Publications

Found 19 results
Filters: Author is G. Li  [Clear All Filters]
2013
Y. L. Hu, Zhong, D., Pang, F., Ning, Q. Y., Zhang, Y. Y., Li, G., Wu, J. Z., and Mo, Z. N., HNF1b is involved in prostate cancer risk via modulating androgenic hormone effects and coordination with other genes, vol. 12, pp. 1327-1335, 2013.
Cappello F, Rappa F, David S, Anzalone R, et al. (2003). Immunohistochemical evaluation of PCNA, p53, HSP60, HSP10 and MUC-2 presence and expression in prostate carcinogenesis. Anticancer Res. 23: 1325-1331. PMid:12820390   Castilla C, Congregado B, Conde JM, Medina R, et al. (2010). Immunohistochemical expression of Hsp60 correlates with tumor progression and hormone resistance in prostate cancer. Urology 76: 1017.e1-6.   Chan J, Song CS, Matusik RJ, Chatterjee B, et al. (1998). Inhibition of androgen action by dehydroepiandrosterone sulfotransferase transfected in PC3 prostate cancer cells. Chem. Biol. Interact. 109: 267-278. http://dx.doi.org/10.1016/S0009-2797(97)00138-5   Chang C, Saltzman A, Lee HJ, Uemura H, et al. (1993). Genomic structure, chromosomal localization and expression of an androgen inducible TR3 orphan receptor: a member of the steroid receptor superfamily. Endocrine J. 1: 541-549.   Chen YZ, Gao Q, Zhao XZ, Chen YZ, et al. (2010). Systematic review of TCF2 anomalies in renal cysts and diabetes syndrome/maturity onset diabetes of the young type 5. Chin. Med. J. 123: 3326-3333.   Cornford PA, Dodson AR, Parsons KF, Desmond AD, et al. (2000). Heat shock protein expression independently predicts clinical outcome in prostate cancer. Cancer Res. 60: 7099-7105. PMid:11156417   Das K, Lorena PD, Ng LK, Lim D, et al. (2010). Differential expression of steroid 5alpha-reductase isozymes and association with disease severity and angiogenic genes predict their biological role in prostate cancer. Endocr. Relat. Cancer 17: 757-770. http://dx.doi.org/10.1677/ERC-10-0022 PMid:20519274   Denmeade SR and Isaacs JT (2004). Development of prostate cancer treatment: the good news. Prostate 58: 211-224. http://dx.doi.org/10.1002/pros.10360 PMid:14743459   Eeles RA, Kote-Jarai Z, Giles GG, Olama AA, et al. (2008). Multiple newly identified loci associated with prostate cancer susceptibility. Nat. Genet. 40: 316-321. http://dx.doi.org/10.1038/ng.90 PMid:18264097   Ghosh JC, Dohi T, Kang BH and Altieri DC (2008). Hsp60 regulation of tumor cell apoptosis. J. Biol. Chem. 283: 5188- 5194. http://dx.doi.org/10.1074/jbc.M705904200 PMid:18086682   Ghosh JC, Siegelin MD, Dohi T and Altieri DC (2010). Heat shock protein 60 regulation of the mitochondrial permeability transition pore in tumor cells. Cancer Res. 70: 8988-8993. http://dx.doi.org/10.1158/0008-5472.CAN-10-2225 PMid:20978188 PMCid:2982903   Gudmundsson J, Sulem P, Steinthorsdottir V, Bergthorsson JT, et al. (2007). Two variants on chromosome 17 confer prostate cancer risk, and the one in TCF2 protects against type 2 diabetes. Nat. Genet. 39: 977-983. http://dx.doi.org/10.1038/ng2062 PMid:17603485   Hamid T, Malik MT, Millar RP and Kakar SS (2008). Protein kinase A serves as a primary pathway in activation of Nur77 expression by gonadotropin-releasing hormone in the LbetaT2 mouse pituitary gonadotroph tumor cell line. Int. J. Oncol. 33: 1055-1064. PMid:18949369   Harries LW, Perry JR, McCullagh P and Crundwell M (2010). Alterations in LMTK2, MSMB and HNF1B gene expression are associated with the development of prostate cancer. BMC Cancer 10: 315. http://dx.doi.org/10.1186/1471-2407-10-315 PMid:20569440 PMCid:2908099   Huang da W, Sherman BT and Lempicki RA (2009). Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat. Protoc. 