Publications

Found 21 results
Filters: Author is J. Zhu  [Clear All Filters]
2015
Y. Li, Zhu, J., and Ding, J. Q., Association of the PPARγ2 Pro12Ala polymorphism with increased risk of cardiovascular diseases, vol. 14, pp. 18662-18674, 2015.
J. Zhu and Li, Z. H., Clinical features and treatment of endophthalmitis after cataract surgery, vol. 14, pp. 6617-6624, 2015.
S. M. Sun, Zhu, J., Ge, X. P., Zhang, C. F., Miao, L. H., and Jiang, X. J., Cloning and expression analysis of a heat shock protein 90 β isoform gene from the gills of Wuchang bream (Megalobrama amblycephala Yih) subjected to nitrite stress, vol. 14, pp. 3036-3051, 2015.
J. Zhang, Liu, N., Wang, Y. W., Zhang, Z. C., Zheng, L. N., and Zhu, J., Evaluation of the function status of the ulnar nerve in carpal tunnel syndrome, vol. 14, pp. 3680-3686, 2015.
J. Zhu, Li, Q., He, J., and Ma, K., Expression and significance of myeloid differentiation factor 88 in non-small cell lung carcinoma and normal paracancerous tissues, vol. 14, pp. 14239-14245, 2015.
S. M. Chen, Sun, H., Liu, Y. F., Ma, J., Zhang, Q. T., Zhu, J., and Li, T., Expression of TRAIL and its receptor DR5 and their significance in acute leukemia cells, vol. 14, pp. 18562-18568, 2015.
X. Jin, Chen, Y. H., Liu, Z., Deng, Y., Li, N. N., Huang, H., Qi, M., Yi, X., and Zhu, J., Identification of copy number variation in the gene for autosomal dominant optic atrophy, OPA1, in a Chinese pedigree, vol. 14, pp. 10961-10972, 2015.
D. D. Zhang, He, F., Liu, H. T., Hao, F., and Zhu, J., Lack of association between rare mutations of the SIAE gene and rheumatoid arthritis in a Han Chinese population, vol. 14, pp. 14162-14168, 2015.
C. Zhou, Ma, Z. Y., Zhu, L., Guo, J. S., Zhu, J., and Wang, J. F., Overexpression of EsMcsu1 from the halophytic plant Eutrema salsugineum promotes abscisic acid biosynthesis and increases drought resistance in alfalfa (Medicago sativa L.), vol. 14, pp. 17204-17218, 2015.
Y. Li, Zhu, J., and Ding, J. Q., VKORC1 rs2359612 and rs9923231 polymorphisms correlate with high risks of cardiovascular and cerebrovascular diseases, vol. 14, pp. 14731-14744, 2015.
2013
J. Zhu, Zi, C., Wu, Z. C., Liu, L., Zheng, X. R., Su, X. M., Zhu, G. Q., Huang, X. G., Wu, S. L., and Bao, W. B., Age-dependent expression of the BPI gene in Sutai piglets, vol. 12, pp. 2120-2126, 2013.
L. Li, Zhu, J., Guo, S. - X., and Deng, Y., Bicluster and regulatory network analysis of differentially expressed genes in adenocarcinoma and squamous cell carcinoma, vol. 12, pp. 1710-1719, 2013.
J. Zhu, He, F., Zhang, D. D., Yang, J. Y., Cheng, J., Wu, R., Gong, B., Liu, X. Q., Ma, S., and Zhou, B., Lack of association of IL-2RA and IL-2RB polymorphisms with rheumatoid arthritis in a Han Chinese population, vol. 12, pp. 581-586, 2013.
