Publications

Found 11 results
Filters: Author is C.Z. Fu  [Clear All Filters]
2013
J. B. Gao, Li, Y. K., Yang, N., Ma, X. H., Adoligbe, C., Jiang, B. J., Fu, C. Z., Cheng, G., and Zan, L. S., Novel SNPs in the exon region of bovine DKK4 gene and their association with body measurement traits in Qinchuan cattle, vol. 12, pp. 6664-6672, 2013.
C. Z. Fu, Wang, H., Mei, C. G., Wang, J. L., Jiang, B. J., Ma, X. H., Wang, H. B., Cheng, G., and Zan, L. S., SNPs at 3'-UTR of the bovine CDIPT gene associated with Qinchuan cattle meat quality traits, vol. 12, pp. 775-782, 2013.
Antonsson BE (1994). Purification and characterization of phosphatidylinositol synthase from human placenta. Biochem. J. 297 (Pt 3): 517-522. PMid:8110188 PMCid:1137864   Brethour JR (1994). Estimating marbling score in live cattle from ultrasound images using pattern recognition and neural network procedures. J. Anim. Sci. 72: 1425-1432. PMid:8071165   Chakraborty R, Zhong Y, de AM, Clemens PR, et al. (1994). Linkage disequilibria among (CA)n polymorphisms in the human dystrophin gene and their implications in carrier detection and prenatal diagnosis in Duchenne and Becker muscular dystrophies. Genomics 21: 567-570. http://dx.doi.org/10.1006/geno.1994.1315 PMid:7959733   Chen H and Leibenguth F (1995). Studies on multilocus fingerprints, RAPD markers, and mitochondrial DNA of a gynogenetic fish (Carassius auratus gibelio). Biochem. Genet. 33: 297-306. http://dx.doi.org/10.1007/BF02399929 PMid:8748455   Deguchi A, Segawa K, Hosaka K, Weinstein IB, et al. (2002). Overexpression of phosphatidylinositol synthase enhances growth and G1 progression in NIH3T3 cells. Jpn. J. Cancer Res. 93: 157-166. http://dx.doi.org/10.1111/j.1349-7006.2002.tb01254.x PMid:11856479   Fu YY, Xiong YZ, Pan G, Cheng L, et al. (2009). Association of the polymorphism of porcine CDIPT gene with carcass and meat quality traits. Chin. J. Anim. Vet. Sci. 40: 787-791.   Hamlin KE, Green RD, Perkins TL, Cundiff LV, et al. (1995). Real-time ultrasonic measurement of fat thickness and longissimus muscle area: I. Description of age and weight effects. J. Anim. Sci. 73: 1713-1724. PMid:7673065   Lykidis A, Jackson PD, Rock CO and Jackowski S (1997). The role of CDP-diacylglycerol synthetase and phosphatidylinositol synthase activity levels in the regulation of cellular phosphatidylinositol content. J. Biol. Chem. 272: 33402-33409. http://dx.doi.org/10.1074/jbc.272.52.33402 PMid:9407135   Nei M and Roychoudhury AK (1974). Sampling variances of heterozygosity and genetic distance. Genetics 76: 379-390. PMid:4822472 PMCid:1213072   Nei M and Li WH (1979). Mathematical model for studying genetic variation in terms of restriction endonucleases. Proc. Natl. Acad. Sci. U. S. A. 76: 5269-5273. http://dx.doi.org/10.1073/pnas.76.10.5269 PMid:291943 PMCid:413122   Neilson JR and Sandberg R (2010). Heterogeneity in mammalian RNA 3' end formation. Exp. Cell Res. 316: 1357-1364. http://dx.doi.org/10.1016/j.yexcr.2010.02.040 PMid:20211174 PMCid:2866830   White DA (1973). The Phospholipid Composition of Mammalian Tissues. In: Form and Function of Phospholipids (Ansell GB, Hawthorne JN and Dawson RMC, eds.). Elsevier, Amsterdam, 441-482.   Zhao J, Hyman L and Moore C (1999). Formation of mRNA 3' ends in eukaryotes: mechanism, regulation, and interrelationships with other steps in mRNA synthesis. Microbiol. Mol. Biol. Rev. 63: 405-445. PMid:10357856 PMCid:98971   Zhou JP, Zhu XP, Zhang W, Qin F, et al. (2011). A novel single-nucleotide polymorphism in the 5' upstream region of the prolactin receptor gene is associated with fiber traits in Liaoning cashmere goats. Genet. Mol. Res. 10: 2511-2516. http://dx.doi.org/10.4238/2011.October.13.8 PMid:22009863   Zimin AV, Delcher AL, Florea L, Kelley DR, et al. (2009). A whole-genome assembly of the domestic cow, Bos taurus. Genome Biol. 10: R42. http://dx.doi.org/10.1186/gb-2009-10-4-r42 PMid:19393038 PMCid:2688933
2012
H. Wang, Zan, L. S., Wang, H. B., Gong, C., and Fu, C. Z., Cloning, expression analysis and sequence prediction of the CCAAT/enhancer-binding protein alpha gene of Qinchuan cattle, vol. 11, pp. 1651-1661, 2012.