4: 44-57. PMid:19131956   Johnson GL and Lapadat R (2002). Mitogen-activated protein kinase pathways mediated by ERK, JNK, and p38 protein kinases. Science 298: 1911-1912. http://dx.doi.org/10.1126/science.1072682 PMid:12471242   Kato N and Motoyama T (2009). Hepatocyte nuclear factor-1beta(HNF-1beta) in human urogenital organs: its expression and role in embryogenesis and tumorigenesis. Histol. Histopathol. 24: 1479-1486. PMid:19760597   Kelly RJ, Lopez-Chavez A, Citrin D, Janik JE, et al. (2011). Impacting tumor cell-fate by targeting the inhibitor of apoptosis protein survivin. Mol. Cancer 10: 35. http://dx.doi.org/10.1186/1476-4598-10-35 PMid:21470426 PMCid:3083377   Liu F, Hsing AW, Wang X, Shao Q, et al. (2011). Systematic confirmation study of reported prostate cancer risk-associated single nucleotide polymorphisms in Chinese men. Cancer Sci. 102: 1916-1920. http://dx.doi.org/10.1111/j.1349-7006.2011.02036.x PMid:21756274 PMCid:3581323   Livak KJ and Schmittgen TD (2001). Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods 25: 402-408. http://dx.doi.org/10.1006/meth.2001.1262 PMid:11846609   Manolio TA, Brooks LD and Collins FS (2008). A HapMap harvest of insights into the genetics of common disease. J. Clin. Invest. 118: 1590-1605. http://dx.doi.org/10.1172/JCI34772 PMid:18451988 PMCid:2336881   Maqungo M, Kaur M, Kwofie SK, Radovanovic A, et al. (2011). DDPC: Dragon Database of Genes associated with Prostate Cancer. Nucleic Acids Res. 39: D980-D985. http://dx.doi.org/10.1093/nar/gkq849 PMid:20880996 PMCid:3013759   Min JL, Nicholson G, Halgrimsdottir I, Almstrup K, et al. (2012). Coexpression network analysis in abdominal and gluteal adipose tissue reveals regulatory genetic loci for metabolic syndrome and related phenotypes. PLoS Genet. 8: e1002505. http://dx.doi.org/10.1371/journal.pgen.1002505 PMid:22383892 PMCid:3285582   Ning QY, Wu JZ, Zang N, Liang J, et al. (2011). Key pathways involved in prostate cancer based on gene set enrichment analysis and meta analysis. Genet. Mol. Res. 10: 3856-3887. http://dx.doi.org/10.4238/2011.December.14.10 PMid:22194210   Pierce BL and Ahsan H (2010). Genetic susceptibility to type 2 diabetes is associated with reduced prostate cancer risk. Hum. Hered. 69: 193-201. http://dx.doi.org/10.1159/000289594 PMid:20203524 PMCid:2866577   Setiawan VW, Haessler J, Schumacher F, Cote ML, et al. (2012). HNF1B and endometrial cancer risk: results from the PAGE study. PLoS One 7: e30390. http://dx.doi.org/10.1371/journal.pone.0030390 PMid:22299039 PMCid:3267708   Skvortsov S, Schafer G, Stasyk T, Fuchsberger C, et al. (2011). Proteomics profiling of microdissected low- and high-grade prostate tumors identifies Lamin A as a discriminatory biomarker. J. Proteome. Res. 10: 259-268. http://dx.doi.org/10.1021/pr100921j PMid:20977276   Song CS, Jung MH, Kim SC, Hassan T, et al. (1998). Tissue-specific and androgen-repressible regulation of the rat dehydroepiandrosterone sulfotransferase gene promoter. J. Biol. Chem. 273: 21856-21866. http://dx.doi.org/10.1074/jbc.273.34.21856 PMid:9705324   Szponar A, Yusenko MV, Kuiper R, van Kessel AG, et al. (2011). Genomic profiling of papillary renal cell tumours identifies small regions of DNA alterations: a possible role of HNF1B in tumour development. Histopathology 58: 934-943. http://dx.doi.org/10.1111/j.1365-2559.2011.03795.x PMid:21438902   Takata R, Akamatsu S, Kubo M, Takahashi A, et al. (2010). Genome-wide association study identifies five new susceptibility loci for prostate cancer in the Japanese population. Nat. Genet. 