Arnett FC, Edworthy SM, Bloch DA, McShane DJ, et al. (1988). The American Rheumatism Association 1987 revised criteria for the classification of rheumatoid arthritis. Arthritis Rheum. 31: 315-324. http://dx.doi.org/10.1002/art.1780310302 PMid:3358796   Danoy P, Wei M, Johanna H, Jiang L, et al. (2011). Association of variants in MMEL1 and CTLA4 with rheumatoid arthritis in the Han Chinese population. Ann. Rheum. Dis. 70: 1793-1797. http://dx.doi.org/10.1136/ard.2010.144576 PMid:21784728   Firestein GS (2003). Evolving concepts of rheumatoid arthritis. Nature 423: 356-361. http://dx.doi.org/10.1038/nature01661 PMid:12748655   Foster MW and Freeman WL (1998). Naming names in human genetic variation research. Genome Res. 8: 755-757. PMid:9724320   Hardy J and Singleton A (2009). Genomewide association studies and human disease. N. Engl. J. Med. 360: 1759-1768. http://dx.doi.org/10.1056/NEJMra0808700 PMid:19369657 PMCid:3422859   Hinks A, Ke X, Barton A, Eyre S, et al. (2009). Association of the IL2RA/CD25 gene with juvenile idiopathic arthritis. Arthritis Rheum. 60: 251-257. http://dx.doi.org/10.1002/art.24187 PMid:19116909 PMCid:2963023   Isaacs JD (2010). The changing face of rheumatoid arthritis: sustained remission for all? Nat. Rev. Immunol. 10: 605-611. http://dx.doi.org/10.1038/nri2804 PMid:20651747   Kochi Y, Suzuki A, Yamada R and Yamamoto K (2010). Ethnogenetic heterogeneity of rheumatoid arthritis-implications for pathogenesis. Nat. Rev. Rheumatol. 6: 290-295. http://dx.doi.org/10.1038/nrrheum.2010.23 PMid:20234359   Kurreeman FA, Daha NA, Chang M, Catanese JJ, et al. (2009). Association of IL2RA and IL2RB with rheumatoid arthritis: a replication study in a Dutch population. Ann. Rheum. Dis. 68: 1789-1790. http://dx.doi.org/10.1136/ard.2008.106393 PMid:19822714   Malek TR (2008). The biology of interleukin-2. Annu. Rev. Immunol. 26: 453-479. http://dx.doi.org/10.1146/annurev.immunol.26.021607.090357 PMid:18062768   Mori M, Yamada R, Kobayashi K, Kawaida R, et al. (2005). Ethnic differences in allele frequency of autoimmune-disease-associated SNPs. J. Hum. Genet. 50: 264-266. http://dx.doi.org/10.1007/s10038-005-0246-8 PMid:15883854   Morris JC and Waldmann TA (2000). Advances in interleukin 2 receptor targeted treatment. Ann. Rheum. Dis. 59 (Suppl 1): i109-i114. http://dx.doi.org/10.1136/ard.59.suppl_1.i109 PMid:11053100 PMCid:1766615   Plenge RM (2009). Recent progress in rheumatoid arthritis genetics: one step towards improved patient care. Curr. Opin. Rheumatol. 21: 262-271. http://dx.doi.org/10.1097/BOR.0b013e32832a2e2d PMid:19365266   Silman AJ and Pearson JE (2002). Epidemiology and genetics of rheumatoid arthritis. Arthritis Res. 4 (Suppl 3): S265-S272. http://dx.doi.org/10.1186/ar578 PMid:12110146 PMCid:3240153   Vella A, Cooper JD, Lowe CE, Walker N, et al. (2005). Localization of a type 1 diabetes locus in the IL2RA/CD25 region by use of tag single-nucleotide polymorphisms. Am. J. Hum. Genet. 76: 773-779. http://dx.doi.org/10.1086/429843 PMid:15776395 PMCid:1199367
R. B. Ning, Zhu, J., Chai, D. J., Xu, C. S., Xie, H., Lin, X. Y., Zeng, J. Z., and Lin, J. X., RXR agonists inhibit high glucose-induced upregulation of inflammation by suppressing activation of the NADPH oxidase-nuclear factor-κB pathway in human endothelial cells, vol. 12, pp. 6692-6707, 2013.
J. Zhu, Wei, R. L., Pi, Y. L., and Guo, Q., Significance of Bcl10 gene mutations in the clinical diagnosis of MALT-type ocular adnexal lymphoma in the Chinese population, vol. 12, pp. 1194-1204, 2013.