Bennett CN, Hodge CL, MacDougald OA and Schwartz J (2003). Role of Wnt10b and C/EBPα in spontaneous adipogenesis of 243 cells. Biochem. Biophs. Res. 302: 12-16. http://dx.doi.org/10.1016/S0006-291X(03)00092-5   Birkenmeier EH, Gwynn B, Howard S and Jerry J (1989). Is CCAAT/enhancer-binding protein a central regulator of energy metabolism. Genes Dev. 3: 1146-1156. http://dx.doi.org/10.1101/gad.3.8.1146 PMid:2792758   Chui PC, Guan HP, Lehrke M and Lazar MA (2005). PPARgamma regulates adipocyte cholesterol metabolism via oxidized LDL receptor 1. J. Clin. Invest. 115: 2244-2256. http://dx.doi.org/10.1172/JCI24130 PMid:16007265 PMCid:1172230   Chumakov AM, Grillier I, Chumakova E, Chih D, et al. (1997). Cloning of the novel human myeloid-cell-specific C/EBP-epsilon transcription factor. Mol. Cell Biol. 17: 1375-1386. PMid:9032264 PMCid:231862   Croniger CM, Millward C, Yang J, Kawai Y, et al. (2001). Mice with a deletion in the gene for CCAAT/enhancer-binding protein beta have an attenuated response to cAMP and impaired carbohydrate metabolism. J. Biol. Chem. 276: 629- 638. http://dx.doi.org/10.1074/jbc.M007576200 PMid:11024029   Gomez-Santos C, Barrachina M, Gimenez-Xavier P, Dalfo E, et al. (2005). Induction of C/EBP beta and GADD153 expression by dopamine in human neuroblastoma cells. Relationship with alpha-synuclein increase and cell damage. Brain Res. Bull. 65: 87-95. PMid:15680548   Hanson RW (1998). Biological role of the isoforms of C/EBP minireview series. J. Biol. Chem. 273: 28543. http://dx.doi.org/10.1074/jbc.273.44.28543 PMid:9786840   Hu BL and Zan LS (2001). Association Analysis Between Bovine Carcass Traits and Meat Quality Traits. Master's thesis. Northwest A&F University, Yangling.   Imai T, Takakuwa R, Marchand S, Dentz E, et al. (2004). Peroxisome proliferator-activated receptor gamma is required in mature white and brown adipocytes for their survival in the mouse. Proc. Natl. Acad. Sci. U. S. A. 101: 4543-4547. http://dx.doi.org/10.1073/pnas.0400356101 PMid:15070754 PMCid:384783   Julie L, Kirstin E and Nick AS (2009). Real-Time PCR: Current Technology and Applications. Caister Academic Press, Norfolk. PMCid:2767118   Lee CH, Olson P and Evans RM (2003). Minireview: lipid metabolism, metabolic diseases, and peroxisome proliferator-activated receptors. Endocrinology 144: 2201-2207. http://dx.doi.org/10.1210/en.2003-0288 PMid:12746275   Lefterova MI, Zhang Y, Steger DJ, Schupp M, et al. (2008). PPARgamma and C/EBP factors orchestrate adipocyte biology via adjacent binding on a genome-wide scale. Genes Dev. 22: 2941-2952. http://dx.doi.org/10.1101/gad.1709008 PMid:18981473 PMCid:2577797   Lekstrom HJ and Xanthopoulos KG (1998). Biological role of CCAAT/enhancer-binding protein family of transcription factors. J. Biol. Chem. 273: 28545-28548. http://dx.doi.org/10.1074/jbc.273.44.28545   Lin FT, MacDougald OA, Diehl MA and Lane MD (1993). A 30-kDa alternative translation product of the CCAAT/ enhancer binding protein alpha message: