Publications

Found 31 results
Filters: Author is Z. Li  [Clear All Filters]
2016
X. Luo, Li, Z., Sun, Z., Wan, X., Luo, X., Li, Z., Sun, Z., and Wan, X., Analysis of pecan cultivars Mahan and Western in East China, vol. 15, p. -, 2016.
X. Luo, Li, Z., Sun, Z., Wan, X., Luo, X., Li, Z., Sun, Z., and Wan, X., Analysis of pecan cultivars Mahan and Western in East China, vol. 15, p. -, 2016.
Y. M. Guo, Zhao, Z. C., Zhang, L., Li, H. Z., Li, Z., Sun, H. L., Guo, Y. M., Zhao, Z. C., Zhang, L., Li, H. Z., Li, Z., and Sun, H. L., CYP2C19 polymorphisms in acute coronary syndrome patients undergoing clopidogrel therapy in Zhengzhou population, vol. 15, p. -, 2016.
Y. M. Guo, Zhao, Z. C., Zhang, L., Li, H. Z., Li, Z., Sun, H. L., Guo, Y. M., Zhao, Z. C., Zhang, L., Li, H. Z., Li, Z., and Sun, H. L., CYP2C19 polymorphisms in acute coronary syndrome patients undergoing clopidogrel therapy in Zhengzhou population, vol. 15, p. -, 2016.
S. H. Ma, Ling, F. H., Sun, Y. X., Chen, S. F., Li, Z., Ma, S. H., Ling, F. H., Sun, Y. X., Chen, S. F., and Li, Z., Investigation on the role of XPG gene polymorphisms in breast cancer risk in a Chinese population, vol. 15, p. -, 2016.
S. H. Ma, Ling, F. H., Sun, Y. X., Chen, S. F., Li, Z., Ma, S. H., Ling, F. H., Sun, Y. X., Chen, S. F., and Li, Z., Investigation on the role of XPG gene polymorphisms in breast cancer risk in a Chinese population, vol. 15, p. -, 2016.
A. Y. Wang, Mu, C. Y., Chen, C., Li, Z., Xu, Y. H., Wang, A. Y., Mu, C. Y., Chen, C., Li, Z., and Xu, Y. H., Three-step method for the amplification of the coxsackievirus A10 genome, vol. 15, p. -, 2016.
A. Y. Wang, Mu, C. Y., Chen, C., Li, Z., Xu, Y. H., Wang, A. Y., Mu, C. Y., Chen, C., Li, Z., and Xu, Y. H., Three-step method for the amplification of the coxsackievirus A10 genome, vol. 15, p. -, 2016.
2015
H. M. Li, Liang, H., Li, Z., Tang, Z. X., Fu, S. L., Geng, Y. Y., Yan, B. J., and Ren, Z. L., Dynamic QTL analysis of protein content and glutamine synthetase activity in recombinant inbred wheat lines, vol. 14, pp. 8706-8715, 2015.
J. X. Chen, Cai, G. Y., Chen, X. M., Liu, H., Chen, X., Peng, Y. M., Liu, F. Y., Li, Z., and Shi, S. Z., Effect of TIMP1 transfection on PTEN expression in human kidney proximal tubular cells, vol. 14, pp. 17373-17383, 2015.
Z. Li, Liu, Y., Cao, D., Jiang, M., and Luo, F., IL-17A and IL-17F polymorphisms and gastric cancer risk: a meta-analysis, vol. 14, pp. 7008-7017, 2015.
H. Yan, Sun, R., Pan, X., Li, Z., Guo, X., and Gao, L., Lack of association between an insertion/deletion polymorphism in IL1A and risk of colorectal cancer, vol. 14, pp. 8490-8495, 2015.
G. M. Chen, Yu, Z. H., Nie, X. J., Li, Z., Sun, Z. W., Weng, Z. F., Yang, Y. Y., Chen, S. L., Wang, C. F., Zheng, S. R., Luo, Y. Y., Lu, Y. T., Cao, H. Q., and Zhan, H. X., Plasma exchange parameter selection and safety observation of children with severe ricinism, vol. 14, pp. 4169-4176, 2015.
C. Y. Mu, Wang, A. Y., Chen, C., Zhao, L., and Li, Z., A real-time RT-PCR assay for rapid detection of coxsackievirus A10, vol. 14, pp. 17496-17504, 2015.
X. L. Wang, Huang, H. Y., Li, Z., Yu, Y. S., Hu, Y. Q., Ye, W. X., Hua, F., Chen, Y. H., Ni, H., Ding, Q. W., and Shen, Z. Y., Risk factors associated with aortic remodeling in patients with Stanford type B aortic dissection after thoracic endovascular aortic repair, vol. 14, pp. 11692-11699, 2015.
H. Y. Jiang, Li, Z., Zhao, J., Ma, Q., Cheng, B. J., and Zhu, S. W., Screening relevant genes of tolerance to low phosphorus in maize using cDNA-amplified fragment length polymorphism, vol. 14, pp. 5731-5741, 2015.
2013
Q. Zhang, Li, Z., Zhou, C. J., and Wei, X. P., Bayesian network structure learning based on the chaotic particle swarm optimization algorithm, vol. 12, pp. 4468-4479, 2013.
W. Wei, Jiang, M., Luo, L., Li, Z., Wang, P., and Dong, W. Q., Colorectal cancer susceptibility variants alter risk of breast cancer in a Chinese Han population, vol. 12, pp. 6268-6274, 2013.