Coupland SE (2004). Lymphoproliferative lesions of the ocular adnexa. Differential diagnostic guidelines. Ophthalmologe 101: 197-215. http://dx.doi.org/10.1007/s00347-003-0854-7 PMid:15046030   Du MQ (2011). MALT lymphoma: many roads lead to nuclear factor-kappab activation. Histopathology 58: 26-38. http://dx.doi.org/10.1111/j.1365-2559.2010.03699.x PMid:21261681   Du MQ, Peng H, Liu H, Hamoudi RA, et al. (2000). BCL10 gene mutation in lymphoma. Blood 95: 3885-3890. PMid:10845924   Garrison JB, Samuel T and Reed JC (2009). TRAF2-binding BIR1 domain of c-IAP2/MALT1 fusion protein is essential for activation of NF-kappaB. Oncogene 28: 1584-1593. http://dx.doi.org/10.1038/onc.2009.17 PMid:19234489   Hamoudi RA, Appert A, Ye H, Ruskone-Fourmestraux A, et al. (2010). Differential expression of NF-kappaB target genes in MALT lymphoma with and without chromosome translocation: insights into molecular mechanism. Leukemia 24: 1487-1497. http://dx.doi.org/10.1038/leu.2010.118 PMid:20520640   Hosokawa Y and Seto M (2004). Nuclear factor kappaB activation and antiapoptosis in mucosa-associated lymphoid tissue lymphoma. Int. J. Hematol. 80: 215-223. http://dx.doi.org/10.1532/IJH97.04101 PMid:15540895   Kingeter LM and Schaefer BC (2010). Malt1 and cIAP2-Malt1 as effectors of NF-kappaB activation: kissing cousins or distant relatives? Cell Signal. 22: 9-22. http://dx.doi.org/10.1016/j.cellsig.2009.09.033 PMid:19772915 PMCid:2766428   Marcus R (2007). Pathogenesis of MALT lymphoma: implications for risk stratification and therapy. Leuk. Lymphoma 48: 2087-2088. http://dx.doi.org/10.1080/10428190701713663 PMid:17990172   McKelvie PA (2010). Ocular adnexal lymphomas: a review. Adv. Anat. Pathol. 17: 251-261. http://dx.doi.org/10.1097/PAP.0b013e3181e4abdb PMid:20574170   Misdraji J, Harris NL, Hasserjian RP, Lauwers GY, et al. (2011). Primary follicular lymphoma of the gastrointestinal tract. Am. J. Surg. Pathol. 35: 1255-1263. http://dx.doi.org/10.1097/PAS.0b013e318224e661 PMid:21836483   Prasad S, Ravindran J and Aggarwal BB (2010). NF-kappaB and cancer: how intimate is this relationship. Mol. Cell Biochem. 336: 25-37. http://dx.doi.org/10.1007/s11010-009-0267-2 PMid:19823771 PMCid:3148942   Rohatiner A, d'Amore F, Coiffier B, Crowther D, et al. (1994). Report on a workshop convened to discuss the pathological and staging classifications of gastrointestinal tract lymphoma. Ann. Oncol. 5: 397-400. PMid:8075046   Rosebeck S, Lucas PC and McAllister-Lucas LM (2011). Protease activity of the API2-MALT1 fusion oncoprotein in MALT lymphoma development and treatment. Future Oncol. 7: 613-617. http://dx.doi.org/10.2217/fon.11.35 PMid:21568677 PMCid:3124218   Sagaert X, De Wolf-Peeters C, Noels H and Baens M (2007). The pathogenesis of MALT lymphomas: where do we stand? Leukemia 21: 389-396. http://dx.doi.org/10.1038/sj.leu.2404517 PMid:17230229   Sun W and Yang J (2010). Molecular basis of lysophosphatidic acid-induced NF-kappaB activation. Cell Signal. 22: 1799-1803. http://dx.doi.org/10.1016/j.cellsig.2010.05.007 PMid:20471472 PMCid:2939192   Thieblemont C, Bastion Y, Berger F, Rieux C, et al. (1997). Mucosa-associated lymphoid tissue gastrointestinal and nongastrointestinal lymphoma behavior: analysis of 108 patients. J. Clin. Oncol. 