transcriptional activator lacking antimitotic activity. Proc. Nat. Acad. Sci. USA 90: 9606-9610. http://dx.doi.org/10.1073/pnas.90.20.9606 PMid:8415748 PMCid:47618   Lopez RG, Garcia-Silva S, Moore SJ, Bereshchenko O, et al. (2009). C/EBPα and beta couple interfollicular keratinocyte proliferation arrest to commitment and terminal differentiation. Nat. Cell Biol. 11: 1181-1190. http://dx.doi.org/10.1038/ncb1960 PMid:19749746   MacDougald OA and Lane MD (1995). Transcriptional regulation of gene expression during adipocyte differentiation. Annu. Rev. Biochem. 64: 345-373. http://dx.doi.org/10.1146/annurev.bi.64.070195.002021 PMid:7574486   Poli V (1998). The role of C/EBP isoforms in the control of inflammatory and native immunity functions. J. Biol. Chem. 273: 29279-29282. http://dx.doi.org/10.1074/jbc.273.45.29279 PMid:9792624   Ramji DP and Foka P (2002). CCAAT/enhancer-binding proteins: structure, function and regulation. Biochem. J. 365: 561-575. PMid:12006103 PMCid:1222736   Rosen ED, Hsu CH, Wang X, Sakai S, et al. (2002). C/EBPα induces adipogenesis through PPARgamma: a unified pathway. Genes Dev. 16: 22-26. http://dx.doi.org/10.1101/gad.948702 PMid:11782441 PMCid:155311   Shimano H (2001). Sterol regulatory element-binding proteins (SREBPs): transcriptional regulators of lipid synthetic genes. Prog. Lipid Res. 40: 439-452. http://dx.doi.org/10.1016/S0163-7827(01)00010-8   Siepel A, Bejerano G, Pedersen JS, Hinrichs AS, et al. (2005). Evolutionarily conserved elements in vertebrate, insect, worm, and yeast genomes. Genome Res. 15: 1034-1050. http://dx.doi.org/10.1101/gr.3715005 PMid:16024819 PMCid:1182216   Storch J and Thumser AE (2000). The fatty acid transport function of fatty acid-binding proteins. Biochim. Biophys. Acta 1486: 28-44. http://dx.doi.org/10.1016/S1388-1981(00)00046-9   Taniguchi Y and Sasaki Y (1996). Rapid communication: nucleotide sequence of bovine C/EBP alpha gene. J. Anim. Sci. 74: 2554. PMid:8904724   Williams SC, Cantwell CA and Johnson PF (1991). A family of C/EBP-related proteins capable of forming covalently linked leucine zipper dimers in vitro. Genes Dev. 5: 1553-1567. http://dx.doi.org/10.1101/gad.5.9.1553 PMid:1884998   Yeh WC, Cao Z, Classon M and McKnight SL (1995). Cascade regulation of terminal adipocyte differentiation by three members of the C/EBP family of leucine zipper proteins. Genes Dev. 9: 168-181. http://dx.doi.org/10.1101/gad.9.2.168 PMid:7531665   Zuo Y, Qiang L and Farmer SR (2006). Activation of CCAAT/enhancer-binding protein (C/EBP) alpha expression by C/ EBP beta during adipogenesis requires a peroxisome proliferator-activated receptor-gamma-associated repression of HDAC1 at the C/ebp alpha gene promoter. J. Biol. Chem. 281: 7960-7967. http://dx.doi.org/10.1074/jbc.M510682200 PMid:16431920
B. J. Jiang, Zhan, X. L., Fu, C. Z., Wang, H. B., Cheng, G., and Zan, L. S., Identification of ANAPC13 gene polymorphisms associated with body measurement traits in Bos taurus, vol. 11, pp. 2862-2870, 2012.