M. S. Cai, Wang, B. Y., Cui, W., Zhao, Z. Y., Chen, J. H., Wen, X. M., Li, Z., and Li, M. L., Molecular characterization of the pseudorabies virus UL2 gene, vol. 12, pp. 4147-4161, 2013.
M. L. Li, Chen, J. H., Zhao, Z. Y., Zhang, K. J., Li, Z., Li, J., Mai, J. Y., Zhu, X. M., and Cai, M. S., Molecular cloning and characterization of the pseudorabies virus US1 gene, vol. 12, pp. 85-98, 2013.
Advani SJ, Weichselbaum RR and Roizman B (2003). Herpes simplex virus 1 activates cdc2 to recruit topoisomerase II alpha for post-DNA synthesis expression of late genes. Proc. Natl. Acad. Sci. U. S. A. 100: 4825-4830. http://dx.doi.org/10.1073/pnas.0730735100 PMid:12665617 PMCid:153640   Ambagala AP and Cohen JI (2007). Varicella-Zoster virus IE63, a major viral latency protein, is required to inhibit the alpha interferon-induced antiviral response. J. Virol. 81: 7844-7851. http://dx.doi.org/10.1128/JVI.00325-07 PMid:17507475 PMCid:1951283   Antunes RS, Gomes VN, Prioli SM, Prioli RA, et al. (2010). Molecular characterization and phylogenetic relationships among species of the genus Brycon (Characiformes: Characidae) from four hydrographic basins in Brazil. Genet. Mol. Res. 9: 674-684. http://dx.doi.org/10.4238/vol9-2gmr759 PMid:20449799   Barbara KE, Willis KA, Haley TM, Deminoff SJ, et al. (2007). Coiled coil structures and transcription: an analysis of the S. cerevisiae coilome. Mol. Genet. Genomics 278: 135-147. http://dx.doi.org/10.1007/s00438-007-0237-x PMid:17476531   Bastian TW, Livingston CM, Weller SK and Rice SA (2010). Herpes simplex virus type 1 immediate-early protein ICP22 is required for VICE domain formation during productive viral infection. J. Virol. 84: 2384-2394. http://dx.doi.org/10.1128/JVI.01686-09 PMid:20032172 PMCid:2820935   Bowman JJ, Orlando JS, Davido DJ, Kushnir AS, et al. (2009). Transient expression of herpes simplex virus type 1 ICP22 represses viral promoter activity and complements the replication of an ICP22 null virus. J. Virol. 83: 8733-8743. http://dx.doi.org/10.1128/JVI.00810-09 PMid:19535441 PMCid:2738139   Brandt CR and Kolb AW (2003). Tyrosine 116 of the herpes simplex virus type 1 IEalpha22 protein is an ocular virulence determinant and potential phosphorylation site. Invest. Ophthalmol. Vis. Sci. 44: 4601-4607. http://dx.doi.org/10.1167/iovs.03-0582 PMid:14578374   Brukman A and Enquist LW (2006). Pseudorabies virus EP0 protein counteracts an interferon-induced antiviral state in a species-specific manner. J. Virol. 80: 10871-10873. http://dx.doi.org/10.1128/JVI.01308-06 PMid:16928746 PMCid:1641768   Coller KE, Lee JI, Ueda A and Smith GA (2007). The capsid and tegument of the alphaherpesviruses are linked by an interaction between the UL25 and VP1/2 proteins. J. Virol. 81: 11790-11797. http://dx.doi.org/10.1128/JVI.01113-07 PMid:17715218 PMCid:2168758   Feng ZP (2002). An overview on predicting the subcellular location of a protein. In Silico Biol. 2: 291-303. PMid:12542414   Ferrari M, Gualandi GL, Corradi A, Monaci C, et al. (2000). The response of pigs inoculated with a thymidine kinase-negative (TK-) pseudorabies virus to challenge infection with virulent virus. Comp. Immunol. Microbiol. Infect. Dis. 23: 15-26. http://dx.doi.org/10.1016/S0147-9571(99)00019-3   Geiss BJ, Tavis JE, Metzger LM, Leib DA, et al. (2001). Temporal regulation of herpes simplex virus type 2 VP22 expression and phosphorylation. J. Virol. 75: 10721-10729. http://dx.doi.org/10.1128/JVI.75.22.10721-10729.2001 PMid:11602713 PMCid:114653   Habran L, Bontems S, Di VE, Sadzot-Delvaux C, et al. (2005). Varicella-zoster virus IE63 protein phosphorylation by roscovitine-sensitive cyclin-dependent kinases modulates its cellular localization and activity. J. Biol. Chem. 280: 29135-29143. http://dx.doi.org/10.1074/jbc.M503312200 PMid:15955820   Hopp TP and Woods KR (1981). Prediction of protein antigenic determinants from amino acid sequences. Proc. Natl. Acad. Sci. U. S. A. 78: 3824-3828. http://dx.doi.org/10.1073/pnas.78.6.3824 PMid:6167991 PMCid:319665   Jahedi S, Markovitz NS, Filatov F and Roizman B (1999). Colocalization of the herpes simplex virus 1 UL4 protein with infected cell protein 22 in small, dense nuclear structures formed prior to onset of DNA synthesis. J. Virol. 