Publications

Found 49 results
Filters: Author is M. Li  [Clear All Filters]
2016
R. J. Li, Li, M., Liu, G. J., Guo, Y. W., Bai, H., Xiao, P., Mei, J. Z., Li, R. J., Li, M., Liu, G. J., Guo, Y. W., Bai, H., Xiao, P., Mei, J. Z., Li, R. J., Li, M., Liu, G. J., Guo, Y. W., Bai, H., Xiao, P., and Mei, J. Z., Association between ERCC5 gene polymorphisms and gastric cancer risk in a Chinese population, vol. 15, p. -, 2016.
R. J. Li, Li, M., Liu, G. J., Guo, Y. W., Bai, H., Xiao, P., Mei, J. Z., Li, R. J., Li, M., Liu, G. J., Guo, Y. W., Bai, H., Xiao, P., Mei, J. Z., Li, R. J., Li, M., Liu, G. J., Guo, Y. W., Bai, H., Xiao, P., and Mei, J. Z., Association between ERCC5 gene polymorphisms and gastric cancer risk in a Chinese population, vol. 15, p. -, 2016.
R. J. Li, Li, M., Liu, G. J., Guo, Y. W., Bai, H., Xiao, P., Mei, J. Z., Li, R. J., Li, M., Liu, G. J., Guo, Y. W., Bai, H., Xiao, P., Mei, J. Z., Li, R. J., Li, M., Liu, G. J., Guo, Y. W., Bai, H., Xiao, P., and Mei, J. Z., Association between ERCC5 gene polymorphisms and gastric cancer risk in a Chinese population, vol. 15, p. -, 2016.
M. Li, Li, R. J., Bai, H., Xiao, P., Liu, G. J., Guo, Y. W., Mei, J. Z., Li, M., Li, R. J., Bai, H., Xiao, P., Liu, G. J., Guo, Y. W., Mei, J. Z., Li, M., Li, R. J., Bai, H., Xiao, P., Liu, G. J., Guo, Y. W., and Mei, J. Z., Association between the pre-miR-196a2 rs11614913 polymorphism and gastric cancer susceptibility in a Chinese population, vol. 15, p. -, 2016.
M. Li, Li, R. J., Bai, H., Xiao, P., Liu, G. J., Guo, Y. W., Mei, J. Z., Li, M., Li, R. J., Bai, H., Xiao, P., Liu, G. J., Guo, Y. W., Mei, J. Z., Li, M., Li, R. J., Bai, H., Xiao, P., Liu, G. J., Guo, Y. W., and Mei, J. Z., Association between the pre-miR-196a2 rs11614913 polymorphism and gastric cancer susceptibility in a Chinese population, vol. 15, p. -, 2016.
M. Li, Li, R. J., Bai, H., Xiao, P., Liu, G. J., Guo, Y. W., Mei, J. Z., Li, M., Li, R. J., Bai, H., Xiao, P., Liu, G. J., Guo, Y. W., Mei, J. Z., Li, M., Li, R. J., Bai, H., Xiao, P., Liu, G. J., Guo, Y. W., and Mei, J. Z., Association between the pre-miR-196a2 rs11614913 polymorphism and gastric cancer susceptibility in a Chinese population, vol. 15, p. -, 2016.
M. Li, Zhao, S. Z., Zhao, C. Z., Zhang, Y., Xia, H., Lopez-Baltazar, J., Wan, S. B., Wang, X. J., Li, M., Zhao, S. Z., Zhao, C. Z., Zhang, Y., Xia, H., Lopez-Baltazar, J., Wan, S. B., and Wang, X. J., Cloning and characterization of SPL-family genes in the peanut (Arachis hypogaea L.), vol. 15, p. -, 2016.
M. Li, Zhao, S. Z., Zhao, C. Z., Zhang, Y., Xia, H., Lopez-Baltazar, J., Wan, S. B., Wang, X. J., Li, M., Zhao, S. Z., Zhao, C. Z., Zhang, Y., Xia, H., Lopez-Baltazar, J., Wan, S. B., and Wang, X. J., Cloning and characterization of SPL-family genes in the peanut (Arachis hypogaea L.), vol. 15, p. -, 2016.
M. Li, Chen, X. M., Wang, D. M., Gan, L., Qiao, Y., Li, M., Chen, X. M., Wang, D. M., Gan, L., and Qiao, Y., Effects of miR-26a on the expression of Beclin 1 in retinoblastoma cells, vol. 15, p. -, 2016.
M. Li, Chen, X. M., Wang, D. M., Gan, L., Qiao, Y., Li, M., Chen, X. M., Wang, D. M., Gan, L., and Qiao, Y., Effects of miR-26a on the expression of Beclin 1 in retinoblastoma cells, vol. 15, p. -, 2016.
M. Li, Chen, H. F., Wang, Z. F., Zhang, S., Li, M., Chen, H. F., Wang, Z. F., and Zhang, S., Isolation and characterization of polymorphic microsatellite markers in the endangered species Bretschneidera sinensis Hemsl., vol. 15, p. -, 2016.
M. Li, Chen, H. F., Wang, Z. F., Zhang, S., Li, M., Chen, H. F., Wang, Z. F., and Zhang, S., Isolation and characterization of polymorphic microsatellite markers in the endangered species Bretschneidera sinensis Hemsl., vol. 15, p. -, 2016.
Y. Zheng, Chen, J. Z., Wang, H. P., Li, M., Liang, H. W., Bing, X. W., Wang, Z. Z., Zheng, Y., Chen, J. Z., Wang, H. P., Li, M., Liang, H. W., Bing, X. W., Wang, Z. Z., Zheng, Y., Chen, J. Z., Wang, H. P., Li, M., Liang, H. W., Bing, X. W., and Wang, Z. Z., Large-scale tissue-specific and temporal gene expression profiles in Pengze crucian carp, vol. 15, p. -, 2016.
Y. Zheng, Chen, J. Z., Wang, H. P., Li, M., Liang, H. W., Bing, X. W., Wang, Z. Z., Zheng, Y., Chen, J. Z., Wang, H. P., Li, M., Liang, H. W., Bing, X. W., Wang, Z. Z., Zheng, Y., Chen, J. Z., Wang, H. P., Li, M., Liang, H. W., Bing, X. W., and Wang, Z. Z., Large-scale tissue-specific and temporal gene expression profiles in Pengze crucian carp, vol. 15, p. -, 2016.
Y. Zheng, Chen, J. Z., Wang, H. P., Li, M., Liang, H. W., Bing, X. W., Wang, Z. Z., Zheng, Y., Chen, J. Z., Wang, H. P., Li, M., Liang, H. W., Bing, X. W., Wang, Z. Z., Zheng, Y., Chen, J. Z., Wang, H. P., Li, M., Liang, H. W., Bing, X. W., and Wang, Z. Z., Large-scale tissue-specific and temporal gene expression profiles in Pengze crucian carp, vol. 15, p. -, 2016.
X. Huang, Jing, Y., Liu, D. J., Yang, B. Y., Chen, H., Li, M., Huang, X., Jing, Y., Liu, D. J., Yang, B. Y., Chen, H., and Li, M., Whole-transcriptome sequencing of Pinellia ternata using the Illumina platform, vol. 15, p. -, 2016.
X. Huang, Jing, Y., Liu, D. J., Yang, B. Y., Chen, H., Li, M., Huang, X., Jing, Y., Liu, D. J., Yang, B. Y., Chen, H., and Li, M., Whole-transcriptome sequencing of Pinellia ternata using the Illumina platform, vol. 15, p. -, 2016.
2015
Z. Wang, Li, M., Li, L., Sun, H., and Lin, X. Y., Association of single nucleotide polymorphisms in the CYP1B1 gene with the risk of primary open-angle glaucoma: a meta-analysis, vol. 14, pp. 17262-17272, 2015.
Q. Zhao, Zhang, B., Chen, Y., Li, M., Zhao, X., Fan, H., and Li, S. M., Association of the interleukin-6 gene -572G/C polymorphism with cancer risk: a meta-analysis, vol. 14, pp. 16921-16928, 2015.
A. N. Zhu, Yang, X. X., Sun, M. Y., Zhang, Z. X., and Li, M., Associations between INSR and MTOR polymorphisms in type 2 diabetes mellitus and diabetic nephropathy in a Northeast Chinese Han population, vol. 14, pp. 1808-1818, 2015.
G. Y. Hou, Zhou, H. L., Cao, T., Xun, W. J., Wang, D. J., Shi, L. G., Guan, S., Wang, D. F., and Li, M., Expression and variation of Myf5 and MyoD1 genes in different tissues of Wuzhishan pigs, vol. 14, pp. 3729-3735, 2015.
Y. F. Ma, Yang, B., Li, J., Zhang, T., Guo, J. T., Chen, L., Li, M., Chu, J., Liang, C. Y., and Liu, Y., Expression of Ras-related protein 25 predicts chemotherapy resistance and prognosis in advanced non-small cell lung cancer, vol. 14, pp. 13998-14008, 2015.
H. Zhang, Ji, W. L., Li, M., and Zhou, L. Y., Genetic variation and genetic structure of the endangered species Sinowilsonia henryi Hemsi. (Hamamelidaceae) revealed by amplified fragment length polymorphism (AFLP) markers, vol. 14, pp. 12340-12351, 2015.
Y. Liu, Song, X. L., Zhang, G. L., Peng, A. M., Fu, P. F., Li, P., Tan, M., Li, X., Li, M., and Wang, C. H., Lack of association between IL-6 -174G>C polymorphism and lung cancer: a meta-analysis, vol. 14, pp. 163-169, 2015.
X. Zhang, Zheng, C., Zhou, Z. H., Li, M., Gao, Y. T., Jin, S. G., Sun, X. H., and Gao, Y. Q., Relationship between HLA-DP gene polymorphisms and the risk of hepatocellular carcinoma: a meta-analysis, vol. 14, pp. 15553-15563, 2015.
M. Li, Gao, W. J., Ma, J. J., Zhu, Y., and Li, X. F., Relationship between urinary protein changes in lupus nephritis and renal pathology, vol. 14, pp. 8352-8358, 2015.
Z. W. Shuai, Huang, Y., Zhang, L., Cai, J., and Li, M., Role of autoantibodies to various Ro60 epitopes in the decrease of lymphocytes seen in systemic lupus erythematosus and primary Sjögren’s syndrome, vol. 14, pp. 10096-10102, 2015.
2014
D. J. Wu, Chen, K., Wei, X. Z., Ni, H. J., Yu, S. Z., Zhu, X. D., and Li, M., Analysis of intervertebral disc-related genes, vol. 13, pp. 2032-2038, 2014.
C. - P. Zhou, Pan, H. - Z., Li, F. - X., Hu, N. - Y., Li, M., and Yang, X. - X., Association analysis of colorectal cancer susceptibility variants with gastric cancer in a Chinese Han population, vol. 13, pp. 3673-3680, 2014.