Aristarkhov A, Eytan E, Moghe A, Admon A, et al. (1996). E2-C, a cyclin-selective ubiquitin carrier protein required for the destruction of mitotic cyclins. Proc. Natl. Acad. Sci. U. S. A. 93: 4294-4299. http://dx.doi.org/10.1073/pnas.93.9.4294 PMid:8633058 PMCid:39529   Gilbert RP, Bailey DR and Shannon NH (1993). Linear body measurements of cattle before and after 20 years of selection for postweaning gain when fed two different diets. J. Anim. Sci. 71: 1712-1720. PMid:8349499   Gudbjartsson DF, Walters GB, Thorleifsson G, Stefansson H, et al. (2008). Many sequence variants affecting diversity of adult human height. Nat. Genet. 40: 609-615. http://dx.doi.org/10.1038/ng.122 PMid:18391951   Harper JW, Burton JL and Solomon MJ (2002). The anaphase-promoting complex: it's not just for mitosis any more. Genes Dev. 16: 2179-2206. http://dx.doi.org/10.1101/gad.1013102 PMid:12208841   Honda K, Mihara H, Kato Y, Yamaguchi A, et al. (2000). Degradation of human Aurora2 protein kinase by the anaphase-promoting complex-ubiquitin-proteasome pathway. Oncogene 19: 2812-2819. http://dx.doi.org/10.1038/sj.onc.1203609 PMid:10851084   Irniger S, Piatti S, Michaelis C and Nasmyth K (1995). Genes involved in sister chromatid separation are needed for B-type cyclin proteolysis in budding yeast. Cell 81: 269-278. http://dx.doi.org/10.1016/0092-8674(95)90337-2   Jin QJ, Sun JJ, Fang XT, Zhang CL, et al. (2011). Molecular characterization and polymorphisms of the caprine Somatostatin (SST) and SST Receptor 1 (SSTR1) genes that are linked with growth traits. Mol. Biol. Rep. 38: 3129-3135. http://dx.doi.org/10.1007/s11033-010-9983-7 PMid:20140708   King RW, Peters JM, Tugendreich S, Rolfe M, et al. (1995). A 20S complex containing CDC27 and CDC16 catalyzes the mitosis-specific conjugation of ubiquitin to cyclin B. Cell 81: 279-288. http://dx.doi.org/10.1016/0092-8674(95)90338-0   Lan XY, Pan CY, Chen H, Zhang CL, et al. (2007). An AluI PCR-RFLP detecting a silent allele at the goat POU1F1 locus and its association with production traits. Small Rumin. Res. 73: 8-12. http://dx.doi.org/10.1016/j.smallrumres.2006.10.009   Lettre G, Jackson AU, Gieger C, Schumacher FR, et al. (2008). Identification of ten loci associated with height highlights new biological pathways in human growth. Nat. Genet. 40: 584-591. http://dx.doi.org/10.1038/ng.125 PMid:18391950 PMCid:2687076   Li F, Chen H, Lei CZ, Ren G, et al. (2010a). Novel SNPs of the bovine GAD1/gad67 gene and their association with growth traits in three native Chinese cattle breeds. Mol. Biol. Rep. 37: 501-505. http://dx.doi.org/10.1007/s11033-009-9699-8 PMid:19728158   Li F, Chen H, Lei CZ, Ren G, et al. (2010b). Novel SNPs of the bovine NUCB2 gene and their association with growth traits in three native Chinese cattle breeds. Mol. Biol. Rep. 37: 541-546. http://dx.doi.org/10.1007/s11033-009-9732-y PMid:19728157   Liu YF, Zan LS, Li K, Zhao SP, et al. (2010). A novel polymorphism of GDF5 gene and its association with body measurement traits in Bos taurus and Bos indicus breeds. Mol. Biol. Rep. 37: 429-434. http://dx.doi.org/10.1007/s11033-009-9604-5 PMid:19590978   Mateescu RG, Zhang Z, Tsai K, Phavaphutanon J, et al. (2005). Analysis of allele fidelity, polymorphic information content, and density of microsatellites in a genome-wide screening for hip dysplasia in a crossbreed pedigree. J. Hered. 