73: 5132- 5138. PMid:10233976 PMCid:112558   Jones JO and Arvin AM (2005). Viral and cellular gene transcription in fibroblasts infected with small plaque mutants of varicella-zoster virus. Antiviral Res. 68: 56-65. http://dx.doi.org/10.1016/j.antiviral.2005.06.011 PMid:16118026   Kalamvoki M and Roizman B (2011). The histone acetyltransferase CLOCK is an essential component of the herpes simplex virus 1 transcriptome that includes TFIID, ICP4, ICP27, and ICP22. J. Virol. 85: 9472-9477. http://dx.doi.org/10.1128/JVI.00876-11 PMid:21734043 PMCid:3165755   Kost RG, Kupinsky H and Straus SE (1995). Varicella-zoster virus gene 63: transcript mapping and regulatory activity. Virology 209: 218-224. http://dx.doi.org/10.1006/viro.1995.1246 PMid:7747473   Kramer T, Greco TM, Enquist LW and Cristea IM (2011). Proteomic characterization of pseudorabies virus extracellular virions. J. Virol. 85: 6427-6441. http://dx.doi.org/10.1128/JVI.02253-10 PMid:21525350 PMCid:3126529   Krautwald M, Maresch C, Klupp BG, Fuchs W, et al. (2008). Deletion or green fluorescent protein tagging of the pUL35 capsid component of pseudorabies virus impairs virus replication in cell culture and neuroinvasion in mice. J. Gen. Virol. 89: 1346-1351. http://dx.doi.org/10.1099/vir.0.83652-0 PMid:18474549   Kyte J and Doolittle RF (1982). A simple method for displaying the hydropathic character of a protein. J. Mol. Biol. 157: 105-132. http://dx.doi.org/10.1016/0022-2836(82)90515-0   Li M, Wang S, Cai M, Guo H, et al. (2011a). Characterization of molecular determinants for nucleocytoplasmic shuttling of PRV UL54. Virology 417: 385-393. http://dx.doi.org/10.1016/j.virol.2011.06.004 PMid:21777931   Li M, Wang S, Cai M and Zheng C (2011b). Identification of nuclear and nucleolar localization signals of pseudorabies virus (PRV) early protein UL54 reveals that its nuclear targeting is required for efficient production of PRV. J. Virol. 85: 10239-10251. http://dx.doi.org/10.1128/JVI.05223-11 PMid:21795331 PMCid:3196411   Lin HW, Hsu WL, Chang YY, Jan MS, et al. (2010). Role of the UL41 protein of pseudorabies virus in host shutoff, pathogenesis and induction of TNF-alpha expression. J. Vet. Med. Sci. 72: 1179-1187. http://dx.doi.org/10.1292/jvms.10-0059 PMid:20448414   Luxton GW, Lee JI, Haverlock-Moyns S, Schober JM, et al. (2006). The pseudorabies virus VP1/2 tegument protein is required for intracellular capsid transport. J. Virol. 80: 201-209. http://dx.doi.org/10.1128/JVI.80.1.201-209.2006 PMid:16352544 PMCid:1317523   Mason JM and Arndt KM (2004). Coiled coil domains: stability, specificity, and biological implications. Chembiochem 5: 170-176. http://dx.doi.org/10.1002/cbic.200300781 PMid:14760737   McGeoch DJ, Dolan A and Ralph AC (2000). Toward a comprehensive phylogeny for mammalian and avian herpesviruses. J. Virol. 74: 10401-10406. http://dx.doi.org/10.1128/JVI.74.22.10401-10406.2000 PMid:11044084 PMCid:110914   Mueller NH, Walters MS, Marcus RA, Graf LL, et al. (2010). Identification of phosphorylated residues on varicella-zoster virus immediate-early protein ORF63. J. Gen. Virol. 91: 1133-1137. http://dx.doi.org/10.1099/vir.0.019067-0 PMid:20089801 PMCid:2888152   Nixdorf R, Klupp BG and Mettenleiter TC (2001a). Restoration of function of carboxy-terminally truncated pseudorabies virus glycoprotein B by point mutations in the ectodomain. J. Virol. 75: 11526-11533. http://dx.doi.org/10.1128/JVI.75.23.11526-11533.2001 PMid:11689634 PMCid:114739   Nixdorf R, Klupp BG and Mettenleiter TC (2001b). Role of the cytoplasmic tails of pseudorabies virus glycoproteins B, E and M in intracellular localization and virion incorporation. J. Gen. Virol. 82: 215-226. PMid:11125174   Orlando JS, Balliet JW, Kushnir AS, Astor TL, et al. (2006). ICP22 is required for wild-type composition and infectivity of herpes simplex virus type 1 virions. J. Virol. 80: 9381-9390. http://dx.doi.org/10.1128/JVI.01061-06 PMid:16973544 PMCid:1617265   Pelletier A, Do F, Brisebois JJ, Lagace L, et al. (1997). Self-association of herpes simplex virus type 1 ICP35 is via coiled-coil interactions and promotes stable interaction with the major capsid protein. J. Virol. 71: 5197-5208. PMid:9188587 PMCid:191755   Pomeranz LE and Blaho JA (1999). Modified VP22 localizes to the cell nucleus during synchronized herpes simplex virus type 1 infection. J. Virol. 73: 6769-6781. PMid:10400775 PMCid:112762   Ren X, Harms JS and Splitter GA (2001). Tyrosine phosphorylation of bovine herpesvirus 1 tegument protein VP22 correlates with the incorporation of VP22 into virions. J. Virol. 