.2307/2532296
PMid:1637966
Kashi Y and King DG (2006). Simple sequence repeats as advantageous mutators in evolution. Trends Genet. 22: 253-259.
http://dx.doi.org/10.1016/j.tig.2006.03.005
PMid:16567018
Korzebor A, Zamani M, Nouri K and Modarressi MH (2007). Statistical analysis of six STR loci located in MHC region in Iranian population for preimplantation genetic diagnosis. Int. J. Immunogenet. 34: 441-443.
http://dx.doi.org/10.1111/j.1744-313X.2007.00719.x
PMid:18001301
Malkki M, Gooley T, Horowitz M and Petersdorf EW (2007). MHC class I, II, and III microsatellite marker matching and survival in unrelated donor hematopoietic cell transplantation. Tissue Antigens 69 (Suppl 1): 46-49.
http://dx.doi.org/10.1111/j.1399-0039.2006.759_6.x
PMid:17445162
Olaisen B, Bar W, Brinkmann B, Budowle B, et al. (1998). DNA recommendations 1997 of the international society for forensic genetics. Vox Sang. 74: 61-63.
http://dx.doi.org/10.1046/j.1423-0410.1998.7410061.x
PMid:9481867
Rechitsky S, Kuliev A, Tur-Kaspa I, Morris R, et al. (2004). Preimplantation genetic diagnosis with HLA matching. Reprod. Biomed. Online 9: 210-221.
http://dx.doi.org/10.1016/S1472-6483(10)62132-3
Schoske R, Vallone PM, Ruitberg CM and Butler JM (2003). Multiplex PCR design strategy used for the simultaneous amplification of 10 Y chromosome short tandem repeat (STR) loci. Anal. Bioanal. Chem. 375: 333-343.
PMid:12589496
Sens-Abuazar C, Santos PS, Bicalho MG, Petzl-Erler ML, et al. (2009). MHC microsatellites in a Southern Brazilian population. Int. J. Immunogenet. 36: 269-274.
http://dx.doi.org/10.1111/j.1744-313X.2009.00864.x
PMid:19659935
Urquhart A, Kimpton CP, Downes TJ and Gill P (1994). Variation in short tandem repeat sequences--a survey of twelve microsatellite loci for use as forensic identification markers. Int. J. Legal Med. 107: 13-20.
http://dx.doi.org/10.1007/BF01247268
PMid:7999641
Walsh PS, Metzger DA and Higuchi R (1991). Chelex 100 as a medium for simple extraction of DNA for PCR-based typing from forensic material. Biotecchniqu06-513.
“Interaction between CYP 2C19*3 polymorphism and smoking in relation to laryngeal carcinoma in the Chinese Han population”, vol. 10, pp. 3331-3337, 2011.
,
Ashfield-Watt PA, Welch AA, Day NE and Bingham SA (2004). Is 'five-a-day' an effective way of increasing fruit and vegetable intakes? Publ. Health Nutr. 7: 257-261.
http://dx.doi.org/10.1079/PHN2003524
PMid:15003132
Cikojević D, Gluncić I and Klancnik M (2010). Cigarette smoking and progression of laryngeal lesions. Coll. Antropol. 34 (Suppl 1): 45-48.
PMid:20402295
Ercan B, Ayaz L, Cicek D and Tamer L (2008). Role of CYP2C9 and CYP2C19 polymorphisms in patients with atherosclerosis. Cell Biochem. Funct. 26: 309-313.
http://dx.doi.org/10.1002/cbf.1437
PMid:17868191
Fava C, Montagnana M, Almgren P, Rosberg L, et al. (2008). The V433M variant of the CYP4F2 is associated with ischemic stroke in male Swedes beyond its effect on blood pressure. Hypertension 52: 373-380.
http://dx.doi.org/10.1161/HYPERTENSIONAHA.108.114199
PMid:18574070
Fichtlscherer S, Dimmeler S, Breuer S, Busse R, et al. (2004). Inhibition of cytochrome P450 2C9 improves endothelium-dependent, nitric oxide-mediated vasodilatation in patients with coronary artery disease. Circulation 109: 178-183.
http://dx.doi.org/10.1161/01.CIR.0000105763.51286.7F
PMid:14662709
Gauthier KM, Falck JR, Reddy LM and Campbell WB (2004). 14,15-EET analogs: characterization of structural requirements for agonist and antagonist activity in bovine coronary arteries. Pharmacol. Res. 49: 515-524.
http://dx.doi.org/10.1016/j.phrs.2003.09.014
PMid:15026029
Imig JD (2000). Epoxygenase metabolites. Epithelial and vascular actions. Mol. Biotechnol. 16: 233-251.
http://dx.doi.org/10.1385/MB:16:3:233
Jiang JG, Chen CL, Card JW, Yang S, et al. (2005). Cytochrome P450 2J2 promotes the neoplastic phenotype of carcinoma cells and is up-regulated in human tumors. Cancer Res. 65: 4707-4715.
http://dx.doi.org/10.1158/0008-5472.CAN-04-4173
PMid:15930289
Jiang JG, Ning YG, Chen C, Ma D, et al. (2007). Cytochrome p450 epoxygenase promotes human cancer metastasis. Cancer Res. 67: 6665-6674.
http://dx.doi.org/10.1158/0008-5472.CAN-06-3643
PMid:17638876
Kurahashi K, Nishihashi T, Trandafir CC, Wang AM, et al. (2003). Diversity of endothelium-derived vasocontracting factors-arachidonic acid metabolites. Acta Pharmacol. Sin. 24: 1065-1069.