96: 847-853. http://dx.doi.org/10.1093/jhered/esi109 PMid:16251522   Nei M and Roychoudhury AK (1974). Sampling variances of heterozygosity and genetic distance. Genetics 76: 379-390. PMid:4822472 PMCid:1213072   Nei M and Li WH (1979). Mathematical model for studying genetic variation in terms of restriction endonucleases. Proc. Natl. Acad. Sci. U. S. A. 76: 5269-5273. http://dx.doi.org/10.1073/pnas.76.10.5269 PMid:291943 PMCid:413122   Nkrumah JD, Li C, Basarab JB, Guercio S, et al. (2003). Association of a single nucleotide polymorphism in the bovine leptin gene with feed intake, feed efficiency, growth, feeding behaviour, carcass quality and body composition. Can. J. Anim. Sci. 84: 211-219. http://dx.doi.org/10.4141/A03-033   Peters JM (2002). The anaphase-promoting complex: proteolysis in mitosis and beyond. Mol. Cell 9: 931-943. http://dx.doi.org/10.1016/S1097-2765(02)00540-3   Ren G, Chen H, Zhang LZ, Lan XY, et al. (2010). A coding SNP of LHX4 gene is associated with body weight and body length in bovine. Mol. Biol. Rep. 37: 417-422. http://dx.doi.org/10.1007/s11033-009-9486-6 PMid:19283511   Rojas CA, Eloy NB, Lima MF, Rodrigues RL, et al. (2009). Overexpression of the Arabidopsis anaphase promoting complex subunit CDC27a increases growth rate and organ size. Plant Mol. Biol. 71: 307-318. http://dx.doi.org/10.1007/s11103-009-9525-7 PMid:19629716   Sambrook J and Russell DW (2002). Molecular Cloning. A Laboratory Manual. 3rd edn. Science Press, Beijing. PMCid:1123728   Sanna S, Jackson AU, Nagaraja R, Willer CJ, et al. (2008). Common variants in the GDF5-UQCC region are associated with variation in human height. Nat. Genet. 40: 198-203. http://dx.doi.org/10.1038/ng.74 PMid:18193045 PMCid:2914680   Soranzo N, Rivadeneira F, Chinappen-Horsley U, Malkina I, et al. (2009). Meta-analysis of genome-wide scans for human adult stature identifies novel loci and associations with measures of skeletal frame size. PLoS Genet. 5: e1000445. http://dx.doi.org/10.1371/journal.pgen.1000445 PMid:19343178 PMCid:2661236   Stroschein SL, Bonni S, Wrana JL and Luo K (2001). Smad3 recruits the anaphase-promoting complex for ubiquitination and degradation of SnoN. Genes Dev. 15: 2822-2836. PMid:11691834 PMCid:312804   Sudakin V, Ganoth D, Dahan A, Heller H, et al. (1995). The cyclosome, a large complex containing cyclin-selective ubiquitin ligase activity, targets cyclins for destruction at the end of mitosis. Mol. Biol. Cell 6: 185-197. PMid:7787245 PMCid:275828   Sun J, Jin Q, Zhang C, Fang X, et al. (2011). Polymorphisms in the bovine ghrelin precursor (GHRL) and Syndecan-1 (SDC1) genes that are associated with growth traits in cattle. Mol. Biol. Rep. 38: 3153-3160. http://dx.doi.org/10.1007/s11033-010-9986-4 PMid:20140707   Takai N, Miyazaki T, Fujisawa K, Nasu K, et al. (2001). Polo-like kinase (PLK) expression in endometrial carcinoma. Cancer Lett. 169: 41-49. http://dx.doi.org/10.1016/S0304-3835(01)00522-5   Tang Z, Bharadwaj R, Li B and Yu H (2001). Mad2-Independent inhibition of APCCdc20 by the mitotic checkpoint protein BubR1. Dev. Cell 1: 227-237. http://dx.doi.org/10.1016/S1534-5807(01)00019-3   Thornton BR and Toczyski DP (2006). Precise destruction: an emerging picture of the APC. Genes Dev. 20: 3069-3078. http://dx.doi.org/10.1101/gad.1478306 PMid:17114580   Wang J, Li ZJ, Lan XY, Hua LS, et al. (2010). Two novel SNPs in the coding region of the bovine PRDM16 gene and its associations with growth traits. Mol. Biol. Rep. 37: 571-577. http://dx.doi.org/10.1007/s11033-009-9816-8 PMid:19760096   Weedon MN and Frayling TM (2008). Reaching new heights: insights into the genetics of human stature. Trends Genet. 