75: 9010-9017. http://dx.doi.org/10.1128/JVI.75.19.9010-9017.2001 PMid:11533164 PMCid:114469   Smith GA and Enquist LW (2000). A self-recombining bacterial artificial chromosome and its application for analysis of herpesvirus pathogenesis. Proc. Natl. Acad. Sci. U. S. A. 97: 4873-4878. http://dx.doi.org/10.1073/pnas.080502497 PMid:10781094 PMCid:18325   Szpara ML, Tafuri YR, Parsons L, Shamim SR, et al. (2011). A wide extent of inter-strain diversity in virulent and vaccine strains of alphaherpesviruses. PLoS Pathog. 7: e1002282. http://dx.doi.org/10.1371/journal.ppat.1002282 PMid:22022263 PMCid:3192842   Tomioka Y, Miyazaki T, Taharaguchi S, Yoshino S, et al. (2008). Cerebellar pathology in transgenic mice expressing the pseudorabies virus immediate-early protein IE180. Eur. J. Neurosci. 27: 2115-2132. http://dx.doi.org/10.1111/j.1460-9568.2008.06174.x PMid:18412631   Walters MS, Kyratsous CA, Wan S and Silverstein S (2008). Nuclear import of the varicella-zoster virus latency-associated protein ORF63 in primary neurons requires expression of the lytic protein ORF61 and occurs in a proteasome-dependent manner. J. Virol. 82: 8673-8686. http://dx.doi.org/10.1128/JVI.00685-08 PMid:18562514 PMCid:2519623   Welling GW, Weijer WJ, van der Zee R and Welling-Wester S (1985). Prediction of sequential antigenic regions in proteins. FEBS Lett. 188: 215-218. http://dx.doi.org/10.1016/0014-5793(85)80374-4   Xing J, Wang S, Lin F, Pan W, et al. (2011). Comprehensive characterization of interaction complexes of herpes simplex virus type 1 ICP22, UL3, UL4, and UL20.5. J. Virol. 85: 1881-1886. http://dx.doi.org/10.1128/JVI.01730-10 PMid:21147926 PMCid:3028915   Zhang G and Leader DP (1990). The structure of the pseudorabies virus genome at the end of the inverted repeat sequences proximal to the junction with the short unique region. J. Gen. Virol. 71: 2433-2441. http://dx.doi.org/10.1099/0022-1317-71-10-2433 PMid:2172457
J. - J. Sha, Dong, Y. - H., Liu, D. - M., Bo, J. - J., Huang, Y. - R., Li, Z., and Ping, P., Regulation network analysis of testicular seminoma at various stages of progression, vol. 12, pp. 4297-4307, 2013.
J. Wang, Zhou, X., Zhao, J., Li, Z., and Li, X., Screening for feature genes associated with hereditary hemochromatosis and functional analysis with DNA microarrays, vol. 12, pp. 6240-6248, 2013.
2012
Z. P. Zheng, Liu, X. H., Huang, Y. B., Wu, X., He, C., and Li, Z., QTLs for days to silking in a recombinant inbred line maize population subjected to high and low nitrogen regimes, vol. 11, pp. 790-798, 2012.
Agrama HAS, Zakaria AG, Said FB and Tuinstra M (1999). Identification of quantitative trait loci for nitrogen use efficiency in maize. Mol. Breed. 5: 187-195. http://dx.doi.org/10.1023/A:1009669507144 Bänziger M, Betran FJ and Lafitte HR (1997). Efficiency of high-nitrogen selection environments for improving maize for low-nitrogen target environments. Crop Sci. 37: 1103-1109. http://dx.doi.org/10.2135/cropsci1997.0011183X003700040012x Doerge RW and Churchill GA (1996). Permutation tests for multiple loci affecting a quantitative character. Genetics 142: 285-294. PMid:8770605    PMCid:1206957 Gong Q, Wang TY, Tan XL, Shi YS, et al. (2006). QTL analysis of traits related to flowering in elite maize inbred line Dan330 with early maturity. J. Plant Genet. Resour. 7: 437-441. Hu YM, Wu X, Li CX, Fu ZY, et al. (2008). Genetic analysis on the related traits of florescence for hybrid seed production in maize. J. Nanjing Agric. Univ. 31: 11-16. Khairallah MM, Bohn M, Jiang C, Deutsch JA, et al. (1998). Molecular mapping of QTL for southwestern corn borer resistance, plant height and flowering in tropical maize. Plant Breed. 117: 309-318. http://dx.doi.org/10.1111/j.1439-0523.1998.tb01947.x Li YL, Li XH, Dong YB, Niu SZ, et al. (2007). QTL mapping of developmental stages using F2:3 and BC2S1 populations derived from the same cross in maize. Acta Agric. Boreali-Sin. 22: 38-43. Liu XH, Tan ZB and Tan ZB (2009). Molecular mapping of a major QTL conferring resistance to SCMV based on immortal RIL population in maize. Euphytica 167: 229-235. http://dx.doi.org/10.1007/s10681-008-9874-3 Liu X, Zheng Z, Tan Z, Li Z, et al. (2010). QTL mapping for controlling anthesis-silking interval based on RIL population in maize. Afr. J. Biotechnol. 9: 950-955. McIntyre CL, Mathews KL, Rattey A, Chapman SC, et al. (2010). Molecular detection of genomic regions associated with grain yield and yield-related components in an elite bread wheat cross evaluated under irrigated and rainfed conditions. Theor. Appl. Genet. 