15: 1624-1630. PMid:9193362   Willis TG, Jadayel DM, Du MQ, Peng H, et al. (1999). Bcl10 is involved in t(1;14)(p22;q32) of MALT B cell lymphoma and mutated in multiple tumor types. Cell 96: 35-45. http://dx.doi.org/10.1016/S0092-8674(00)80957-5   Wu CJ and Ashwell JD (2008). NEMO recognition of ubiquitinated Bcl10 is required for T cell receptor-mediated NF-kappaB activation. Proc. Natl. Acad. Sci. U. S. A. 105: 3023-3028. http://dx.doi.org/10.1073/pnas.0712313105 PMid:18287044 PMCid:2268578   Ye H, Gong L, Liu H, Hamoudi RA, et al. (2005). MALT lymphoma with t(14;18)(q32;q21)/IGH-MALT1 is characterized by strong cytoplasmic MALT1 and BCL10 expression. J. Pathol. 205: 293-301. http://dx.doi.org/10.1002/path.1715 PMid:15682443   Zhou H, Wertz I, O'Rourke K, Ultsch M, et al. (2004). Bcl10 activates the NF-kappaB pathway through ubiquitination of NEMO. Nature 427: 167-171. http://dx.doi.org/10.1038/nature02273 PMid:14695475
2012
H. - X. Tong, Li, M., Zhang, Y., Zhu, J., and Lu, W. - Q., A novel NF1 mutation in a Chinese patient with giant café-au-lait macule in neurofibromatosis type 1 associated with a malignant peripheral nerve sheath tumor and bone abnormality, vol. 11, pp. 2972-2978, 2012.
Bausch B, Borozdin W, Mautner VF, Hoffmann MM, et al. (2007). Germline NF1 mutational spectra and loss-of-heterozygosity analyses in patients with pheochromocytoma and neurofibromatosis type 1. J. Clin. Endocrinol. Metab. 92: 2784-2792. http://dx.doi.org/10.1210/jc.2006-2833 PMid:17426081   Bottillo I, Ahlquist T, Brekke H, Danielsen SA, et al. (2009). Germline and somatic NF1 mutations in sporadic and NF1- associated malignant peripheral nerve sheath tumours. J. Pathol. 217: 693-701. http://dx.doi.org/10.1002/path.2494 PMid:19142971   Brems H, Beert E, de RT and Legius E (2009). Mechanisms in the pathogenesis of malignant tumours in neurofibromatosis type 1. Lancet Oncol. 10: 508-515. http://dx.doi.org/10.1016/S1470-2045(09)70033-6   Cai Y, Fan Z, Liu Q, Li J, et al. (2005). Two novel mutations of the NF1 gene in Chinese Han families with type 1 neurofibromatosis. J. Dermatol. Sci. 39: 125-127. http://dx.doi.org/10.1016/j.jdermsci.2005.05.003 PMid:16005615   Cichowski K and Jacks T (2001). NF1 tumor suppressor gene function: narrowing the GAP. Cell 104: 593-604. http://dx.doi.org/10.1016/S0092-8674(01)00245-8   Erdi H, Boyvat A and Calikoglu E (1999). Giant cafe au lait spot in a patient with neurofibromatosis. Acta Derm. Venereol. 79: 496. http://dx.doi.org/10.1080/000155599750010157 PMid:10598783   Evans DG, Baser ME, McGaughran J, Sharif S, et al. (2002). Malignant peripheral nerve sheath tumours in neurofibromatosis 1. J. Med. Genet. 39: 311-314. http://dx.doi.org/10.1136/jmg.39.5.311 PMid:12011145 PMCid:1735122   Ferner RE and Gutmann DH (2002). International consensus statement on malignant peripheral nerve sheath tumors in neurofibromatosis. Cancer Res. 62: 1573-1577. PMid:11894862   Gutmann DH, Aylsworth A, Carey JC, Korf B, et al. (1997). The diagnostic evaluation and multidisciplinary management of neurofibromatosis 1 and neurofibromatosis 2. JAMA 278: 51-57. http://dx.doi.org/10.1001/jama.1997.03550010065042 PMid:9207339   Heim RA, Kam-Morgan LN, Binnie CG, Corns DD, et al. (1995). Distribution of 13 truncating mutations in the neurofibromatosis 1 gene. Hum. Mol. Genet. 