L. Liu, Xiao, Z., Xiao, Y., Wang, Z., Li, F., Li, M., and Peng, X., Combination of high-intensity focused ultrasound irradiation and hydroxyapatite nanoparticle injection to injure normal goat liver tissue in vivo without costal bone incision, vol. 13, pp. 8301-8308, 2014.
B. Wei, Shang, Y. X., Li, M., Jiang, J., and Zhang, H., Cytoskeleton changes of airway smooth muscle cells in juvenile rats with airway remodeling in asthma and the RhoA/ROCK signaling pathway mechanism, vol. 13, pp. 559-569, 2014.
C. Z. Li, Tse, L. A., Zhou, Y. L., Fan, W., Li, M., Yu, I. T. S., and Jin, T. Y., Effects of acrylonitrile on the pathological morphology and apoptosis of neurons in rats, vol. 13, pp. 5795-5802, 2014.
Q. Y. Li, Feng, Y., Lin, Y. N., Li, M., Guo, Q., Gu, S. Y., Liu, J. L., Zhang, R. F., and Wan, H. Y., Gender difference in protein expression of vascular wall in mice exposed to chronic intermittent hypoxia: a preliminary study, vol. 13, pp. 8489-8501, 2014.
P. Lu, Feng, X., Zhou, J. S., Liu, X. B., Chen, Q. X., and Li, M., Identification and analysis of a 5-bp indel of a porcine BMP7 gene promoter, vol. 13, pp. 4326-4335, 2014.
Y. Yang, Xu, J. R., Liu, X. M., Zhou, J., Yang, B., Li, M., and Wang, Y. J., Polymorphisms of +2836 G>A in the apoE gene are strongly associated with the susceptibility to essential hypertension in the Chinese Hui population, vol. 13, pp. 1212-1219, 2014.
2013
Y. H. Li, Zhao, X. H., Li, M., Yang, C. Q., Wang, L., and Lin, J. T., Fast preparation of a polyclonal antibody against chicken protocadherin 1, vol. 12, pp. 2156-2166, 2013.
Y. Chen, Chen, K., Li, M., Li, C., Ma, H., Bai, Y. S., Zhu, X. D., and Fu, Q., Genes associated with disc degeneration identified using microarray gene expression profiling and bioinformatics analysis, vol. 12, pp. 1431-1439, 2013.
Alibés A, Yankilevich P, Ca-da A and Díaz-Uriarte R (2007). IDconverter and IDClight: conversion and annotation of gene and protein IDs. BMC Bioinformatics 8: 9. http://dx.doi.org/10.1186/1471-2105-8-9 PMid:17214880 PMCid:1779800   Aoki Y, Ohtori S, Takahashi K, Ino H, et al. (2004). Innervation of the lumbar intervertebral disc by nerve growth factor-dependent neurons related to inflammatory pain. Spine 29: 1077-1081. http://dx.doi.org/10.1097/00007632-200405150-00005 PMid:15131432   Baer AE, Wang JY, Kraus VB and Setton LA (2001). Collagen gene expression and mechanical properties of intervertebral disc cell-alginate cultures. J. Orthop. Res. 19: 2-10. http://dx.doi.org/10.1016/S0736-0266(00)00003-6   Benjamini YHY (1995). Controlling the false discovery rate: A practical and powerful approach to multiple testing. J. Roy. Stat. Soc. Ser. B (Methodological) 57: 289-300.   Berken A and Wittinghofer A (2008). Structure and function of Rho-type molecular switches in plants. Plant Physiol. Biochem. 463: 380-393. http://dx.doi.org/10.1016/j.plaphy.2007.12.008 PMid:18272378   Chen J, Baer AE, Paik PY, Yan W, et al. (2002). Matrix protein gene expression in intervertebral disc cells subjected to altered osmolarity. Biochem. Biophys. Res. Commun. 293: 932-938. http://dx.doi.org/10.1016/S0006-291X(02)00314-5   Doita M, Kanatani T, Harada T and Mizuno K (1996). Immunohistologic study of the ruptured intervertebral disc of the lumbar spine. Spine 21: 235-241. http://dx.doi.org/10.1097/00007632-199601150-00015 PMid:8720410   Fraser RD, Osti OL and Vernon-Roberts B (1993). Intervertebral disc degeneration. Eur. Spine J. 1: 205-213. http://dx.doi.org/10.1007/BF00298361 PMid:20054919   Freeman SN, Ma Y and Cress WD (2008). RhoBTB2 (DBC2) is a mitotic E2F1 target gene with a novel role in apoptosis. J. Biol. Chem. 283: 2353-2362. http://dx.doi.org/10.1074/jbc.M705986200 PMid:18039672 PMCid:2268526   Freemont AJ, Peacock TE, Goupille P, Hoyland JA, et al. (1997). Nerve ingrowth into diseased intervertebral disc in chronic back pain. Lancet 350: 178-181. http://dx.doi.org/10.1016/S0140-6736(97)02135-1   Gautier L, Cope L, Bolstad BM and Irizarry RA (2004). affy - analysis of Affymetrix GeneChip data at the probe level. Bioinformatics 20: 307-315. http://dx.doi.org/10.1093/bioinformatics/btg405 PMid:14960456   Gruber HE, Ingram JA, Hoelscher G, Zinchenko N, et al. (2008). Brain-derived neurotrophic factor and its receptor in the human and the sand rat intervertebral disc. Arthritis Res. Ther. 10: R82. http://dx.doi.org/10.1186/ar2456 PMid:18637190 PMCid:2575628   Gruber HE, Ingram JA, Hoelscher GL, Zinchenko N, et al. (2009). Asporin, a susceptibility gene in osteoarthritis, is expressed at higher levels in the more degenerate human intervertebral disc. Arthritis Res. Ther. 11: R47. http://dx.doi.org/10.1186/ar2660 PMid:19327154 PMCid:2688197   Hadjipavlou AG, Tzermiadianos MN, Bogduk N and Zindrick MR (2008). The pathophysiology of disc degeneration: a critical review. J. Bone Joint Surg. Br. 90: 1261-1270. http://dx.doi.org/10.1302/0301-620X.90B10.20910 PMid:18827232   Hiyama A, Sakai D, Tanaka M, Arai F, et al. (2011). The relationship between the Wnt/beta-catenin and TGF-beta/BMP signals in the intervertebral disc cell. J. Cell Physiol. 226: 1139-1148. http://dx.doi.org/10.1002/jcp.22438 PMid:20945354   Huang da W, Sherman BT and Lempicki RA (2009). Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat. Protoc. 4: 44-57. PMid:19131956   Irizarry RA, Hobbs B, Collin F, Beazer-Barclay YD, et al. (2003). Exploration, normalization, and summaries of high density oligonucleotide array probe level data. Biostatistics 4: 249-264. http://dx.doi.org/10.1093/biostatistics/4.2.249 PMid:12925520   Kaminska B (2005). MAPK signalling pathways as molecular targets for anti-inflammatory therapy - from molecular mechanisms to therapeutic benefits. Biochim. Biophys. Acta 1754: 253-262. http://dx.doi.org/10.1016/j.bbapap.2005.08.017 PMid:16198162   Kyriakis JM and Avruch J (2001). Mammalian mitogen-activated protein kinase signal transduction pathways activated by stress and inflammation. Physiol. Rev. 81: 807-869. PMid:11274345   Le Maitre CL, Freemont AJ and Hoyland JA (2004). Localization of degradative enzymes and their inhibitors in the degenerate human intervertebral disc. J. Pathol. 204: 47-54. http://dx.doi.org/10.1002/path.1608 PMid:15307137   Le Maitre CL, Freemont AJ and Hoyland JA (2005). The role of interleukin-1 in the pathogenesis of human intervertebral disc degeneration. Arthritis Res. Ther. 7: R732-R745. http://dx.doi.org/10.1186/ar1732 PMid:15987475 PMCid:1175026   Le Maitre CL, Freemont AJ and Hoyland JA (2006). Human disc degeneration is associated with increased MMP 7 expression. Biotech. Histochem. 81: 125-131. http://dx.doi.org/10.1080/10520290601005298 PMid:17129995   Le Maitre CL, Freemont AJ and Hoyland JA (2007a). Accelerated cellular senescence in degenerate intervertebral discs: a possible role in the pathogenesis of intervertebral disc degeneration. Arthritis Res. Ther. 9: R45. http://dx.doi.org/10.1186/ar2198 PMid:17498290 PMCid:2206356   Le Maitre CL, Hoyland JA and Freemont AJ (2007b). Catabolic cytokine expression in degenerate and herniated human intervertebral discs: IL-1beta and TNFalpha expression profile. Arthritis Res. Ther. 9: R77. http://dx.doi.org/10.1186/ar2275 PMid:17688691 PMCid:2206382   Le Maitre CL, Pockert A, Buttle DJ, Freemont AJ, et al. (2007c). Matrix synthesis and degradation in human intervertebral disc degeneration. Biochem. Soc. Trans. 35: 652-655. http://dx.doi.org/10.1042/BST0350652 PMid:17635113   Luoma K, Riihimaki H, Luukkonen R, Raininko R, et al. (2000). Low back pain in relation to lumbar disc degeneration. Spine 25: 487-492. http://dx.doi.org/10.1097/00007632-200002150-00016 PMid:10707396   Nachemson A, Lewin T, Maroudas A and Freeman MA (1970). In vitro diffusion of dye through the end-plates and the annulus fibrosus of human lumbar inter-vertebral discs. Acta Orthop. Scand. 41: 589-607. http://dx.doi.org/10.3109/17453677008991550 PMid:5516549   Nagano T, Yonenobu K, Miyamoto S, Tohyama M, et al. (1995). Distribution of the basic fibroblast growth factor and its receptor gene expression in normal and degenerated rat intervertebral discs. Spine 20: 1972-1978. http://dx.doi.org/10.1097/00007632-199509150-00002 PMid:8578370   Nowak JM, Grzanka A, Zuryn A and Stepien A (2008). The Rho protein family and its role in the cellular cytoskeleton. Postepy Hig. Med. Dosw. 62: 110-117.   Pearson G, Robinson F, Beers GT, Xu BE, et al. (2001). Mitogen-activated protein (MAP) kinase pathways: regulation and physiological functions. Endocr. Rev. 22: 153-183. http://dx.doi.org/10.1210/er.22.2.153 PMid:11294822   Peng B, Hao J, Hou S, Wu W, et al. (2006). Possible pathogenesis of painful intervertebral disc degeneration. Spine 31: 560-566. http://dx.doi.org/10.1097/01.brs.0000201324.45537.46 PMid:16508552   Pratsinis H and Kletsas D (2008). Growth factors in intervertebral disc homeostasis. Connect. Tissue Res. 49: 273-276. http://dx.doi.org/10.1080/03008200802147951 PMid:18661359   Shannon P, Markiel A, Ozier O, Baliga NS, et al. (2003). Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res. 13: 2498-2504. http://dx.doi.org/10.1101/gr.1239303 PMid:14597658 PMCid:403769   Siripurapu V, Meth J, Kobayashi N and Hamaguchi M (2005). DBC2 significantly influences cell-cycle, apoptosis, cytoskeleton and membrane-trafficking pathways. J. Mol. Biol. 346: 83-89. http://dx.doi.org/10.1016/j.jmb.2004.11.043 PMid:15663929   Sommer C and Kress M (2004). Recent findings on how proinflammatory cytokines cause pain: peripheral mechanisms in inflammatory and neuropathic hyperalgesia. Neurosci. Lett. 361: 184-187. http://dx.doi.org/10.1016/j.neulet.2003.12.007 PMid:15135924   Szklarczyk D, Franceschini A, Kuhn M, Simonovic M, et al. (2011). The STRING database in 2011: functional interaction networks of proteins, globally integrated and scored. Nucleic Acids Res. 39: D561-D568. http://dx.doi.org/10.1093/nar/gkq973 PMid:21045058 PMCid:3013807   Team RDC (2011). R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing.   Thompson JP, Pearce RH, Schechter MT, Adams ME, et al. (1990). Preliminary evaluation of a scheme for grading the gross morphology of the human intervertebral disc. Spine 15: 411-415. http://dx.doi.org/10.1097/00007632-199005000-00012 PMid:2363069   Thompson JP, Oegema TR Jr and Bradford DS (1991). Stimulation of mature canine intervertebral disc by growth factors. Spine 16: 253-260. http://dx.doi.org/10.1097/00007632-199103000-00001 PMid:2028297   Urban JP and Roberts S (2003). Degeneration of the intervertebral disc. Arthritis Res. Ther. 5: 120-130. http://dx.doi.org/10.1186/ar629 PMid:12723977 PMCid:165040   van der Laan MJ, Dudoit S and Pollard KS (2004). Augmentation procedures for control of the generalized family-wise error rate and tail probabilities for the proportion of false positives. Stat. Appl. Genet. Mol. Biol. 3: Article15.   Wuertz K, Vo N, Kletsas D and Boos N (2012). Inflammatory and catabolic signalling in intervertebral discs: the roles of NF-kappaB and MAP kinases. Eur. Cell Mater. 23: 103-119. PMid:22354461
Q. Wang, Li, M., Xia, L. C., Wen, G., Zu, H., and Gao, M., Genetic analysis of differentiation of T-helper lymphocytes, vol. 12, pp. 972-987, 2013.