120: 527-541. http://dx.doi.org/10.1007/s00122-009-1173-4 PMid:19865806 Ribaut JM, Hoisington DA, Deutsch JA, Jiang C, et al. (1996). Identification of quantitative trait loci under drought conditions in tropical maize. 1. Flowering parameters and the anthesis-silking interval. Theor. Appl. Genet. 92: 905-914. http://dx.doi.org/10.1007/BF00221905 Ribaut JM, Fracheboud Y, Monneveux P, Banziger M, et al. (2007). Quantitative trait loci for yield and correlated traits under high and low soil nitrogen conditions in tropical maize. Mol. Breed. 20: 15-29. http://dx.doi.org/10.1007/s11032-006-9041-2 Sabadin PK, Souza CL Jr, Souza AP and Garcia AAF (2008). QTL mapping for yield components in a tropical maize population using microsatellite markers. Hereditas 145: 194-203. http://dx.doi.org/10.1111/j.0018-0661.2008.02065.x Szalma SJ, Hostert BM, Ledeaux JR, Stuber CW, et al. (2007). QTL mapping with near-isogenic lines in maize. Theor. Appl. Genet. 114: 1211-1228. http://dx.doi.org/10.1007/s00122-007-0512-6 PMid:17308934 Tang H, Yan JB, Huang YQ, Zheng YL, et al. (2005). QTL mapping of five agronomic traits in maize. Yi. Chuan Xue. Bao. 32: 203-209. PMid:15759869 Voorrips RE (2002). MapChart: software for the graphical presentation of linkage maps and QTLs. J. Hered. 93: 77-78. http://dx.doi.org/10.1093/jhered/93.1.77 PMid:12011185 Wan XY, Wan JM, Jiang L, Wang JK, et al. (2006). QTL analysis for rice grain length and fine mapping of an identified QTL with stable and major effects. Theor. Appl. Genet. 112: 1258-1270. http://dx.doi.org/10.1007/s00122-006-0227-0 PMid:16477428 Wang S, Basten CJ and Zeng ZB (2010). Windows QTL Cartographer 2.5. Department of Statistics, North Carolina State University, Raleigh. Available at [http://statgen.ncsu.edu/qtlcart/WQTLCart.htm]. Accessed March 10, 2010. Wu JW, Liu C, Wang TY, Li Y, et al. (2008). QTL analysis of flowering related traits in maize under different water regimes. J. Maize Sci. 16: 61-65. Yang GB, Liu XY, Gao DJ, Tan FZ, et al. (2007). Constrict factors and countermeasures of maize planting in northern premature areas of Heilongjiang. Heilongjiang Agric. Sci. 6: 18-19. Yang X, Guo Y, Yan J, Zhang J, et al. (2010). Major and minor QTL and epistasis contribute to fatty acid compositions and oil concentration in high-oil maize. Theor. Appl. Genet. 120: 665-678. http://dx.doi.org/10.1007/s00122-009-1184-1 PMid:19856173 Zhang JM, Liu C, Shi YS, Song YC, et al. (2004). QTL analysis of parameters related to flowering in maize under drought stress and normal irrigation condition. J. Plant Genet. Resour. 5: 161-165.
2011
H. G. Wang, Wang, X. F., Jing, X. Y., Li, Z., Zhang, Y., and Lv, Z. J., Effect of mutations in a simian virus 40 PolyA signal enhancer on green fluorescent protein reporter gene expression, vol. 10, pp. 1866-1883, 2011.
Cai L, Fritz D, Stefanovic L and Stefanovic B (2010). Binding of LARP6 to the conserved 5' stem-loop regulates translation of mRNAs encoding type I collagen. J. Mol. Biol. 395: 309-326. http://dx.doi.org/10.1016/j.jmb.2009.11.020 PMid:19917293    PMCid:2826804 Chou SH, Tseng YY and Chu BY (1999). Stable formation of a pyrimidine-rich loop hairpin in a cruciform promoter. J. Mol. Biol. 292: 309-320. http://dx.doi.org/10.1006/jmbi.1999.3066 PMid:10493877 Costa FF (2008). Non-coding RNAs, epigenetics and complexity. Gene 410: 9-17. http://dx.doi.org/10.1016/j.gene.2007.12.008 PMid:18226475 Costantini M and Bernardi G (2008). Correlations between coding and contiguous non-coding sequences in isochore families from vertebrate genomes. Gene 410: 241-248. http://dx.doi.org/10.1016/j.gene.2007.12.016 PMid:18252269 Dai X, Kloster M and Rothman-Denes LB (1998). Sequence-dependent extrusion of a small DNA hairpin at the N4 virion RNA polymerase promoters. J. Mol. Biol. 283: 43-58. http://dx.doi.org/10.1006/jmbi.1998.2096 PMid:9761672 Darlow JM and Leach DR (1998). Evidence for two preferred hairpin folding patterns in d(CGG).d(CCG) repeat tracts in vivo. J. Mol. Biol. 275: 17-23. http://dx.doi.org/10.1006/jmbi.1997.1452 PMid:9451435 Frolov I, Hardy R and Rice CM (2001). Cis-acting RNA elements at the 5' end of Sindbis virus genome RNA regulate minus- and plus-strand RNA synthesis. RNA 7: 1638-1651. http://dx.doi.org/10.1017/S135583820101010X PMid:11720292    PMCid:1370205 Gleghorn ML, Davydova EK, Rothman-Denes LB and Murakami KS (2008). Structural basis for DNA-hairpin promoter recognition by the bacteriophage N4 virion RNA polymerase. Mol. Cell 32: 707-717. http://dx.doi.org/10.1016/j.molcel.2008.11.010 PMid:19061645    PMCid:2639713 Grimwood J, Gordon LA, Olsen A, Terry A, et al. (2004). The DNA sequence and biology of human chromosome 19. Nature 428: 529-535. http://dx.doi.org/10.1038/nature02399 PMid:15057824 Kang H, Feng M, Schroeder ME, Giedroc DP, et al. (2006). Putative cis-acting stem-loops in the 5' untranslated region of the severe acute respiratory syndrome coronavirus can substitute for their mouse hepatitis virus counterparts. J. Virol. 