PMid:14627486
Lundell K and Wikvall K (2008). Species-specific and age-dependent bile acid composition: aspects on CYP8B and CYP4A subfamilies in bile acid biosynthesis. Curr. Drug Metab. 9: 323-331.
http://dx.doi.org/10.2174/138920008784220574
PMid:18473750
Node K, Ruan XL, Dai J, Yang SX, et al. (2001). Activation of Galpha s mediates induction of tissue-type plasminogen activator gene transcription by epoxyeicosatrienoic acids. J. Biol. Chem. 276: 15983-15989.
http://dx.doi.org/10.1074/jbc.M100439200
PMid:11279071
Sun J, Sui X, Bradbury JA, Zeldin DC, et al. (2002). Inhibition of vascular smooth muscle cell migration by cytochrome p450 epoxygenase-derived eicosanoids. Circ. Res. 90: 1020-1027.
http://dx.doi.org/10.1161/01.RES.0000017727.35930.33
PMid:12016269
Ye YN, Liu ES, Shin VY, Wu WK, et al. (2004). Nicotine promoted colon cancer growth via epidermal growth factor receptor, c-Src, and 5-lipoxygenase-mediated signal pathway. J. Pharmacol. Exp. Ther. 308: 66-72.
http://dx.doi.org/10.1124/jpet.103.058321
PMid:14569062
“Zinc finger protein A20 overexpression inhibits monocyte homing and protects endothelial cells from injury induced by high glucose”, vol. 10, pp. 1050-1059, 2011.
, Fogelman AM, Elahi F, Sykes K, Van Lenten BJ, et al. (1988). Modification of the Recalde method for the isolation of human monocytes. J. Lipid Res. 29: 1243-1247.
PMid:3183529
La Fontaine J, Harkless LB, Davis CE, Allen MA, et al. (2006). Current concepts in diabetic microvascular dysfunction. J. Am. Podiatr. Med. Assoc. 96: 245-252.
PMid:16707637
Lutz J, Luong Le A, Strobl M, Deng M, et al. (2008). The A20 gene protects kidneys from ischaemia/reperfusion injury by suppressing pro-inflammatory activation. J. Mol. Med. 86: 1329-1339.
doi:10.1007/s00109-008-0405-4
PMid:18813897
McGinn S, Saad S, Poronnik P and Pollock CA (2003). High glucose-mediated effects on endothelial cell proliferation occur via p38 MAP kinase. Am. J. Physiol. Endocrinol. Metab. 285: E708-E717.
PMid:12783777
Mohan S, Mohan N, Valente AJ and Sprague EA (1999). Regulation of low shear flow-induced HAEC VCAM-1 expression and monocyte adhesion. Am. J. Physiol. 276: C1100-C1107.
PMid:10329958
Patel VI, Daniel S, Longo CR, Shrikhande GV, et al. (2006). A20, a modulator of smooth muscle cell proliferation and apoptosis, prevents and induces regression of neointimal hyperplasia. FASEB J. 20: 1418-1430.
doi:10.1096/fj.05-4981com
PMid:16816117
Romero MJ, Platt DH, Tawfik HE, Labazi M, et al. (2008). Diabetes-induced coronary vascular dysfunction involves increased arginase activity. Circ. Res. 102: 95-102.
doi:10.1161/CIRCRESAHA.107.155028
PMid:17967788 PMCid:2822539
Wang AB, Li HL, Zhang R, She ZG, et al. (2007). A20 attenuates vascular smooth muscle cell proliferation and migration through blocking PI3k/Akt singling in vitro and in vivo. J. Biomed. Sci. 14: 357-371.
doi:10.1007/s11373-007-9150-x
PMid:17260188
Yang WS, Seo JW, Han NJ, Choi J, et al. (2008). High glucose-induced NF-kappaB activation occurs via tyrosine phosphorylation of IkappaBalpha in human glomerular endothelial cells: involvement of Syk tyrosine kinase. Am. J. Physiol. Renal Physiol. 294: F1065-F1075.
doi:10.1152/ajprenal.00381.2007
PMid:18353872
Zeng W, Li L, Yuan W, Wei Y, et al. (2009). A20 overexpression inhibits low shear flow-induced CD14-positive monocyte recruitment to endothelial cells. Biorheology 46: 21-30.
PMid:19252225
Zhu CH, Ying DJ, Mi JH, Zhang W, et al. (2004). The zinc finger protein A20 protects endothelial cells from burns serum injury. Burns 30: 127-133.
doi:10.1016/j.burns.2003.08.010
PMid:15019119