Agnello D, Lankford CS, Bream J, Morinobu A, et al. (2003). Cytokines and transcription factors that regulate T helper cell differentiation: new players and new insights. J. Clin. Immunol. 23: 147-161. http://dx.doi.org/10.1023/A:1023381027062 PMid:12797537   Chakir H, Wang H, Lefebvre DE, Webb J, et al. (2003). T-bet/GATA-3 ratio as a measure of the Th1/Th2 cytokine profile in mixed cell populations: predominant role of GATA-3. J. Immunol. Methods 278: 157-169. http://dx.doi.org/10.1016/S0022-1759(03)00200-X   Gately MK, Renzetti LM, Magram J, Stern AS, et al. (1998). The interleukin-12/interleukin-12-receptor system: role in normal and pathologic immune responses. Annu. Rev. Immunol. 16: 495-521. http://dx.doi.org/10.1146/annurev.immunol.16.1.495 PMid:9597139   Glimcher LH and Murphy KM (2000). Lineage commitment in the immune system: the T helper lymphocyte grows up. Genes Dev. 14: 1693-1711. PMid:10898785   Ho C and Glimcher LH (2002). Transcription: tantalizing times for T cells. Cell 109: S109-S120. http://dx.doi.org/10.1016/S0092-8674(02)00705-5   Jankovic D, Kullberg MC, Hieny S, Caspar P, et al. (2002). In the absence of IL-12, CD4(+) T cell responses to intracellular pathogens fail to default to a Th2 pattern and are host protective in an IL-10(-/-) setting. Immunity 16: 429-439. http://dx.doi.org/10.1016/S1074-7613(02)00278-9   Lametschwandtner G, Biedermann T, Schwarzler C, Gunther C, et al. (2004). Sustained T-bet expression confers polarized human TH2 cells with TH1-like cytokine production and migratory capacities. J. Allergy Clin. Immunol. 113: 987-994. http://dx.doi.org/10.1016/j.jaci.2004.02.004 PMid:15131585   Lighvani AA, Frucht DM, Jankovic D, Yamane H, et al. (2001). T-bet is rapidly induced by interferon-gamma in lymphoid and myeloid cells. Proc. Natl. Acad. Sci. U. S. A. 98: 15137-15142. http://dx.doi.org/10.1073/pnas.261570598 PMid:11752460 PMCid:64996   Lohning M, Richter A and Radbruch A (2002). Cytokine memory of T helper lymphocytes. Adv. Immunol. 80: 115-181. http://dx.doi.org/10.1016/S0065-2776(02)80014-1   Lovett-Racke AE, Rocchini AE, Choy J, Northrop SC, et al. (2004). Silencing T-bet defines a critical role in the differentiation of autoreactive T lymphocytes. Immunity 21: 719-731. http://dx.doi.org/10.1016/j.immuni.2004.09.010 PMid:15539157   Mariani L, Lohning M, Radbruch A and Hofer T (2004). Transcriptional control networks of cell differentiation: insights from helper T lymphocytes. Prog. Biophys. Mol. Biol. 86: 45-76. http://dx.doi.org/10.1016/j.pbiomolbio.2004.02.007 PMid:15261525   Mullen AC, Hutchins AS, High FA, Lee HW, et al. (2002). Hlx is induced by and genetically interacts with T-bet to promote heritable T(H)1 gene induction. Nat. Immunol. 3: 652-658. PMid:12055627   Murphy KM and Reiner SL (2002). The lineage decisions of helper T cells. Nat. Rev. Immunol. 2: 933-944. http://dx.doi.org/10.1038/nri954 PMid:12461566   Nakanishi K, Yoshimoto T, Tsutsui H and Okamura H (2001). Interleukin-18 regulates both Th1 and Th2 responses. Annu. Rev. Immunol. 19: 423-474. http://dx.doi.org/10.1146/annurev.immunol.19.1.423 PMid:11244043   O'Garra A (2000). T-cell differentiation: Commitment factors for T helper cells. Curr. Biol. 10: 492-494. http://dx.doi.org/10.1016/S0960-9822(00)00556-X   O'Garra A and Arai N (2000). The molecular basis of T helper 1 and T helper 2 cell differentiation. Trends Cell Biol. 10: 542-550. http://dx.doi.org/10.1016/S0962-8924(00)01856-0   Ouyang W, Lohning M, Gao Z, Assenmacher M, et al. (2000). Stat6-independent GATA-3 autoactivation directs IL-4- independent Th2 development and commitment. Immunity 12: 27-37. http://dx.doi.org/10.1016/S1074-7613(00)80156-9   Ranganath S and Murphy KM (2001). Structure and specificity of GATA proteins in Th2 development. Mol. Cell Biol. 21: 2716-2725. http://dx.doi.org/10.1128/MCB.21.8.2716-2725.2001 PMid:11283251 PMCid:86902   Robinson DS and Lloyd CM (2002). Asthma: T-bet - a master controller? Curr. Biol. 12: R322-R324. http://dx.doi.org/10.1016/S0960-9822(02)00830-8   Romagnani S (1992). Human TH1 and TH2 subsets: regulation of differentiation and role in protection and immunopathology. Int. Arch. Allergy Immunol. 98: 279-285. http://dx.doi.org/10.1159/000236199 PMid:1422257   Romagnani S (2000). The role of lymphocytes in allergic disease. J. Allergy Clin. Immunol. 105: 399-408. http://dx.doi.org/10.1067/mai.2000.104575 PMid:10719286   Smits HH, van Rietschoten JG, Hilkens CM, Sayilir R, et al. (2001). IL-12-induced reversal of human Th2 cells is accompanied by full restoration of IL-12 responsiveness and loss of GATA-3 expression. Eur. J. Immunol. 31: 1055-1065. http://dx.doi.org/10.1002/1521-4141(200104)31:4<1055::AID-IMMU1055>3.0.CO;2-7   Szabo SJ, Kim ST, Costa GL, Zhang X, et al. (2000). A novel transcription factor, T-bet, directs Th1 lineage commitment. Cell 100: 655-669. http://dx.doi.org/10.1016/S0092-8674(00)80702-3   Szabo SJ, Sullivan BM, Peng SL and Glimcher LH (2003). Molecular mechanisms regulating Th1 immune responses. Annu. Rev. Immunol. 21: 713-758. http://dx.doi.org/10.1146/annurev.immunol.21.120601.140942 PMid:12500979   Viola JP and Rao A (1999). Molecular regulation of cytokine gene expression during the immune response. J. Clin. Immunol. 19: 98-108. http://dx.doi.org/10.1023/A:1020502516196 PMid:10226884   Wang Q, Liu Y and Mo L (2007a). The Evaluation and Prediction of the Effect of AIDS Therapy. Proceeding of the IEEE/ ICME International Conference on Complex Medical Engineering, Beijing, 1591-1596.   Wang Q, Liu Y and Zhang B (2007b). Economic Strategies in the Issue of Controlling AIDS. Proceeding of the IEEE/ ICME International Conference on Complex Medical Engineering, Beijing, 1601-1608.   Wang Q, Liu Y and Pan X (2008). Atmosphere pollutants and mortality rate of respiratory diseases in Beijing. Sci. Total Environ. 391: 143-148. http://dx.doi.org/10.1016/j.scitotenv.2007.10.058 PMid:18061245   Xia L and Zhou C (2007). Phase transition in sequence unique reconstruction. J. Syst. Sci. Complex. 20: 18-29. http://dx.doi.org/10.1007/s11424-007-9001-x   Xia LC, Cram JA, Chen T, Fuhrman JA, et al. (2011). Accurate genome relative abundance estimation based on shotgun metagenomic reads. PLoS One 6: e27992. http://dx.doi.org/10.1371/journal.pone.0027992 PMid:22162995 PMCid:3232206   Yates A, Callard R and Stark J (2004). Combining cytokine signalling with T-bet and GATA-3 regulation in Th1 and Th2 differentiation: a model for cellular decision-making. J. Theor. Biol. 231: 181-196. http://dx.doi.org/10.1016/j.jtbi.2004.06.013 PMid:15380383   Zhou M and Ouyang W (2003). The function role of GATA-3 in Th1 and Th2 differentiation. Immunol. Res. 28: 25-37. http://dx.doi.org/10.1385/IR:28:1:25   Zhou M, Ouyang W, Gong Q, Katz SG, et al. (2001). Friend of GATA-1 represses GATA-3-dependent activity in CD4+ T cells. J. Exp. Med. 194: 1461-1471. http://dx.doi.org/10.1084/jem.194.10.1461 PMid:11714753 PMCid:2193678   Zhou W and Nakhleh L (2011). Properties of metabolic graphs: biological organization or representation artifacts? BMC Bioinformatics 12: 132. http://dx.doi.org/10.1186/1471-2105-12-132 PMid:21542923 PMCid:3098788   Zu H, Wang Q, Dong M, Ma L, et al. (2012). Compressed sensing based fixed-point DCT image encoding. Adv. Comput. Math. Appl. 2: 259-262.