4: 975-981. http://dx.doi.org/10.1093/hmg/4.6.975 PMid:7655472   Huson SM, Harper PS and Compston DA (1988). Von Recklinghausen neurofibromatosis. A clinical and population study in south-east Wales. Brain 111: 1355-1381. http://dx.doi.org/10.1093/brain/111.6.1355 PMid:3145091   Kar M, Deo SV, Shukla NK, Malik A, et al. (2006). Malignant peripheral nerve sheath tumors (MPNST)-clinicopathological study and treatment outcome of twenty-four cases. World J. Surg. Oncol. 4: 55. http://dx.doi.org/10.1186/1477-7819-4-55 PMid:16923196 PMCid:1560134   Lakkis MM, Golden JA, O'Shea KS and Epstein JA (1999). Neurofibromin deficiency in mice causes exencephaly and is a modifier for Splotch neural tube defects. Dev. Biol. 212: 80-92. http://dx.doi.org/10.1006/dbio.1999.9327 PMid:10419687   Messiaen L, Vogt J, Bengesser K, Fu C, et al. (2011). Mosaic type-1 NF1 microdeletions as a cause of both generalized and segmental neurofibromatosis type-1 (NF1). Hum. Mutat. 32: 213-219. http://dx.doi.org/10.1002/humu.21418 PMid:21280148   Origone P, De LA, Bellini C, Buccino A, et al. (2002). Ten novel mutations in the human neurofibromatosis type 1 (NF1) gene in Italian patients. Hum. Mutat. 20: 74-75. http://dx.doi.org/10.1002/humu.9039 PMid:12112660   Rasmussen SA and Friedman JM (2000). NF1 gene and neurofibromatosis 1. Am. J. Epidemiol. 151: 33-40. http://dx.doi.org/10.1093/oxfordjournals.aje.a010118 PMid:10625171   Shah KN (2010). The diagnostic and clinical significance of cafe-au-lait macules. Pediatr. Clin. North Am. 57: 1131-1153. http://dx.doi.org/10.1016/j.pcl.2010.07.002 PMid:20888463   Thappa DM, Jeevankumar B and Karthikeyan K (2001). Giant cafe-au-lait macule in neurofibromatosis type 1. J. Dermatol. 28: 60-61. PMid:11280470   Upadhyaya M, Osborn MJ, Maynard J, Kim MR, et al. (1997). Mutational and functional analysis of the neurofibromatosis type 1 (NF1) gene. Hum. Genet. 99: 88-92. http://dx.doi.org/10.1007/s004390050317 PMid:9003501   Upadhyaya M, Kluwe L, Spurlock G, Monem B, et al. (2008). Germline and somatic NF1 gene mutation spectrum in NF1- associated malignant peripheral nerve sheath tumors (MPNSTs). Hum. Mutat. 29: 74-82. http://dx.doi.org/10.1002/humu.20601 PMid:17960768   Yang CC, Happle R, Chao SC, Yu-Yun LJ, et al. (2008). Giant cafe-au-lait macule in neurofibromatosis 1: a type 2 segmental manifestation of neurofibromatosis 1? J. Am. Acad. Dermatol. 58: 493-497. http://dx.doi.org/10.1016/j.jaad.2007.03.013 PMid:18280349   Zhang W, Rhodes SD, Zhao L, He Y, et al. (2011). Primary osteopathy of vertebrae in a neurofibromatosis type 1 murine model. Bone 48: 1378-1387. http://dx.doi.org/10.1016/j.bone.2011.03.760 PMid:21439418
2011
D. Chen, Liu, J. L., Liu, Y., Zhu, J., and Wang, S. W., Lack of an association between -308G>A polymorphism of the TNF-α gene and liver cirrhosis risk based on a meta-analysis, vol. 10, pp. 2765-2774, 2011.