80: 10600-10614. http://dx.doi.org/10.1128/JVI.00455-06 PMid:16920822    PMCid:1641749 Kuznetsov SV, Ren CC, Woodson SA and Ansari A (2008). Loop dependence of the stability and dynamics of nucleic acid hairpins. Nucleic Acids Res. 36: 1098-1112. http://dx.doi.org/10.1093/nar/gkm1083 PMid:18096625    PMCid:2275088 Lander ES, Linton LM, Birren B, Nusbaum C, et al. (2001). Initial sequencing and analysis of the human genome. Nature 409: 860-921. http://dx.doi.org/10.1038/35057062 PMid:11237011 Li L, Kang H, Liu P, Makkinje N, et al. (2008). Structural lability in stem-loop 1 drives a 5' UTR-3' UTR interaction in coronavirus replication. J. Mol. Biol. 377: 790-803. http://dx.doi.org/10.1016/j.jmb.2008.01.068 PMid:18289557    PMCid:2652258 Li Y, Ho ES, Gunderson SI and Kiledjian M (2009). Mutational analysis of a Dcp2-binding element reveals general enhancement of decapping by 5'-end stem-loop structures. Nucleic Acids Res. 37: 2227-2237. http://dx.doi.org/10.1093/nar/gkp087 PMid:19233875    PMCid:2673433 Lu ZJ, Zhai Y, Wang XF and Song SX (2003). DNA sequence composition on human X chromosome differing from that on chromosomes 6,7,8,10,11 and 12. Genet. Sin. 30: 1051-1060. Nelson MJ and Green BR (2005). Double hairpin elements and tandem repeats in the non-coding region of Adenoides eludens chloroplast gene minicircles. Gene 358: 102-110. http://dx.doi.org/10.1016/j.gene.2005.05.024 PMid:16043313 Nickens DG and Hardy RW (2008). Structural and functional analyses of stem-loop 1 of the Sindbis virus genome. Virology 370: 158-172. http://dx.doi.org/10.1016/j.virol.2007.08.006 PMid:17900652 Rosskopf JJ, Upton JH 3rd, Rodarte L, Romero TA, et al. (2010). A 3' terminal stem-loop structure in Nodamura virus RNA2 forms an essential cis-acting signal for RNA replication. Virus Res. 150: 12-21. http://dx.doi.org/10.1016/j.virusres.2010.02.006 PMid:20176063    PMCid:3017585 Sean P, Nguyen JHC and Semler BL (2009). Altered interactions between stem-loop IV within the 5' noncoding region of coxsackievirus RNA and poly(rC) binding protein 2: effects on IRES-mediated translation and viral infectivity. Virology 389: 45-58. http://dx.doi.org/10.1016/j.virol.2009.03.012 PMid:19446305    PMCid:2694229 Ueno M, Kodama EN, Shimura K, Sakurai Y, et al. (2009). Synonymous mutations in stem-loop III of Rev responsive elements enhance HIV-1 replication impaired by primary mutations for resistance to enfuvirtide. Antiviral Res. 82: 67-72. http://dx.doi.org/10.1016/j.antiviral.2009.02.002 PMid:19428597 Wang XF, Wang X, Liu J, Feng J, et al. (2009a). Alu tandem sequences inhibit GFP gene expression by triggering chromatin wrapping. Genes Genom. 31: 209-215. http://dx.doi.org/10.1007/BF03191192 Wang XF, Jin X, Wang X, Liu J, et al. (2009b). Effects of L1-ORF2 fragments on green fluorescent protein gene expression. Genet. Mol. Biol. 32: 688-696. http://dx.doi.org/10.1590/S1415-47572009005000068 PMid:21637438    PMCid:3036906 Xu ZL, Mizuguchi H, Ishii-Watabe A, Uchida E, et al. (2001). Optimization of transcriptional regulatory elements for constructing plasmid vectors. Gene 272: 149-156. http://dx.doi.org/10.1016/S0378-1119(01)00550-9 Yin K, Wang X, Ma H, Xie Y, et al. (2010). Impact of copy number of distinct SV40PolyA segments on expression of a GFP reporter gene. Sci. China Life Sci. 53: 606-612. http://dx.doi.org/10.1007/s11427-010-0110-8 PMid:20596944 Yu L and Markoff L (2005). The topology of bulges in the long stem of the flavivirus 3'stem-loop is a major determinant of RNA replication competence. J. Virol. 79: 2309-2324. http://dx.doi.org/10.1128/JVI.79.4.2309-2324.2005 PMid:15681432    PMCid:546603
X. H. Liu, He, S. L., Zheng, Z. P., Tan, Z. B., Li, Z., and He, C., Genetic loci mapping associated with maize kernel number per ear based on a recombinant inbred line population grown under different nitrogen regimes, vol. 10, pp. 3267-3274, 2011.