Y. H. Li, Li, M., He, W. Q., Wang, Y. G., and Shao, R. G., Inactivation of putative PKS genes can double geldanamycin yield in Streptomyces hygroscopicus 17997, vol. 12, pp. 2076-2085, 2013.
G. L. Zhang, Shi, H. J., Shao, M. H., Li, M., Mu, H. J., Gu, Y., Du, X. F., and Xie, P., Mutations in the ADAR1 gene in Chinese families with dyschromatosis symmetrica hereditaria, vol. 12, pp. 2794-2799, 2013.
B. Yang, Xu, J. R., Liu, X. M., Yang, Y., Na, X. F., Li, M., and Wang, Y. J., Polymorphisms of rs1799983 (G>T) and rs1800780 (A>G) of the eNOS gene associated with susceptibility to essential hypertension in the Chinese Hui ethnic population, vol. 12, pp. 3821-3829, 2013.
2012
Y. Guo, Wang, J. - T., Liu, H., Li, M., Yang, T. - L., Zhang, X. - W., Liu, Y. - Z., Tian, Q., and Deng, H. - W., Are bone mineral density loci associated with hip osteoporotic fractures? A validation study on previously reported genome-wide association loci in a Chinese population, vol. 11, pp. 202-210, 2012.
Cooper C, Campion G and Melton LJ, III (1992). Hip fractures in the elderly: a world-wide projection. Osteoporos. Int. 2: 285-289. http://dx.doi.org/10.1007/BF01623184 PMid:1421796 Cummings SR and Melton LJ (2002). Epidemiology and outcomes of osteoporotic fractures. Lancet 359: 1761-1767. http://dx.doi.org/10.1016/S0140-6736(02)08657-9 Deng HW, Mahaney MC, Williams JT, Li J, et al. (2002). Relevance of the genes for bone mass variation to susceptibility to osteoporotic fractures and its implications to gene search for complex human diseases. Genet. Epidemiol. 22: 12-25. http://dx.doi.org/10.1002/gepi.1040 PMid:11754470 Gullberg B, Johnell O and Kanis JA (1997). World-wide projections for hip fracture. Osteoporos. Int. 7: 407-413. http://dx.doi.org/10.1007/PL00004148 PMid:9425497 Guo Y, Tan LJ, Lei SF, Yang TL, et al. (2010a). Genome-wide association study identifies ALDH7A1 as a novel susceptibility gene for osteoporosis. PLoS Genet. 6: e1000806. http://dx.doi.org/10.1371/journal.pgen.1000806 PMid:20072603    PMCid:2794362 Guo Y, Zhang LS, Yang TL, Tian Q, et al. (2010b). IL21R and PTH may underlie variation of femoral neck bone mineral density as revealed by a genome-wide association study. J. Bone Miner. Res. 25: 1042-1048. PMid:19874204    PMCid:3153368 Hazenberg JG, Taylor D and Lee TC (2007). The role of osteocytes and bone microstructure in preventing osteoporotic fractures. Osteoporos. Int. 18: 1-8. http://dx.doi.org/10.1007/s00198-006-0222-y PMid:16972016 Johnell O, Kanis JA, Oden A, Johansson H, et al. (2005). Predictive value of BMD for hip and other fractures. J. Bone Miner. Res. 20: 1185-1194. http://dx.doi.org/10.1359/JBMR.050304 PMid:15940371 Kanis JA, Oden A, Johnell O, Johansson H, et al. (2007). The use of clinical risk factors enhances the performance of BMD in the prediction of hip and osteoporotic fractures in men and women. Osteoporos. Int. 18: 1033-1046. http://dx.doi.org/10.1007/s00198-007-0343-y PMid:17323110 Lau EM, Cooper C, Fung H, Lam D, et al. (1999). Hip fracture in Hong Kong over the last decade - a comparison with the UK. J. Public. Health Med. 21: 249-250. http://dx.doi.org/10.1093/pubmed/21.3.249 Lau EM, Lee JK, Suriwongpaisal P, Saw SM, et al. (2001). The incidence of hip fracture in four Asian countries: the Asian Osteoporosis Study (AOS). Osteoporos. Int. 12: 239-243. http://dx.doi.org/10.1007/s001980170135 PMid:11315243 Marchini J, Howie B, Myers S, McVean G, et al. (2007). A new multipoint method for genome-wide association studies by imputation of genotypes. Nat. Genet. 39: 906-913. http://dx.doi.org/10.1038/ng2088 PMid:17572673 Marshall D, Johnell O and Wedel H (1996). Meta-analysis of how well measures of bone mineral density predict occurrence of osteoporotic fractures. BMJ 312: 1254-1259. http://dx.doi.org/10.1136/bmj.312.7041.1254 PMid:8634613    PMCid:2351094 Melton LJ III (2000). Who has osteoporosis? A conflict between clinical and public health perspectives. J. Bone Miner. Res. 15: 2309-2314. http://dx.doi.org/10.1359/jbmr.2000.15.12.2309 PMid:11127196 Melton LJ III (2003). Adverse outcomes of osteoporotic fractures in the general population. J. Bone Miner. Res. 18: 1139- 1141. http://dx.doi.org/10.1359/jbmr.2003.18.6.1139 PMid:12817771 Price AL, Patterson NJ, Plenge RM, Weinblatt ME, et al. (2006). Principal components analysis corrects for stratification in genome-wide association studies. Nat. Genet. 38: 904-909. http://dx.doi.org/10.1038/ng1847 PMid:16862161 Richards JB, Rivadeneira F, Inouye M, Pastinen TM, et al. (2008). Bone mineral density, osteoporosis, and osteoporotic fractures: a genome-wide association study. Lancet 371: 1505-1512. http://dx.doi.org/10.1016/S0140-6736(08)60599-1 Rivadeneira F, Styrkarsdottir U, Estrada K, Halldorsson BV, et al. (2009). Twenty bone-mineral-density loci identified by large-scale meta-analysis of genome-wide association studies. Nat. Genet. 41: 1199-1206. http://dx.doi.org/10.1038/ng.446 PMid:19801982    PMCid:2783489 Siris ES (2006). Patients with hip fracture: what can be improved? Bone 38: S8-12. http://dx.doi.org/10.1016/j.bone.2005.11.014 PMid:16406848 Styrkarsdottir U, Halldorsson BV, Gretarsdottir S, Gudbjartsson DF, et al. (2008). Multiple genetic loci for bone mineral density and fractures. N. Engl. J. Med. 358: 2355-2365. http://dx.doi.org/10.1056/NEJMoa0801197 PMid:18445777 Styrkarsdottir U, Halldorsson BV, Gretarsdottir S, Gudbjartsson DF, et al. (2009). New sequence variants associated with bone mineral density. Nat. Genet. 41: 15-17. http://dx.doi.org/10.1038/ng.284 PMid:19079262 Styrkarsdottir U, Halldorsson BV, Gudbjartsson DF, Tang NL, et al. (2010). European bone mineral density loci are also associated with BMD in East-Asian populations. PLoS One 5: e13217. http://dx.doi.org/10.1371/journal.pone.0013217 PMid:20949110    PMCid:2951352
M. - Y. Sun, Yang, X. - X., Xu, W. - W., Yao, G. - Y., Pan, H. - Z., and Li, M., Association of DNMT1 and DNMT3B polymorphisms with breast cancer risk in Han Chinese women from South China, vol. 11, pp. 4330-4341, 2012.
Bestor TH (2000). The DNA methyltransferases of mammals. Hum. Mol. Genet. 9: 2395-2402. http://dx.doi.org/10.1093/hmg/9.16.2395 PMid:11005794   Brenner C, Deplus R, Didelot C, Loriot A, et al. (2005). Myc represses transcription through recruitment of DNA methyltransferase corepressor. EMBO J. 24: 336-346. http://dx.doi.org/10.1038/sj.emboj.7600509 PMid:15616584 PMCid:545804   Cai FF, Kohler C, Zhang B, Wang MH, et al. (2011). Epigenetic therapy for breast cancer. Int. J. Mol. Sci. 12: 4465-4487. http://dx.doi.org/10.3390/ijms12074465 PMid:21845090 PMCid:3155363   Cebrian A, Pharoah PD, Ahmed S, Ropero S, et al. (2006). Genetic variants in epigenetic genes and breast cancer risk. Carcinogenesis 27: 1661-1669. http://dx.doi.org/10.1093/carcin/bgi375 PMid:16501248   Deplus R, Brenner C, Burgers WA, Putmans P, et al. (2002). Dnmt3L is a transcriptional repressor that recruits histone deacetylase. Nucleic Acids Res. 30: 3831-3838. http://dx.doi.org/10.1093/nar/gkf509 PMid:12202768 PMCid:137431   Easwaran HP, Schermelleh L, Leonhardt H and Cardoso MC (2004). Replication-independent chromatin loading of Dnmt1 during G2 and M phases. EMBO Rep. 5: 1181-1186. http://dx.doi.org/10.1038/sj.embor.7400295 PMid:15550930 PMCid:1299190   Egger G, Liang G, Aparicio A and Jones PA (2004). Epigenetics in human disease and prospects for epigenetic therapy. Nature 429: 457-463. http://dx.doi.org/10.1038/nature02625 PMid:15164071   Ehrlich M (2002). DNA methylation in cancer: too much, but also too little. Oncogene 21: 5400-5413. http://dx.doi.org/10.1038/sj.onc.1205651 PMid:12154403   Esteller M, Silva JM, Dominguez G, Bonilla F, et al. (2000). Promoter hypermethylation and BRCA1 inactivation in sporadic breast and ovarian tumors. J. Natl. Cancer Inst. 92: 564-569. http://dx.doi.org/10.1093/jnci/92.7.564 PMid:10749912   Fan H, Liu D, Qiu X, Qiao F, et al. (2010). A functional polymorphism in the DNA methyltransferase-3A promoter modifies the susceptibility in gastric cancer but not in esophageal carcinoma. BMC Med. 8: 12. http://dx.doi.org/10.1186/1741-7015-8-12 PMid:20128888 PMCid:2829483   Franke A, McGovern DP, Barrett JC, Wang K, et al. (2010). Genome-wide meta-analysis increases to 71 the number of confirmed Crohn's disease susceptibility loci. Nat. Genet. 