Bahr MJ, el Menuawy M, Boeker KH, Musholt PB, et al. (2003). Cytokine gene polymorphisms and the susceptibility to liver cirrhosis in patients with chronic hepatitis C. Liver Int. 23: 420-425. http://dx.doi.org/10.1111/j.1478-3231.2003.00873.x PMid:14986816 Bataller R, North KE and Brenner DA (2003). Genetic polymorphisms and the progression of liver fibrosis: a critical appraisal. Hepatology 37: 493-503. http://dx.doi.org/10.1053/jhep.2003.50127 PMid:12601343 Cha C and Dematteo RP (2005). Molecular mechanisms in hepatocellular carcinoma development. Best Pract. Res. Clin. Gastroenterol. 19: 25-37. http://dx.doi.org/10.1016/j.bpg.2004.11.005 Chan HL, Tse AM, Chim AM, Wong VW, et al. (2008). Association of cytokine gene polymorphisms and liver fibrosis in chronic hepatitis B. J. Gastroenterol. Hepatol. 23: 783-789. http://dx.doi.org/10.1111/j.1440-1746.2007.05110.x PMid:17645476 Chen YQ, Lin JS, Tian DY and Liang KH (2003). Study on the association between the promoter polymorphism of TNF gene and cirrhosis. World J. Infect. 3: 186-190. Choi J and Ou JH (2006). Mechanisms of liver injury. III. Oxidative stress in the pathogenesis of hepatitis C virus. Am. J. Physiol. Gastrointest. Liver Physiol. 290: G847-G851. http://dx.doi.org/10.1152/ajpgi.00522.2005 PMid:16603728 Chuang E, Del Vecchio A, Smolinski S, Song XY, et al. (2004). Biomedicines to reduce inflammation but not viral load in chronic HCV-what’s the sense? Trends Biotechnol. 22: 517-523. http://dx.doi.org/10.1016/j.tibtech.2004.08.011 PMid:15450745 Commins SP, Borish L and Steinke JW (2010). Immunologic messenger molecules: cytokines, interferons, and chemokines. J. Allergy Clin. Immunol. 125: S53-S72. http://dx.doi.org/10.1016/j.jaci.2009.07.008 PMid:19932918 Constantini PK, Wawrzynowicz-Syczewska M, Clare M, Boron-Kaczmarska A, et al. (2002). Interleukin-1, interleukin-10 and tumour necrosis factor-alpha gene polymorphisms in hepatitis C virus infection: an investigation of the relationships with spontaneous viral clearance and response to alpha-interferon therapy. Liver 22: 404-412. http://dx.doi.org/10.1034/j.1600-0676.2002.01553.x Cua IH, Hui JM, Bandara P, Kench JG, et al. (2007). Insulin resistance and liver injury in hepatitis C is not associated with virus-specific changes in adipocytokines. Hepatology 46: 66-73. http://dx.doi.org/10.1002/hep.21703 PMid:17596870 Cuenca J, Perez CA, Aguirre AJ, Schiattino I, et al. (2001). Genetic polymorphism at position-308 in the promoter region of the tumor necrosis factor (TNF): implications of its allelic distribution on susceptibility or resistance to diseases in the Chilean population. Biol. Res. 34: 237-241. http://dx.doi.org/10.4067/S0716-97602001000300011 PMid:11715861 Elsammak M, Refai W, Elsawaf A, Abdel-Fattah I, et al. (2005). Elevated serum tumor necrosis factor alpha and ferritin may contribute to the insulin resistance found in HCV positive Egyptian patients. Curr. Med. Res. Opin. 21: 527-534. http://dx.doi.org/10.1185/030079905X38141 PMid:15899101 Falasca K, Ucciferri C, Dalessandro M, Zingariello P, et al. (2006). Cytokine patterns correlate with liver damage in patients with chronic hepatitis B and C. Ann. Clin. Lab. Sci. 36: 144-150. PMid:16682509 Fan LY, Zhong RQ, Tu XQ, Pfeiffer T, et al. (2004). Genetic association of tumor necrosis factor (TNF)-alpha polymorphisms with primary biliary cirrhosis and autoimmune liver diseases in a Chinese population. Zhonghua Gan Zang Bing Za Zhi 12: 160-162. PMid:15059302 Friedman SL (2010). Evolving challenges in hepatic fibrosis. Nat. Rev. Gastroenterol. Hepatol. 