Agrama HAS, Zakaria AG, Said FB and Tuinstra M (1999). Identification of quantitative trait loci for nitrogen use efficiency in maize. Mol. Breed. 5: 187-195. http://dx.doi.org/10.1023/A:1009669507144 An D, Su J, Liu Q, Zhu Y, et al. (2006). Mapping QTLs for nitrogen uptake in relation to the early growth of wheat (Triticum aestivum L.). Plant Soil 284: 73-84. http://dx.doi.org/10.1007/s11104-006-0030-3 Doerge RW and Churchill GA (1996). Permutation tests for multiple loci affecting a quantitative character. Genetics 142: 285-294. PMid:8770605    PMCid:1206957 Duvick DN, Smith JSC and Cooper M (2004). Long-term selection in a commercial hybrid maize breeding program. Plant Breed. Rev. 24: 109-151. Frova C, Krajewski P, di Fonzo N, Villa M, et al. (1999). Genetic analysis of drought tolerance in maize by molecular markers I. Yield components. Theor. Appl. Genet. 99: 280-288. http://dx.doi.org/10.1007/s001220051233 Gallais A and Hirel B (2004). An approach to the genetics of nitrogen use efficiency in maize. J. Exp. Bot. 55: 295-306. http://dx.doi.org/10.1093/jxb/erh006 PMid:14739258 Guo J, Su G, Zhang J and Wang G (2008). Genetic analysis and QTL mapping of maize yield and associate agronomic traits under semi-arid land condition. Afr. J. Biotechnol. 7: 1829-1838. Huang YF, Madur D, Combes V, Ky CL, et al. (2010). The genetic architecture of grain yield and related traits in Zea maize L. revealed by comparing intermated and conventional populations. Genetics 186: 395-404. http://dx.doi.org/10.1534/genetics.110.113878 PMid:20592258    PMCid:2940303 Li M, Guo X, Zhang M, Wang X, et al. (2010). Mapping QTLs for grain yield and yield components under high and low phosphorus treatments in maize (Zea mays L.). Plant Sci. 178: 454-462. http://dx.doi.org/10.1016/j.plantsci.2010.02.019 Lian X, Xing Y, Yan H, Xu C, et al. (2005). QTLs for low nitrogen tolerance at seedling stage identified using a recombinant inbred line population derived from an elite rice hybrid. Theor. Appl. Genet. 112: 85-96. http://dx.doi.org/10.1007/s00122-005-0108-y PMid:16189659 Liu XH, Tan ZB and Rong TZ (2009). Molecular mapping of a major QTL conferring resistance to SCMV based on immortal RIL population in maize. Euphytica 167: 229-235. http://dx.doi.org/10.1007/s10681-008-9874-3 Liu XH, He SL, Zheng ZP, Huang YB, et al. (2010). QTL identification for row number per ear and grain number per row in maize. Maydica 55: 127-133. Liu ZH, Xie HL, Tian GW, Chen SJ, et al. (2008). QTL mapping of nutrient components in maize kernels under low nitrogen conditions. Plant Breed. 127: 279-285. http://dx.doi.org/10.1111/j.1439-0523.2007.01465.x Lu GH, Tang JH, Yan JB, Ma XQ, et al. (2006). Quantitative trait loci mapping of maize yield and its components under different water treatments at flowering time. J. Integr. Plant Biol. 48: 1233-1243. http://dx.doi.org/10.1111/j.1744-7909.2006.00289.x Pilet ML, Duplan G, Archipiano H, Barret P, et al. (2001). Stability of QTL for field resistance to blackleg across two genetic backgrounds in oilseed rape. Crop Sci. 41: 197-205. http://dx.doi.org/10.2135/cropsci2001.411197x Prasanna BM, Beiki AH, Sekhar JC, Srinivas A, et al. (2009). Mapping QTLs for component traits influencing drought stress tolerance of maize (Zea mays L) in India. J. Plant Biochem. Biotechnol. 18: 151-160. Ribaut JM, Jiang C, Gonzalez-de-Leon D, Edmeades GO, et al. (1997). Identification of quantitative trait loci under drought conditions in tropical maize. 2. Yield components and marker-assisted selection strategies. Theor. Appl. Genet. 94: 887-896. http://dx.doi.org/10.1007/s001220050492 Ribaut JM, Fracheboud Y, Monneveux P, Banziger M, et al. (2007). Quantitative trait loci for yield and correlated traits under high and low soil nitrogen conditions in tropical maize. Mol. Breed. 20: 15-29. http://dx.doi.org/10.1007/s11032-006-9041-2 Sabadin PK, Souza CL Jr, Souza AP and Garcia AAF (2008). QTL mapping for yield components in a tropical maize population using microsatellite markers. Hereditas 145: 194-203. http://dx.doi.org/10.1111/j.0018-0661.2008.02065.x Tang J, Yan J, Ma X, Teng W, et al. (2010). Dissection of the genetic basis of heterosis in an elite maize hybrid by QTL mapping in an immortalized F2 population. Theor. Appl. Genet. 