42: 1118-1125. http://dx.doi.org/10.1038/ng.717 PMid:21102463 PMCid:3299551   Fuks F, Burgers WA, Godin N, Kasai M, et al. (2001). Dnmt3a binds deacetylases and is recruited by a sequence-specific repressor to silence transcription. EMBO J. 20: 2536-2544. http://dx.doi.org/10.1093/emboj/20.10.2536 PMid:11350943 PMCid:125250   Goll MG, Kirpekar F, Maggert KA, Yoder JA, et al. (2006). Methylation of tRNAAsp by the DNA methyltransferase homolog Dnmt2. Science 311: 395-398. http://dx.doi.org/10.1126/science.1120976 PMid:16424344   Gudbjartsson DF, Walters GB, Thorleifsson G, Stefansson H, et al. (2008). Many sequence variants affecting diversity of adult human height. Nat. Genet. 40: 609-615. http://dx.doi.org/10.1038/ng.122 PMid:18391951   Haggarty P, Hoad G, Harris SE, Starr JM, et al. (2010). Human intelligence and polymorphisms in the DNA methyltransferase genes involved in epigenetic marking. PLoS One 5: e11329. http://dx.doi.org/10.1371/journal.pone.0011329 PMid:20593030 PMCid:2892514   Herman JG and Baylin SB (2003). Gene silencing in cancer in association with promoter hypermethylation. N. Engl. J. Med. 349: 2042-2054. http://dx.doi.org/10.1056/NEJMra023075 PMid:14627790   Hu J, Fan H, Liu D, Zhang S, et al. (2010). DNMT3B promoter polymorphism and risk of gastric cancer. Dig. Dis. Sci. 55: 1011-1016. http://dx.doi.org/10.1007/s10620-009-0831-3 PMid:19517237   Jemal A, Bray F, Center MM, Ferlay J, et al. (2011). Global cancer statistics. CA Cancer J. Clin. 61: 69-90. http://dx.doi.org/10.3322/caac.20107 PMid:21296855   Jones PA and Baylin SB (2002). The fundamental role of epigenetic events in cancer. Nat. Rev. Genet. 3: 415-428. PMid:12042769   Kanai Y, Ushijima S, Nakanishi Y, Sakamoto M, et al. (2003). Mutation of the DNA methyltransferase (DNMT) 1 gene in human colorectal cancers. Cancer Lett. 192: 75-82. http://dx.doi.org/10.1016/S0304-3835(02)00689-4   Kang ES, Park CW and Chung JH (2001). Dnmt3b, de novo DNA methyltransferase, interacts with SUMO-1 and Ubc9 through its N-terminal region and is subject to modification by SUMO-1. Biochem. Biophys. Res. Commun. 289: 862-868. http://dx.doi.org/10.1006/bbrc.2001.6057 PMid:11735126   Kelemen LE, Sellers TA, Schildkraut JM, Cunningham JM, et al. (2008). Genetic variation in the one-carbon transfer pathway and ovarian cancer risk. Cancer Res. 68: 2498-2506. http://dx.doi.org/10.1158/0008-5472.CAN-07-5165 PMid:18381459 PMCid:2786310   Kim GD, Ni J, Kelesoglu N, Roberts RJ, et al. (2002). Co-operation and communication between the human maintenance and de novo DNA (cytosine-5) methyltransferases. EMBO J. 21: 4183-4195. http://dx.doi.org/10.1093/emboj/cdf401 PMid:12145218 PMCid:126147   Lee SJ, Jeon HS, Jang JS, Park SH, et al. (2005). DNMT3B polymorphisms and risk of primary lung cancer. Carcinogenesis 26: 403-409. http://dx.doi.org/10.1093/carcin/bgh307 PMid:15528220   Lehnertz B, Ueda Y, Derijck AA, Braunschweig U, et al. (2003). Suv39h-mediated histone H3 lysine 9 methylation directs DNA methylation to major satellite repeats at pericentric heterochromatin. Curr. Biol. 13: 1192-1200. http://dx.doi.org/10.1016/S0960-9822(03)00432-9
F. - X. Li, Tan, J. - Y., Yang, X. - X., Wu, Y. - S., Wu, D., and Li, M., Genetic variants on 17q21 are associated with asthma in a Han Chinese population, vol. 11, pp. 340-347, 2012.
Bisgaard H, Bonnelykke K, Sleiman PM, Brasholt M, et al. (2009). Chromosome 17q21 gene variants are associated with asthma and exacerbations but not atopy in early childhood. Am. J. Respir. Crit. Care Med. 179: 179-185. http://dx.doi.org/10.1164/rccm.200809-1436OC PMid:19029000 Bouzigon E, Corda E, Aschard H, Dizier MH, et al. (2008). Effect of 17q21 variants and smoking exposure in early-onset asthma. N. Engl. J. Med. 359: 1985-1994. http://dx.doi.org/10.1056/NEJMoa0806604 PMid:18923164 Eder W, Ege MJ and von Mutius E (2006). The asthma epidemic. N. Engl. J. Med. 355: 2226-2235. http://dx.doi.org/10.1056/NEJMra054308 PMid:17124020 Flory JH, Sleiman PM, Christie JD, Annaiah K, et al. (2009). 17q12-21 variants interact with smoke exposure as a risk factor for pediatric asthma but are equally associated with early-onset versus late-onset asthma in North Americans of European ancestry. J. Allergy Clin. Immunol. 124: 605-607. http://dx.doi.org/10.1016/j.jaci.2009.05.047 PMid:19660801 Galanter J, Choudhry S, Eng C, Nazario S, et al. (2008). ORMDL3 gene is associated with asthma in three ethnically diverse populations. Am. J. Respir. Crit. Care Med. 177: 1194-1200. http://dx.doi.org/10.1164/rccm.200711-1644OC PMid:18310477 PMCid:2408437 Halapi E, Gudbjartsson DF, Jonsdottir GM, Bjornsdottir US, et al. (2010). A sequence variant on 17q21 is associated with age at onset and severity of asthma. Eur. J. Hum. Genet. 18: 902-908. http://dx.doi.org/10.1038/ejhg.2010.38 PMid:20372189 PMCid:2987388 Hirota T, Harada M, Sakashita M, Doi S, et al. (2008). Genetic polymorphism regulating ORM1-like 3 (Saccharomyces cerevisiae) expression is associated with childhood atopic asthma in a Japanese population. J. Allergy Clin. Immunol. 121: 769-770. http://dx.doi.org/10.1016/j.jaci.2007.09.038 PMid:18155279 Hjelmqvist L, Tuson M, Marfany G, Herrero E, et al. (2002). ORMDL proteins are a conserved new family of endoplasmic reticulum membrane proteins. Genome Biol. 3: RESEARCH0027. Leung TF, Sy HY, Ng MC, Chan IH, et al. (2009). Asthma and atopy are associated with chromosome 17q21 markers in Chinese children. Allergy 64: 621-628. http://dx.doi.org/10.1111/j.1398-9995.2008.01873.x PMid:19175592 Li X, Yang XX, Hu NY, Sun JZ, et al. (2011). A risk-associated single nucleotide polymorphism of SMAD7 is common to colorectal, gastric, and lung cancers in a Han Chinese population. Mol. Biol. Rep. 38: 5093-5097. http://dx.doi.org/10.1007/s11033-010-0656-3 PMid:21221812 Madore AM, Tremblay K, Hudson TJ and Laprise C (2008). Replication of an association between 17q21 SNPs and asthma in a French-Canadian familial collection. Hum. Genet. 123: 93-95. http://dx.doi.org/10.1007/s00439-007-0444-x PMid:17992541 Moffatt MF, Kabesch M, Liang L, Dixon AL, et al. (2007). Genetic variants regulating ORMDL3 expression contribute to the risk of childhood asthma. Nature 448: 470-473. http://dx.doi.org/10.1038/nature06014 PMid:17611496 Ober C and Hoffjan S (2006). Asthma genetics 2006: the long and winding road to gene discovery. Genes Immun. 7: 95-100. http://dx.doi.org/10.1038/sj.gene.6364284 PMid:16395390 Sleiman PM, Annaiah K, Imielinski M, Bradfield JP, et al. (2008). ORMDL3 variants associated with asthma susceptibility in North Americans of European ancestry. J. Allergy Clin. Immunol. 122: 1225-1227. http://dx.doi.org/10.1016/j.jaci.2008.06.041 PMid:18760456 Tavendale R, MacGregor DF, Mukhopadhyay S and Palmer CN (2008). A polymorphism controlling ORMDL3 expression is associated with asthma that is poorly controlled by current medications. J. Allergy Clin. Immunol. 121: 860-863. http://dx.doi.org/10.1016/j.jaci.2008.01.015 PMid:18395550 Wjst M (2008). ORMDL3 - guilt by association? Clin. Exp. Allergy 38: 1579-1581. http://dx.doi.org/10.1111/j.1365-2222.2008.03086.x Wu H, Romieu I, Sienra-Monge JJ, Li H, et al. (2009). Genetic variation in ORM1-like 3 (ORMDL3) and gasdermin-like (GSDML) and childhood asthma. Allergy 64: 629-635. http://dx.doi.org/10.1111/j.1398-9995.2008.01912.x PMid:19133921 PMCid:2697826
G. R. Sun, Li, M., Li, G. X., Tian, Y. D., Han, R. L., and Kang, X. T., Identification and abundance of miRNA in chicken hypothalamus tissue determined by Solexa sequencing, vol. 11, pp. 4682-4694, 2012.