7: 425-436. http://dx.doi.org/10.1038/nrgastro.2010.97 Gordon MA, Oppenheim E, Camp NJ, di Giovine FS, et al. (1999). Primary biliary cirrhosis shows association with genetic polymorphism of tumour necrosis factor alpha promoter region. J. Hepatol. 31: 242-247. http://dx.doi.org/10.1016/S0168-8278(99)80220-7 Hajeer AH and Hutchinson IV (2000). TNF-alpha gene polymorphism: clinical and biological implications. Microsc. Res. Tech. 50: 216-228. http://dx.doi.org/10.1002/1097-0029(20000801)50:3<216::AID-JEMT5>3.0.CO;2-Q Hajeer AH and Hutchinson IV (2001). Influence of TNFalpha gene polymorphisms on TNFalpha production and disease. Hum. Immunol. 62: 1191-1199. http://dx.doi.org/10.1016/S0198-8859(01)00322-6 Higgins JP and Thompson SG (2002). Quantifying heterogeneity in a meta-analysis. Stat. Med. 21: 1539-1558. http://dx.doi.org/10.1002/sim.1186 PMid:12111919 Jeng JE, Tsai JF, Chuang LY, Ho MS, et al. (2007). Tumor necrosis factor-alpha 308.2 polymorphism is associated with advanced hepatic fibrosis and higher risk for hepatocellular carcinoma. Neoplasia 9: 987-992. http://dx.doi.org/10.1593/neo.07781 PMid:18030367 Jiang ZL, Zhang W, Zhang H and Liu YB (2009). Relationship between TNF-alpha, TGF-beta1 and IL-10 genetic polymorphisms and post- hepatitis B cirrhosis. Shi Jie Hua Ren Xiao Hua 17: 3263-3268. Jones DE, Watt FE, Grove J, Newton JL, et al. (1999). Tumour necrosis factor-alpha promoter polymorphisms in primary biliary cirrhosis. J. Hepatol. 30: 232-236. http://dx.doi.org/10.1016/S0168-8278(99)80067-1 Juran BD, Atkinson EJ, Larson JJ, Schlicht EM, et al. (2010). Carriage of a tumor necrosis factor polymorphism amplifies the cytotoxic T-lymphocyte antigen 4 attributed risk of primary biliary cirrhosis: evidence for a gene-gene interaction. Hepatology 52: 223-229. http://dx.doi.org/10.1002/hep.23667 PMid:20578265    PMCid:2922843 Kamal SM, Turner B, He Q, Rasenack J, et al. (2006). Progression of fibrosis in hepatitis C with and without schistosomiasis: correlation with serum markers of fibrosis. Hepatology 43: 771-779. http://dx.doi.org/10.1002/hep.21117 PMid:16557547 Li Y, Chang M, Abar O, Garcia V, et al. (2009). Multiple variants in toll-like receptor 4 gene modulate risk of liver fibrosis in Caucasians with chronic hepatitis C infection. J. Hepatol. 51: 750-757. http://dx.doi.org/10.1016/j.jhep.2009.04.027 PMid:19586676    PMCid:2883297 Lim YS and Kim WR (2008). The global impact of hepatic fibrosis and end-stage liver disease. Clin. Liver Dis. 12: 733- 46, vii. http://dx.doi.org/10.1016/j.cld.2008.07.007 PMid:18984463 Mallat A, Hezode C and Lotersztajn S (2008). Environmental factors as disease accelerators during chronic hepatitis C. J. Hepatol. 