120: 333-340. http://dx.doi.org/10.1007/s00122-009-1213-0 PMid:19936698 Trachsel S, Messmer R, Stamp P, Ruta N, et al. (2010). QTLs for early vigor of tropical maize. Mol. Breed. 25: 91-103. http://dx.doi.org/10.1007/s11032-009-9310-y Tuberosa R, Salvi S, Sanguineti MC, Landi P, et al. (2002). Mapping QTLs regulating morpho-physiological traits and yield: case studies, shortcomings and perspectives in drought-stressed maize. Ann. Bot. 89: 941-963. http://dx.doi.org/10.1093/aob/mcf134 PMid:12102519 Voorrips RE (2002). MapChart: software for the graphical presentation of linkage maps and QTLs. J. Hered. 93: 77-78. http://dx.doi.org/10.1093/jhered/93.1.77 PMid:12011185 Wang S, Basten CJ and Zeng ZB (2010). Windows QTL Cartographer 2.5. Department of Statistics, North Carolina State University, Raleigh. Available at [http://statgen.ncsu.edu/qtlcart/WQTLCart.htm]. Accessed March 10, 2010. Xiao YN, Li XH, George ML, Li MS, et al. (2005). Quantitative trait locus analysis of drought tolerance and yield in maize in China. Plant Mol. Biol. Rep. 23: 155-165. http://dx.doi.org/10.1007/BF02772706
2010
X. - H. Liu, Zheng, Z. - P., Tan, Z. - B., Li, Z., and He, C., Genetic analysis of two new quantitative trait loci for ear weight in maize inbred line Huangzao4, vol. 9, pp. 2140-2147, 2010.
Cross HZ (1985). A selection procedure for ear drying-rates in maize. Euphytica 34: 409-418. http://dx.doi.org/10.1007/BF00022936   Frova C, Krajewski P, di Fonzo N, Villa M, et al. (1999). Genetic analysis of drought tolerance in maize by molecular markers I. Yield components. Theor. Appl. Genet. 99: 280-288. http://dx.doi.org/10.1007/s001220051233   Gilliland LU, Magallanes-Lundback M, Hemming C, Supplee A, et al. (2006). Genetic basis for natural variation in seed vitamin E levels in Arabidopsis thaliana. Proc. Natl. Acad. Sci. U. S. A. 103: 18834-18841. http://dx.doi.org/10.1073/pnas.0606221103 PMid:17077148 PMCid:1693748   Guo JF, Su GQ, Zhang JP and Wang GY (2008). Genetic analysis and QTL mapping of maize yield and associate agronomic traits under semi-arid land condition. Afr. J. Biotechnol. 7: 1829-1838.   Liu XH, Tan ZB and Rong TZ (2009). Molecular mapping of a major QTL conferring resistance to SCMV based on immortal RIL population in maize. Euphytica 167: 229-235. http://dx.doi.org/10.1007/s10681-008-9874-3   Qi X, Niks RE, Stam P and Lindhout P (1998). Identification of QTLs for partial resistance to leaf rust (Puccinia hordei) in barley. Theor. Appl. Genet. 96: 1205-1215. http://dx.doi.org/10.1007/s001220050858   Ribaut JM, Fracheboud Y, Monneveux P and Banziger M, et al. (2007). Quantitative trait loci for yield and correlated traits under high and low soil nitrogen conditions in tropical maize. Mol. Breed. 20: 15-29. http://dx.doi.org/10.1007/s11032-006-9041-2   Sabadin PK, Souza J, Souza AP and Garcia AAF (2008). QTL mapping for yield components in a tropical maize population using microsatellite markers. Hereditas 145: 194-203. http://dx.doi.org/10.1111/j.0018-0661.2008.02065.x   Voorrips RE (2002). MapChart: software for the graphical presentation of linkage maps and QTLs. J. Hered. 93: 77-78. http://dx.doi.org/10.1093/jhered/93.1.77 PMid:12011185   Wang HW, Li HJ, Zhu ZD and Wu XF, et al. (2009). Cloning and differential expression of QM-like protein homologene from maize. Acta Agron. Sin. 35: 1439-1444. http://dx.doi.org/10.3724/SP.J.1006.2009.01439   Wang S, Basten CJ and Zeng ZB (2010). Windows QTL Cartographer 2.5.Department of Statistics, North Carolina State University, Raleigh. Available at [http://statgen.ncsu.edu/qtlcart/WQTLCart.htm]. Accessed March 10, 2010.   Wu JY, Tang JH, Xia ZL and Chen WC (2002). Molecular tagging of a new resistance gene to maize dwarf mosaic virus using microsatellite markers. Acta Bot. Sin. 44: 177-180.   Xiang DQ, Cao HH, Cao YG, Yang JP, et al. (2001). Construction of a genetic map and location of quantitative trait loci for yield component traits in maize by SSR markers. Yi Chuan Xue Bao 28: 778-784. PMid:11554353   Xiao YN, Li XH, George ML and Li MS, et al. (2005). Quantitative trait locus analysis of drought tolerance and yield in maize in China. Mol. Biol. Rep.155-165.   Zhao F, Meng XB, Li WH and Xu XD, et al. (2008). Inheritance relation of maize resistant genes among foundation parent huangzaosi and its derivative lines and hybrids. J. Maize Sci. 16: 15-18