Ambros V (2004). The functions of animal microRNAs. Nature 431: 350-355. http://dx.doi.org/10.1038/nature02871 PMid:15372042   Burnside J, Ouyang M, Anderson A, Bernberg E, et al. (2008). Deep sequencing of chicken microRNAs. BMC Genomics 9: 185. http://dx.doi.org/10.1186/1471-2164-9-185 PMid:18430245 PMCid:2375912   Chan JA, Krichevsky AM and Kosik KS (2005). MicroRNA-21 is an antiapoptotic factor in human glioblastoma cells. Cancer Res. 65: 6029-6033. http://dx.doi.org/10.1158/0008-5472.CAN-05-0137 PMid:16024602   Cui Q, Yu Z, Purisima EO and Wang E (2006). Principles of microRNA regulation of a human cellular signaling network. Mol. Syst. Biol. 2: 46. http://dx.doi.org/10.1038/msb4100089 PMid:16969338 PMCid:1681519   Dennis G Jr, Sherman BT, Hosack DA, Yang J, et al. (2003). DAVID: database for annotation, visualization, and integrated discovery. Genome Biol. 4: 3. http://dx.doi.org/10.1186/gb-2003-4-5-p3   Dostie J, Mourelatos Z, Yang M, Sharma A, et al. (2003). Numerous microRNPs in neuronal cells containing novel microRNAs. RNA 9: 180-186. http://dx.doi.org/10.1261/rna.2141503 PMid:12554860 PMCid:1370383   Eulalio A, Huntzinger E and Izaurralde E (2008). GW182 interaction with Argonaute is essential for miRNA-mediated translational repression and mRNA decay. Nat. Struct. Mol. Biol. 15: 346-353. http://dx.doi.org/10.1038/nsmb.1405 PMid:18345015   Filipowicz W, Bhattacharyya SN and Sonenberg N (2008). Mechanisms of post-transcriptional regulation by microRNAs: are the answers in sight? Nat. Rev. Genet. 9: 102-114. http://dx.doi.org/10.1038/nrg2290 PMid:18197166   Glazov EA, Cottee PA, Barris WC, Moore RJ, et al. (2008). A microRNA catalog of the developing chicken embryo identified by a deep sequencing approach. Genome Res. 18: 957-964. http://dx.doi.org/10.1101/gr.074740.107 PMid:18469162 PMCid:2413163   Hicks JA, Tembhurne P and Liu HC (2008). MicroRNA expression in chicken embryos. Poult. Sci. 87: 2335-2343. http://dx.doi.org/10.3382/ps.2008-00114 PMid:18931185   Huang da W, Sherman BT and Lempicki RA (2009). Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat. Protoc. 4: 44-57. PMid:19131956   Kang L, Chen X, Zhou Y, Liu B, et al. (2004). The analysis of large-scale gene expression correlated to the phase changes of the migratory locust. Proc. Natl. Acad. Sci. U. S. A. 101: 17611-17615. http://dx.doi.org/10.1073/pnas.0407753101 PMid:15591108 PMCid:535406   Krek A, Grun D, Poy MN, Wolf R, et al. (2005). Combinatorial microRNA target predictions. Nat. Genet. 37: 495-500. http://dx.doi.org/10.1038/ng1536 PMid:15806104   Krichevsky AM, Sonntag KC, Isacson O and Kosik KS (2006). Specific microRNAs modulate embryonic stem cell-derived neurogenesis. Stem Cells 24: 857-864. http://dx.doi.org/10.1634/stemcells.2005-0441 PMid:16357340 PMCid:2605651   Lagos-Quintana M, Rauhut R, Yalcin A, Meyer J, et al. (2002). Identification of tissue-specific microRNAs from mouse. Curr. Biol. 12: 735-739. http://dx.doi.org/10.1016/S0960-9822(02)00809-6   Li G, Li Y, Li X, Ning X, et al. (2011). MicroRNA identity and abundance in developing swine adipose tissue as determined by Solexa sequencing. J. Cell Biochem. 112: 1318-1328. http://dx.doi.org/10.1002/jcb.23045 PMid:21312241   Li R, Li Y, Kristiansen K and Wang J (2008). SOAP: short oligonucleotide alignment program. Bioinformatics 24: 713- 714. http://dx.doi.org/10.1093/bioinformatics/btn025 PMid:18227114   McDaneld TG (2009). MicroRNA: mechanism of gene regulation and application to livestock. J. Anim. Sci. 87: E21-E28. http://dx.doi.org/10.2527/jas.2008-1303 PMid:18791136   Miska EA (2005). How microRNAs control cell division, differentiation and death. Curr. Opin. Genet. Dev. 15: 563-568. http://dx.doi.org/10.1016/j.gde.2005.08.005 PMid:16099643   Nielsen M, Hansen JH, Hedegaard J, Nielsen RO, et al. (2010). MicroRNA identity and abundance in porcine skeletal muscles determined by deep sequencing. Anim. Genet. 41: 159-168. http://dx.doi.org/10.1111/j.1365-2052.2009.01981.x PMid:19917043   Raman M, Chen W and Cobb MH (2007). Differential regulation and properties of MAPKs. Oncogene 26: 3100-3112. http://dx.doi.org/10.1038/sj.onc.1210392 PMid:17496909   Rathjen T, Pais H, Sweetman D, Moulton V, et al. (2009). High throughput sequencing of microRNAs in chicken somites. FEBS Lett. 583: 1422-1426. http://dx.doi.org/10.1016/j.febslet.2009.03.048 PMid:19328789   Reinhart BJ, Slack FJ, Basson M, Pasquinelli AE, et al. (2000). The 21-nucleotide let-7 RNA regulates developmental timing in Caenorhabditis elegans. Nature 403: 901-906. http://dx.doi.org/10.1038/35002607 PMid:10706289   Richards MP and Proszkowiec-Weglarz M (2007). Mechanisms regulating feed intake, energy expenditure, and body weight in poultry. Poult. Sci. 86: 1478-1490. PMid:17575199   Scheffner M, Huibregtse JM, Vierstra RD and Howley PM (1993). The HPV-16 E6 and E6-AP complex functions as a ubiquitin-protein ligase in the ubiquitination of p53. Cell 75: 495-505. http://dx.doi.org/10.1016/0092-8674(93)90384-3   Shao P, Zhou H, Xiao ZD, He JH, et al. (2008). Identification of novel chicken microRNAs and analysis of their genomic organization. Gene 418: 34-40. http://dx.doi.org/10.1016/j.gene.2008.04.004 PMid:18511220   Ulitsky I, Laurent LC and Shamir R (2010). Towards computational prediction of microRNA function and activity. Nucleic Acids Res. 38: e160. http://dx.doi.org/10.1093/nar/gkq570 PMid:20576699 PMCid:2926627   Vasudevan S, Tong Y and Steitz JA (2007). Switching from repression to activation: microRNAs can up-regulate translation. Science 318: 1931-1934. http://dx.doi.org/10.1126/science.1149460 PMid:18048652   Zhang B, Pan X, Cobb GP and Anderson TA (2006). Plant microRNA: a small regulatory molecule with big impact. Dev. Biol. 289: 3-16. http://dx.doi.org/10.1016/j.ydbio.2005.10.036 PMid:16325172   Zuker M (2003). Mfold web server for nucleic acid folding and hybridization prediction. Nucleic Acids Res. 31: 3406- 3415. http://dx.doi.org/10.1093/nar/gkg595 PMid:12824337 PMCid:169194
M. L. Lai, Yang, L. J., Zhu, X. H., and Li, M., A novel mutation of the DSRAD gene in a Chinese family with dyschromatosis symmetrica hereditaria, vol. 11, pp. 1731-1737, 2012.
Alfadley A, Al AA, Hainau B, Pedersen KT, et al. (2000). Reticulate acropigmentation of Dohi: a case report of autosomal recessive inheritance. J. Am. Acad. Dermatol. 43: 113-117. http://dx.doi.org/10.1067/mjd.2000.103994 PMid:10863235   Cho DS, Yang W, Lee JT, Shiekhattar R, et al. (2003). Requirement of dimerization for RNA editing activity of adenosine deaminases acting on RNA. J. Biol. Chem. 278: 17093-17102. http://dx.doi.org/10.1074/jbc.M213127200 PMid:12618436   Liu Q, Jiang L, Liu WL, Kang XJ, et al. (2006). Two novel mutations and evidence for haploinsufficiency of the ADAR gene in dyschromatosis symmetrica hereditaria. Br. J. Dermatol. 154: 636-642. http://dx.doi.org/10.1111/j.1365-2133.2006.07133.x PMid:16536805   Miyamura Y, Suzuki T, Kono M, Inagaki K, et al. (2003). Mutations of the RNA-specific adenosine deaminase gene (DSRAD) are involved in dyschromatosis symmetrica hereditaria. Am. J. Hum. Genet. 73: 693-699. http://dx.doi.org/10.1086/378209 PMid:12916015 PMCid:1180697   Murata I, Hayashi M, Hozumi Y, Fujii K, et al. (2010). Mutation analyses of patients with dyschromatosis symmetrica hereditaria: five novel mutations of the ADAR1 gene. J. Dermatol. Sci. 58: 218-220. http://dx.doi.org/10.1016/j.jdermsci.2010.04.001 PMid:20439151   O'Connell MA, Krause S, Higuchi M, Hsuan JJ, et al. (1995). Cloning of cDNAs encoding mammalian double-stranded RNA-specific adenosine deaminase. Mol. Cell Biol. 15: 1389-1397. PMid:7862132 PMCid:230363   Oiso N, Murata I, Hayashi M, Amatsu A, et al. (2011). Dermoscopic features in a case of dyschromatosis symmetrica hereditaria. J. Dermatol. 38: 91-93. http://dx.doi.org/10.1111/j.1346-8138.2010.01110.x PMid:21175763   Ostlere LS, Ratnavel RC, Lawlor F, Black MM, et al. (1995). Reticulate acropigmentation of Dohi. Clin. Exp. Dermatol. 20: 477-479. http://dx.doi.org/10.1111/j.1365-2230.1995.tb01382.x PMid:8857341   Oyama M, Shimizu H, Ohata Y, Tajima S, et al. (1999). Dyschromatosis symmetrica hereditaria (reticulate acropigmentation of Dohi): report of a Japanese family with the condition and a literature review of 185 cases. Br. J. Dermatol. 140: 491-496. http://dx.doi.org/10.1046/j.1365-2133.1999.02716.x PMid:10233273   Rueter SM, Dawson TR and Emeson RB (1999). Regulation of alternative splicing by RNA editing. Nature 399: 75-80. http://dx.doi.org/10.1038/19992 PMid:10331393   Schade M, Turner CJ, Kuhne R, Schmieder P, et al. (1999). The solution structure of the Zalpha domain of the human RNA editing enzyme ADAR1 reveals a prepositioned binding surface for Z-DNA. Proc. Natl. Acad. Sci. U. S. A. 96: 12465-12470. http://dx.doi.org/10.1073/pnas.96.22.12465 PMid:10535945 PMCid:22950   Sun XK, Xu AE, Chen JF and Tang X (2005). The double-RNA-specific adenosine deaminase (DSRAD) gene in dyschromatosis symmetrica hereditaria patients: two novel mutations and one previously described. Br. J. Dermatol. 153: 342-345. http://dx.doi.org/10.1111/j.1365-2133.2005.06572.x PMid:16086746   Suzuki N, Suzuki T, Inagaki K, Ito S, et al. (2005). Mutation analysis of the ADAR1 gene in dyschromatosis symmetrica hereditaria and genetic differentiation from both dyschromatosis universalis hereditaria and acropigmentatio reticularis. J. Invest. Dermatol. 124: 1186-1192. http://dx.doi.org/10.1111/j.0022-202X.2005.23732.x PMid:15955093   Urabe K and Hori Y (1997). Dyschromatosis. Semin. Cutan. Med. Surg. 16: 81-85. http://dx.doi.org/10.1016/S1085-5629(97)80039-9   Wagner RW, Smith JE, Cooperman BS and Nishikura K (1989). A double-stranded RNA unwinding activity introduces structural alterations by means of adenosine to inosine conversions in mammalian cells and Xenopus eggs. Proc. Natl. Acad. Sci. U. S. A. 86: 2647-2651. http://dx.doi.org/10.1073/pnas.86.8.2647 PMid:2704740 PMCid:286974   Zhang XJ, Gao M, Li M, Li M, et al. (2003). Identification of a locus for dyschromatosis symmetrica hereditaria at chromosome 1q11-1q21. J. Invest. Dermatol. 120: 776-780. http://dx.doi.org/10.1046/j.1523-1747.2003.12130.x PMid:12713580
H. - X. Tong, Li, M., Zhang, Y., Zhu, J., and Lu, W. - Q., A novel NF1 mutation in a Chinese patient with giant café-au-lait macule in neurofibromatosis type 1 associated with a malignant peripheral nerve sheath tumor and bone abnormality, vol. 11, pp. 2972-2978, 2012.