24: 595-603. http://dx.doi.org/10.1016/j.tig.2008.09.006 PMid:18950892   Weedon MN, Lettre G, Freathy RM, Lindgren CM, et al. (2007). A common variant of HMGA2 is associated with adult and childhood height in the general population. Nat. Genet. 39: 1245-1250. http://dx.doi.org/10.1038/ng2121 PMid:17767157 PMCid:3086278   Weedon MN, Lango H, Lindgren CM, Wallace C, et al. (2008). Genome-wide association analysis identifies 20 loci that influence adult height. Nat. Genet. 40: 575-583. http://dx.doi.org/10.1038/ng.121 PMid:18391952 PMCid:2681221   Zhang C, Wang Y, Chen H, Lan X, et al. (2007). Enhance the efficiency of single-strand conformation polymorphism analysis by short polyacrylamide gel and modified silver staining. Anal. Biochem. 365: 286-287. http://dx.doi.org/10.1016/j.ab.2007.03.023 PMid:17449006   Zhao J, Li M, Bradfield JP, Zhang H, et al. (2010). The role of height-associated loci identified in genome wide association studies in the determination of pediatric stature. BMC Med. Genet. 11: 96. http://dx.doi.org/10.1186/1471-2350-11-96 PMid:20546612 PMCid:2894790
Y. Y. Fan, Fu, G. W., Fu, C. Z., Zan, L. S., and Tian, W. Q., A missense mutant of the PPAR-γgene associated with carcass and meat quality traits in Chinese cattle breeds, vol. 11, pp. 3781-3788, 2012.
Albrecht E, Teuscher F, Ender K and Wegner J (2006). Growth- and breed-related changes of marbling characteristics in cattle. J. Anim. Sci. 84: 1067-1075. http://dx.doi.org/10.2527/jas.2006-345   Berger J and Moller DE (2002). The mechanisms of action of PPARs. Annu. Rev. Med. 53: 409-435. http://dx.doi.org/10.1146/annurev.med.53.082901.104018 PMid:11818483   Choudhary V, Kumar P, Bhattacharya TK, Bhushan B, et al. (2007). DNA polymorphism of insulin-like growth factor-binding protein-3 gene and its association with birth weight and body weight in cattle. J. Anim. Breed. Genet. 124: 29-34. http://dx.doi.org/10.1111/j.1439-0388.2007.00626.x PMid:17302958   Escher P and Wahli W (2000). Peroxisome proliferator-activated receptors: insight into multiple cellular functions. Mutat. Res. 448: 121-138. http://dx.doi.org/10.1016/S0027-5107(99)00231-6   Evans RM, Barish GD and Wang YX (2004). PPARs and the complex journey to obesity. Nat. Med. 10: 355-361. http://dx.doi.org/10.1038/nm1025 PMid:15057233   Fajas L, Debril MB and Auwerx J (2001). Peroxisome proliferator-activated receptor-gamma: from adipogenesis to carcinogenesis. J. Mol. Endocrinol. 27: 1-9. http://dx.doi.org/10.1677/jme.0.0270001 PMid:11463572   Forman BM, Chen J and Evans RM (1997). Hypolipidemic drugs, polyunsaturated fatty acids, and eicosanoids are ligands for peroxisome proliferator-activated receptors alpha and delta. Proc. Natl. Acad. Sci. U. S. A. 94: 4312-4317. http://dx.doi.org/10.1073/pnas.94.9.4312 PMid:9113986 PMCid:20719   Issemann I and Green S (1990). Activation of a member of the steroid hormone receptor superfamily by peroxisome proliferators. Nature 347: 645-650. http://dx.doi.org/10.1038/347645a0 PMid:2129546   Judge M, Aberle E, Forrest J and Hedrick H (1989). Principles of Meat Science. 2nd edn. Kendall/Hunt Publishing Co., Dubuque.   