48: 657-665. http://dx.doi.org/10.1016/j.jhep.2008.01.004 PMid:18279998 Nguyen-Khac E, Houchi H, Daoust M, Dupas JL, et al. (2008). The -308 TNFalpha gene polymorphism in severe acute alcoholic hepatitis: identification of a new susceptibility marker. Alcohol. Clin. Exp. Res. 32: 822-828. http://dx.doi.org/10.1111/j.1530-0277.2008.00629.x PMid:18336639 Niro GA, Poli F, Andriulli A, Bianchi I, et al. (2009). TNF-alpha polymorphisms in primary biliary cirrhosis: a northern and southern Italian experience. Ann. N. Y. Acad. Sci. 1173: 557-563. http://dx.doi.org/10.1111/j.1749-6632.2009.04741.x PMid:19758199 Oo YH, Hubscher SG and Adams DH (2010). Autoimmune hepatitis: new paradigms in the pathogenesis, diagnosis, and management. Hepatol. Int. 4: 475-493. http://dx.doi.org/10.1007/s12072-010-9183-5 PMid:20827405    PMCid:2900560 Pastor IJ, Laso FJ, Romero A and Gonzalez-Sarmiento R (2005). -238 G>A polymorphism of tumor necrosis factor alpha gene (TNFA) is associated with alcoholic liver cirrhosis in alcoholic Spanish men. Alcohol. Clin. Exp. Res. 29: 1928-1931. http://dx.doi.org/10.1097/01.alc.0000187595.19324.ca Peters JL, Sutton AJ, Jones DR, Abrams KR, et al. (2006). Comparison of two methods to detect publication bias in meta-analysis. JAMA 295: 676-680. http://dx.doi.org/10.1001/jama.295.6.676 PMid:16467236 Poynard T, Mathurin P, Lai CL, Guyader D, et al. (2003). A comparison of fibrosis progression in chronic liver diseases. J. Hepatol. 38: 257-265. http://dx.doi.org/10.1016/S0168-8278(02)00413-0 Schwabe RF and Brenner DA (2006). Mechanisms of Liver Injury. I. TNF-alpha-induced liver injury: role of IKK, JNK, and ROS pathways. Am. J. Physiol. Gastrointest. Liver Physiol. 290: G583-G589. http://dx.doi.org/10.1152/ajpgi.00422.2005 PMid:16537970 Tahara T, Shibata T, Nakamura M, Yamashita H, et al. (2009). Effect of polymorphisms in the 3’ untranslated region (3’- UTR) of vascular endothelial growth factor gene on gastric cancer and peptic ulcer diseases in Japan. Mol. Carcinog. 48: 1030-1037. http://dx.doi.org/10.1002/mc.20554 PMid:19496079 Tanaka A, Quaranta S, Mattalia A, Coppel R, et al. (1999). The tumor necrosis factor-alpha promoter correlates with progression of primary biliary cirrhosis. J. Hepatol. 30: 826-829. http://dx.doi.org/10.1016/S0168-8278(99)80135-4 Thimme R, Wieland S, Steiger C, Ghrayeb J, et al. (2003). CD8+ T cells mediate viral clearance and disease pathogenesis during acute hepatitis B virus infection. J. Virol. 77: 68-76. http://dx.doi.org/10.1128/JVI.77.1.68-76.2003 PMid:12477811    PMCid:140637 Vandenbroucke JP, von Elm E, Altman DG, Gotzsche PC, et al. (2007). Strengthening the Reporting of Observational Studies in Epidemiology (STROBE): explanation and elaboration. Epidemiology 18: 805-835. http://dx.doi.org/10.1097/EDE.0b013e3181577511 PMid:18049195 Wilson AG, di Giovine FS, Blakemore AI and Duff GW (1992). Single base polymorphism in the human tumour necrosis factor alpha (TNF-alpha) gene detectable by NcoI restriction of PCR product. Hum. Mol. Genet. 1: 353. http://dx.doi.org/10.1093/hmg/1.5.353 PMid:1363876 Zintzaras E and Ioannidis JP (2005). Heterogeneity testing in meta-analysis of genome searches. Genet. Epidemiol. 28: 123-137. http://dx.doi.org/10.1002/gepi.20048 PMid:15593093