Bausch B, Borozdin W, Mautner VF, Hoffmann MM, et al. (2007). Germline NF1 mutational spectra and loss-of-heterozygosity analyses in patients with pheochromocytoma and neurofibromatosis type 1. J. Clin. Endocrinol. Metab. 92: 2784-2792. http://dx.doi.org/10.1210/jc.2006-2833 PMid:17426081   Bottillo I, Ahlquist T, Brekke H, Danielsen SA, et al. (2009). Germline and somatic NF1 mutations in sporadic and NF1- associated malignant peripheral nerve sheath tumours. J. Pathol. 217: 693-701. http://dx.doi.org/10.1002/path.2494 PMid:19142971   Brems H, Beert E, de RT and Legius E (2009). Mechanisms in the pathogenesis of malignant tumours in neurofibromatosis type 1. Lancet Oncol. 10: 508-515. http://dx.doi.org/10.1016/S1470-2045(09)70033-6   Cai Y, Fan Z, Liu Q, Li J, et al. (2005). Two novel mutations of the NF1 gene in Chinese Han families with type 1 neurofibromatosis. J. Dermatol. Sci. 39: 125-127. http://dx.doi.org/10.1016/j.jdermsci.2005.05.003 PMid:16005615   Cichowski K and Jacks T (2001). NF1 tumor suppressor gene function: narrowing the GAP. Cell 104: 593-604. http://dx.doi.org/10.1016/S0092-8674(01)00245-8   Erdi H, Boyvat A and Calikoglu E (1999). Giant cafe au lait spot in a patient with neurofibromatosis. Acta Derm. Venereol. 79: 496. http://dx.doi.org/10.1080/000155599750010157 PMid:10598783   Evans DG, Baser ME, McGaughran J, Sharif S, et al. (2002). Malignant peripheral nerve sheath tumours in neurofibromatosis 1. J. Med. Genet. 39: 311-314. http://dx.doi.org/10.1136/jmg.39.5.311 PMid:12011145 PMCid:1735122   Ferner RE and Gutmann DH (2002). International consensus statement on malignant peripheral nerve sheath tumors in neurofibromatosis. Cancer Res. 62: 1573-1577. PMid:11894862   Gutmann DH, Aylsworth A, Carey JC, Korf B, et al. (1997). The diagnostic evaluation and multidisciplinary management of neurofibromatosis 1 and neurofibromatosis 2. JAMA 278: 51-57. http://dx.doi.org/10.1001/jama.1997.03550010065042 PMid:9207339   Heim RA, Kam-Morgan LN, Binnie CG, Corns DD, et al. (1995). Distribution of 13 truncating mutations in the neurofibromatosis 1 gene. Hum. Mol. Genet. 4: 975-981. http://dx.doi.org/10.1093/hmg/4.6.975 PMid:7655472   Huson SM, Harper PS and Compston DA (1988). Von Recklinghausen neurofibromatosis. A clinical and population study in south-east Wales. Brain 111: 1355-1381. http://dx.doi.org/10.1093/brain/111.6.1355 PMid:3145091   Kar M, Deo SV, Shukla NK, Malik A, et al. (2006). Malignant peripheral nerve sheath tumors (MPNST)-clinicopathological study and treatment outcome of twenty-four cases. World J. Surg. Oncol. 4: 55. http://dx.doi.org/10.1186/1477-7819-4-55 PMid:16923196 PMCid:1560134   Lakkis MM, Golden JA, O'Shea KS and Epstein JA (1999). Neurofibromin deficiency in mice causes exencephaly and is a modifier for Splotch neural tube defects. Dev. Biol. 212: 80-92. http://dx.doi.org/10.1006/dbio.1999.9327 PMid:10419687   Messiaen L, Vogt J, Bengesser K, Fu C, et al. (2011). Mosaic type-1 NF1 microdeletions as a cause of both generalized and segmental neurofibromatosis type-1 (NF1). Hum. Mutat. 32: 213-219. http://dx.doi.org/10.1002/humu.21418 PMid:21280148   Origone P, De LA, Bellini C, Buccino A, et al. (2002). Ten novel mutations in the human neurofibromatosis type 1 (NF1) gene in Italian patients. Hum. Mutat. 20: 74-75. http://dx.doi.org/10.1002/humu.9039 PMid:12112660   Rasmussen SA and Friedman JM (2000). NF1 gene and neurofibromatosis 1. Am. J. Epidemiol. 151: 33-40. http://dx.doi.org/10.1093/oxfordjournals.aje.a010118 PMid:10625171   Shah KN (2010). The diagnostic and clinical significance of cafe-au-lait macules. Pediatr. Clin. North Am. 57: 1131-1153. http://dx.doi.org/10.1016/j.pcl.2010.07.002 PMid:20888463   Thappa DM, Jeevankumar B and Karthikeyan K (2001). Giant cafe-au-lait macule in neurofibromatosis type 1. J. Dermatol. 28: 60-61. PMid:11280470   Upadhyaya M, Osborn MJ, Maynard J, Kim MR, et al. (1997). Mutational and functional analysis of the neurofibromatosis type 1 (NF1) gene. Hum. Genet. 99: 88-92. http://dx.doi.org/10.1007/s004390050317 PMid:9003501   Upadhyaya M, Kluwe L, Spurlock G, Monem B, et al. (2008). Germline and somatic NF1 gene mutation spectrum in NF1- associated malignant peripheral nerve sheath tumors (MPNSTs). Hum. Mutat. 29: 74-82. http://dx.doi.org/10.1002/humu.20601 PMid:17960768   Yang CC, Happle R, Chao SC, Yu-Yun LJ, et al. (2008). Giant cafe-au-lait macule in neurofibromatosis 1: a type 2 segmental manifestation of neurofibromatosis 1? J. Am. Acad. Dermatol. 58: 493-497. http://dx.doi.org/10.1016/j.jaad.2007.03.013 PMid:18280349   Zhang W, Rhodes SD, Zhao L, He Y, et al. (2011). Primary osteopathy of vertebrae in a neurofibromatosis type 1 murine model. Bone 48: 1378-1387. http://dx.doi.org/10.1016/j.bone.2011.03.760 PMid:21439418
M. Li, Liang, J. Y., Sun, Z. H., Zhang, H., and Yao, Z. R., Novel nonsense and frameshift NTRK1 gene mutations in Chinese patients with congenital insensitivity to pain with anhidrosis, vol. 11, pp. 2156-2162, 2012.
Beigelman A, Levy J, Hadad N, Pinsk V, et al. (2009). Abnormal neutrophil chemotactic activity in children with congenital insensitivity to pain with anhidrosis (CIPA): the role of nerve growth factor. Clin. Immunol. 130: 365-372. http://dx.doi.org/10.1016/j.clim.2008.09.005 PMid:18955016   Bodzioch M, Lapicka K, Aslanidis C, Kacinski M, et al. (2001). Two novel mutant alleles of the gene encoding neurotrophic tyrosine kinase receptor type 1 (NTRK1) in a patient with congenital insensitivity to pain with anhidrosis: a splice junction mutation in intron 5 and cluster of four mutations in exon 15. Hum. Mutat. 17: 72. http://dx.doi.org/10.1002/1098-1004(2001)17:1<72::AID-HUMU10>3.0.CO;2-X   Bonkowsky JL, Johnson J, Carey JC, Smith AG, et al. (2003). An infant with primary tooth loss and palmar hyperkeratosis: a novel mutation in the NTRK1 gene causing congenital insensitivity to pain with anhidrosis. Pediatrics 112: e237-e241. http://dx.doi.org/10.1542/peds.112.3.e237 PMid:12949319   Greco A, Villa R, Fusetti L, Orlandi R, et al. (2000). The Gly571Arg mutation, associated with the autonomic and sensory disorder congenital insensitivity to pain with anhidrosis, causes the inactivation of the NTRK1/nerve growth factor receptor. J. Cell Physiol. 182: 127-133. http://dx.doi.org/10.1002/(SICI)1097-4652(200001)182:1<127::AID-JCP14>3.0.CO;2-0   Guo YC, Liao KK, Soong BW, Tsai CP, et al. (2004). Congenital insensitivity to pain with anhidrosis in Taiwan: a morphometric and genetic study. Eur. Neurol. 51: 206-214. http://dx.doi.org/10.1159/000078487 PMid:15159601   Huehne K, Zweier C, Raab K, Odent S, et al. (2008). Novel missense, insertion and deletion mutations in the neurotrophic tyrosine kinase receptor type 1 gene (NTRK1) associated with congenital insensitivity to pain with anhidrosis. Neuromuscul. Disord. 18: 159-166. http://dx.doi.org/10.1016/j.nmd.2007.10.005 PMid:18077166   Indo Y (2001). Molecular basis of congenital insensitivity to pain with anhidrosis (CIPA): mutations and polymorphisms in TRKA (NTRK1) gene encoding the receptor tyrosine kinase for nerve growth factor. Hum. Mutat. 18: 462-471. http://dx.doi.org/10.1002/humu.1224 PMid:11748840   Indo Y, Tsuruta M, Hayashida Y, Karim MA, et al. (1996). Mutations in the TRKA/NGF receptor gene in patients with congenital insensitivity to pain with anhidrosis. Nat. Genet. 13: 485-488. http://dx.doi.org/10.1038/ng0896-485 PMid:8696348   Indo Y, Mardy S, Miura Y, Moosa A, et al. (2001). Congenital insensitivity to pain with anhidrosis (CIPA): novel mutations of the TRKA (NTRK1) gene, a putative uniparental disomy, and a linkage of the mutant TRKA and PKLR genes in a family with CIPA and pyruvate kinase deficiency. Hum. Mutat. 18: 308-318. http://dx.doi.org/10.1002/humu.1192 PMid:11668614   Kilic SS, Ozturk R, Sarisozen B, Rotthier A, et al. (2009). Humoral immunodeficiency in congenital insensitivity to pain with anhidrosis. Neurogenetics 10: 161-165. http://dx.doi.org/10.1007/s10048-008-0165-x PMid:19089473   Lee ST, Lee J, Lee M, Kim JW, et al. (2009). Clinical and genetic analysis of Korean patients with congenital insensitivity to pain with anhidrosis. Muscle Nerve 40: 855-859. http://dx.doi.org/10.1002/mus.21340 PMid:19618435   Lin YP, Su YN, Weng WC and Lee WT (2010). Novel neurotrophic tyrosine kinase receptor type 1 gene mutation associated with congenital insensitivity to pain with anhidrosis. J. Child. Neurol. 25: 1548-1551. http://dx.doi.org/10.1177/0883073810375464 PMid:20647579   Mardy S, Miura Y, Endo F, Matsuda I, et al. (1999). Congenital insensitivity to pain with anhidrosis: novel mutations in the TRKA (NTRK1) gene encoding a high-affinity receptor for nerve growth factor. Am. J. Hum. Genet. 64: 1570- 1579. http://dx.doi.org/10.1086/302422 PMid:10330344 PMCid:1377900   Mardy S, Miura Y, Endo F, Matsuda I, et al. (2001). Congenital insensitivity to pain with anhidrosis (CIPA): effect of TRKA (NTRK1) missense mutations on autophosphorylation of the receptor tyrosine kinase for nerve growth factor. Hum. Mol. Genet. 