Kliewer SA, Lenhard JM, Willson TM, Patel I, et al. (1995). A prostaglandin J2 metabolite binds peroxisome proliferator-activated receptor gamma and promotes adipocyte differentiation. Cell 83: 813-819. http://dx.doi.org/10.1016/0092-8674(95)90194-9   Kliewer SA, Lehmann JM and Willson TM (1999). Orphan nuclear receptors: shifting endocrinology into reverse. Science 284: 757-760. http://dx.doi.org/10.1126/science.284.5415.757 PMid:10221899   Liu YF, Zan LS, Li K, Zhao SP, et al. (2010). A novel polymorphism of GDF5 gene and its association with body measurement traits in Bos taurus and Bos indicus breeds. Mol. Biol. Rep. 37: 429-434. http://dx.doi.org/10.1007/s11033-009-9604-5 PMid:19590978   Matsusue K, Peters J and Gonzalez F (2004). PPARβ/δ potentiates PPAR-γ-stimulated adipocyte differentiation. FASEB J. 18: 1477-1479. PMid:15247146   Meirhaeghe A, Fajas L, Gouilleux F, Cottel D, et al. (2003). A functional polymorphism in a STAT5B site of the human PPAR-γ3 gene promoter affects height and lipid metabolism in a French population. Arterioscler. Thromb. Vasc. Biol. 23: 289-294. http://dx.doi.org/10.1161/01.ATV.0000051382.28752.FE PMid:12588773   Rosenson RS (2007). Effects of peroxisome proliferator-activated receptors on lipoprotein metabolism and glucose control in type 2 diabetes mellitus. Am. J. Cardiol. 99: 96B-104B. http://dx.doi.org/10.1016/j.amjcard.2006.11.010 PMid:17307062   Sambrook J and Russell D (2002). Molecular Cloning: A Laboratory Manual. 3nd. Science Press, Beijing.   Schoonjans K, Staels B and Auwerx J (1996). The peroxisome proliferator activated receptors (PPARS) and their effects on lipid metabolism and adipocyte differentiation. Biochim. Biophys. Acta 1302: 93-109. http://dx.doi.org/10.1016/0005-2760(96)00066-5   Spiegelman BM (1998). PPAR-gamma: adipogenic regulator and thiazolidinedione receptor. Diabetes 47: 507-514. http://dx.doi.org/10.2337/diabetes.47.4.507 PMid:9568680   Spiegelman BM and Flier JS (1996). Adipogenesis and obesity: rounding out the big picture. Cell 87: 377-389. http://dx.doi.org/10.1016/S0092-8674(00)81359-8   Sun HS, Anderson LL, Yu TP, Kim KS, et al. (2002). Neonatal Meishan pigs show POU1F1 genotype effects on plasma GH and PRL concentration. Anim. Reprod. Sci. 69: 223-237. http://dx.doi.org/10.1016/S0378-4320(01)00177-4   Tontonoz P, Hu E and Spiegelman BM (1994). Stimulation of adipogenesis in fibroblasts by PPAR gamma 2, a lipid-activated transcription factor. Cell 79: 1147-1156. http://dx.doi.org/10.1016/0092-8674(94)90006-X   Walczak R and Tontonoz P (2002). PPARadigms and PPARadoxes: expanding roles for PPARgamma in the control of lipid metabolism. J. Lipid Res. 43: 177-186. PMid:11861659   Wang J, Shaner N, Mittal B, Zhou Q, et al. (2005). Dynamics of Z-band based proteins in developing skeletal muscle cells. Cell Motil. Cytoskeleton 61: 34-48. http://dx.doi.org/10.1002/cm.20063 PMid:15810059 PMCid:1993831   Yen CJ, Beamer BA, Negri C, Silver K, et al. (1997). Molecular scanning of the human peroxisome proliferator activated receptor gamma (hPPAR gamma) gene in diabetic Caucasians: identification of a Pro12Ala PPAR gamma 2 missense mutation. Biochem. Biophys. Res. Commun. 241: 270-274. http://dx.doi.org/10.1006/bbrc.1997.7798 PMid:9425261   Zhong X, Zan LS, Wang HB and Liu YF (2010). Polymorphic CA microsatellites in the third exon of the bovine BMP4 gene. Genet. Mol. Res. 9: 868-874. http://dx.doi.org/10.4238/vol9-2gmr732 PMid:20467979