10: 179-188. http://dx.doi.org/10.1093/hmg/10.3.179 PMid:11159935   Miranda C, Di VM, Selleri S, Zanotti G, et al. (2002). Novel pathogenic mechanisms of congenital insensitivity to pain with anhidrosis genetic disorder unveiled by functional analysis of neurotrophic tyrosine receptor kinase type 1/nerve growth factor receptor mutations. J. Biol. Chem. 277: 6455-6462. http://dx.doi.org/10.1074/jbc.M110016200 PMid:11719521   Miura Y, Mardy S, Awaya Y, Nihei K, et al. (2000). Mutation and polymorphism analysis of the TRKA (NTRK1) gene encoding a high-affinity receptor for nerve growth factor in congenital insensitivity to pain with anhidrosis (CIPA) families. Hum. Genet. 106: 116-124. http://dx.doi.org/10.1007/s004390051018 PMid:10982191   Miura Y, Hiura M, Torigoe K, Numata O, et al. (2000). Complete paternal uniparental isodisomy for chromosome 1 revealed by mutation analyses of the TRKA (NTRK1) gene encoding a receptor tyrosine kinase for nerve growth factor in a patient with congenital insensitivity to pain with anhidrosis. Hum. Genet. 107: 205-209. http://dx.doi.org/10.1007/s004390000369 PMid:11071380   Rosemberg S, Marie SK and Kliemann S (1994). Congenital insensitivity to pain with anhidrosis (hereditary sensory and autonomic neuropathy type IV). Pediatr. Neurol. 11: 50-56. http://dx.doi.org/10.1016/0887-8994(94)90091-4   Sato Y, Tsuboi Y, Kurosawa H, Sugita K, et al. (2004). Anti-apoptotic effect of nerve growth factor is lost in congenital insensitivity to pain with anhidrosis (CIPA) B lymphocytes. J. Clin. Immunol. 24: 302-308. http://dx.doi.org/10.1023/B:JOCI.0000025452.79585.a1 PMid:15114061   Shatzky S, Moses S, Levy J, Pinsk V, et al. (2000). Congenital insensitivity to pain with anhidrosis (CIPA) in Israeli- Bedouins: genetic heterogeneity, novel mutations in the TRKA/NGF receptor gene, clinical findings, and results of nerve conduction studies. Am. J. Med. Genet. 92: 353-360. http://dx.doi.org/10.1002/1096-8628(20000619)92:5<353::AID-AJMG12>3.0.CO;2-C   Suriu C, Khayat M, Weiler M, Kfir N, et al. (2009). Skoura - a genetic island for congenital insensitivity to pain and anhidrosis among Moroccan Jews, as determined by a novel mutation in the NTRK1 gene. Clin. Genet. 75: 230-236. http://dx.doi.org/10.1111/j.1399-0004.2008.01143.x PMid:19250380   Swanson AG (1963). Congenital insensitivity to pain with anhidrosis. A unique syndrome in two male siblings. Arch. Neurol. 8: 299-306. http://dx.doi.org/10.1001/archneur.1963.00460030083008 PMid:13979626   Vardy PA, Greenberg LW, Kachel C and de Leon GF (1979). Congenital insensitivity to pain with anhydrosis. Report of a family and review of literature with reference to immune deficiency. Am. J. Dis. Child. 133: 1153-1155. PMid:92193
2011
M. Li, Ma, C. J., Liu, X. M., Zhao, D., Xu, Q. C., and Wang, Y. J., Molecular cloning of HSP70 in Mycoplasma ovipneumoniae and comparison with that of other mycoplasmas, vol. 10, pp. 834-848, 2011.
Amemiya K, Meyers JL, Deshazer D, Riggins RN, et al. (2007). Detection of the host immune response to Burkholderia mallei heat-shock proteins GroEL and DnaK in a glanders patient and infected mice. Diagn. Microbiol. Infect. Dis. 59: 137-147. doi:10.1016/j.diagmicrobio.2007.04.017 PMid:17908615 Barré A, de Daruvar A and Blanchard A (2004). MolliGen, a database dedicated to the comparative genomics of Mollicutes. Nucleic Acids Res. 32: D307-D310. doi:10.1093/nar/gkh114 PMid:14681420    PMCid:308848 Biberfeld G (1985). Infection Sequelae and Autoimmune Reactions in Mycoplasma pneumoniae Infection. Academic Press, Inc., Orlando, 293-311. Candiano G, Bruschi M, Musante L, Santucci L, et al. (2004). Blue silver: a very sensitive colloidal Coomassie G-250 staining for proteome analysis. Electrophoresis 25: 1327-1333. doi:10.1002/elps.200305844 PMid:15174055 Chou SY, Chung TL, Chen RJ, Ro LH, et al. (1997). Molecular cloning and analysis of a HSP (heat shock protein)-like 42 kDa antigen gene of Mycoplasma hyopneumoniae. Biochem. Mol. Biol. Int. 41: 821-831. PMid:9111943 Craig EA (1985). The heat shock response. CRC Crit. Rev. Biochem. 18: 239-280. doi:10.3109/10409238509085135 Craig EA, Gambill BD and Nelson RJ (1993). Heat shock proteins: molecular chaperones of protein biogenesis. Microbiol. Rev. 57: 402-414. PMid:8336673    PMCid:372916 Dassanayake RP, Shanthalingam S, Herndon CN, Subramaniam R, et al. (2010). Mycoplasma ovipneumoniae can predispose bighorn sheep to fatal Mannheimia haemolytica pneumonia. Vet. Microbiol. 145: 354-359. doi:10.1016/j.vetmic.2010.04.011 PMid:20466492 Falah M and Gupta RS (1994). Cloning of the hsp70 (dnaK) genes from Rhizobium meliloti and Pseudomonas cepacia: phylogenetic analyses of mitochondrial origin based on a highly conserved protein sequence. J. Bacteriol. 176: 7748-7753. PMid:7528198    PMCid:197237 Falah M and Gupta RS (1997). Phylogenetic analysis of mycoplasmas based on Hsp70 sequences: cloning of the dnaK (hsp70) gene region of Mycoplasma capricolum. Int. J. Syst. Bacteriol. 47: 38-45. doi:10.1099/00207713-47-1-38 PMid:8995799 Floto RA, MacAry PA, Boname JM, Mien TS, et al. (2006). Dendritic cell stimulation by mycobacterial Hsp70 is mediated through CCR5. Science 314: 454-458. doi:10.1126/science.1133515 PMid:17053144 Foggie A, Jones GE and Buxton D (1976). The experimental infection of specific pathogen free lambs with Mycoplasma ovipneumoniae. Res. Vet. Sci. 21: 28-35. PMid:133436 Fraser CM, Gocayne JD, White O, Adams MD, et al. (1995). The minimal gene complement of Mycoplasma genitalium. Science 270: 397-403. doi:10.1126/science.270.5235.397 PMid:7569993 Himmelreich R, Hilbert H, Plagens H, Pirkl E, et al. (1996). Complete sequence analysis of the genome of the bacterium Mycoplasma pneumoniae. Nucleic Acids Res. 24: 4420-4449. doi:10.1093/nar/24.22.4420 PMid:8948633    PMCid:146264 Ionas G, Clarke JK and Marshall RB (1991). The isolation of multiple strains of Mycoplasma ovipneumoniae from individual pneumonic sheep lungs. Vet. Microbiol. 29: 349-360. doi:10.1016/0378-1135(91)90142-3 Jones GE, Foggie A, Mould DL and Livitt S (1976). The comparison and characterisation of glycolytic mycoplasmas isolated from the respiratory tract of sheep. J. Med. Microbiol. 9: 39-52. doi:10.1099/00222615-9-1-39 PMid:1263247 Kakeya H, Udono H, Maesaki S, Sasaki E, et al. (1999). Heat shock protein 70 (hsp70) as a major target of the antibody response in patients with pulmonary cryptococcosis. Clin. Exp. Immunol. 115: 485-490. doi:10.1046/j.1365-2249.1999.00821.x PMid:10193422    PMCid:1905239 Kiang JG and Tsokos GC (1998). Heat shock protein 70 kDa: molecular biology, biochemistry, and physiology. Pharmacol. Ther. 80: 183-201. doi:10.1016/S0163-7258(98)00028-X Kumar S, Tamura K and Nei M (2004). MEGA3: integrated software for molecular evolutionary genetics analysis and sequence alignment. Brief. Bioinform. 5: 150-163. doi:10.1093/bib/5.2.150 PMid:15260895 Li X, Yang X, Li L, Liu H, et al. (2006). A truncated C-terminal fragment of Mycobacterium tuberculosis HSP70 gene enhanced potency of HBV DNA vaccine. Vaccine 24: 3321-3331. doi:10.1016/j.vaccine.2006.01.012 PMid:16472546 Lin YC, Miles RJ, Nicholas RA, Kelly DP, et al. (2008). Isolation and immunological detection of Mycoplasma ovipneumoniae in sheep with atypical pneumonia, and lack of a role for Mycoplasma arginini. Res. Vet. Sci. 84: 367-373. doi:10.1016/j.rvsc.2007.06.004 PMid:17662318 Minion FC, Lefkowitz EJ, Madsen ML, Cleary BJ, et al. (2004). The genome sequence of Mycoplasma hyopneumoniae strain 232, the agent of swine mycoplasmosis. J. Bacteriol. 186: 7123-7133. doi:10.1128/JB.186.21.7123-7133.2004 PMid:15489423    PMCid:523201 Ramagli L (1999). 2-D Proteome Analysis. In: Methods in Molecular Biology (Link A, ed.). Humana Press, Totowa, 99-103. Rasoli M, Omar AR, Aini I, Jalilian B, et al. (2010). Fusion of HSP70 gene of Mycobacterium tuberculosis to hemagglutinin (H5) gene of avian influenza virus in DNA vaccine enhances its potency. Acta Virol. 54: 33-39. doi:10.4149/av_2010_01_33 PMid:20201612 Razin S, Yogev D and Naot Y (1998). Molecular biology and pathogenicity of mycoplasmas. Microbiol. Mol. Biol. Rev. 62: 1094-1156. PMid:9841667    PMCid:98941 Saitou N and Nei M (1987). The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol. Biol. Evol. 4: 406-425. PMid:3447015 Scherm B, Gerlach GF and Runge M (2002). Analysis of heat shock protein 60 encoding genes of mycoplasmas and investigations concerning their role in immunity and infection. Vet. Microbiol. 89: 141-150. doi:10.1016/S0378-1135(02)00158-X Staint George TD and Carmichael LE (1975). Isolation of Mycoplasma ovipneumoniae from sheep with chronic pneumonia. Vet. Rec. 97: 205-206. doi:10.1136/vr.97.11.205 PMid:1162872 Suzue K and Young RA (1996). Adjuvant-free hsp70 fusion protein system elicits humoral and cellular immune responses to HIV-1 p24. J. Immunol. 156: 873-879. PMid:8543845 Torigoe T, Tamura Y and Sato N (2009). Heat shock proteins and immunity: application of hyperthermia for immunomodulation. Int. J. Hyperther. 25: 610-616. doi:10.3109/02656730903315831 PMid:20021222