42: 751-754. http://dx.doi.org/10.1038/ng.635 PMid:20676098   Terasawa K, Toyota M, Sagae S, Ogi K, et al. (2006). Epigenetic inactivation of TCF2 in ovarian cancer and various cancer cell lines. Br. J. Cancer 94: 914-921. http://dx.doi.org/10.1038/sj.bjc.6602984 PMid:16479257 PMCid:2361363   Thomas G, Jacobs KB, Yeager M, Kraft P, et al. (2008). Multiple loci identified in a genome-wide association study of prostate cancer. Nat. Genet. 40: 310-315. http://dx.doi.org/10.1038/ng.91 PMid:18264096   Tommasi S, Karm DL, Wu X, Yen Y, et al. (2009). Methylation of homeobox genes is a frequent and early epigenetic event in breast cancer. Breast Cancer Res. 11: R14. http://dx.doi.org/10.1186/bcr2233 PMid:19250546 PMCid:2687719   Tronche F and Yaniv M (1992). HNF1, a homeoprotein member of the hepatic transcription regulatory network. Bioessays 14: 579-587. http://dx.doi.org/10.1002/bies.950140902 PMid:1365913   Uemura H and Chang C (1998). Antisense TR3 orphan receptor can increase prostate cancer cell viability with etoposide treatment. Endocrinology 139: 2329-2334. http://dx.doi.org/10.1210/en.139.5.2329 PMid:9564841   Wilhite SE and Barrett T (2012). Strategies to explore functional genomics data sets in NCBI's GEO database. Methods Mol. Biol. 802: 41-53. http://dx.doi.org/10.1007/978-1-61779-400-1_3 PMid:22130872 PMCid:3341798   Wixon J and Kell D (2000). The Kyoto Encyclopedia of Genes and Genomes - KEGG. Yeast 17: 48-55. PMid:10928937
2012
G. Li and Park, Y. - J., SCAR markers for discriminating species of two genera of medicinal plants, Liriope and Ophiopogon, vol. 11, pp. 2987-2996, 2012.
Anonymous (2010). WHO General Guidelines for Methodologies on Research and Evaluation of Traditional Medicines. Available at [http://whqlibdoc.who.int/hq/2000/WHO_EDM_TRM_2000.1.pdf]. Accessed February, 2010.   Arif IA, Bakir MA, Khan HA and Al Farhan AH (2010). A brief review of molecular techniques to assess plant diversity. Int. J. Mol. Sci. 11: 2079-2096. http://dx.doi.org/10.3390/ijms11052079 PMid:20559503 PMCid:2885095   Chen KT, Su YC, Lin JG, Hsin LH, et al. (2001). Identification of Atractylodes plants in Chinese herbs and formulations by random amplified polymorphic DNA. Acta Pharmacol. Sin. 22: 493-497. PMid:11747753   Choo BK, Moon BC, Ji Y, Kim BB, et al. (2009). Development of SCAR markers for the discrimination of three species of medicinal plants, Angelica decursiva (Peucedanum decursivum), Peucedanum praeruptorum and Anthricus sylvestris, based on the internal transcribed spacer (ITS) sequence and random amplified polymorphic DNA (RAPD). Biol. Pharm. Bull. 32: 24-30. http://dx.doi.org/10.1248/bpb.32.24 PMid:19122275   Claros MG, Crespillo R, Aguilar ML and Cánovas FM (2000). DNA fingerprinting and classification of geographically related genotypes of olive-tree (Olea europaea L.). Euphytica 116: 131-142. http://dx.doi.org/10.1023/A:1004011829274   Das M, Bhattacharya S and Pal A (2005). Generation and characterization of SCARs by cloning and sequencing of RAPD products: a strategy for species-specific marker development in bamboo. Ann. Bot. 95: 835-841. http://dx.doi.org/10.1093/aob/mci088 PMid:15731116   Devaiah KM and Venkatasubramanian P (2008). Genetic characterization and authentication of Embelia ribes using RAPD-PCR and SCAR marker. Planta Med. 74: 194-196. http://dx.doi.org/10.1055/s-2008-1034279 PMid:18210350   Devaiah KM, Balasubramani SP and Venkatasubramanian P (2011). Development of randomly amplified polymorphic DNA based SCAR marker for identification of ipomoea mauritiana Jacq (Convolvulaceae). Evid. Based Complement Alternat. Med. 2011: 868720. http://dx.doi.org/10.1093/ecam/neq023 PMid:21738554 PMCid:3118933   Dnyaneshwar W, Preeti C, Kalpana J and Bhushan P (2006). Development and application of RAPD-SCAR marker for identification of Phyllanthus emblica LINN. Biol. Pharm. Bull. 29: 2313-2316. http://dx.doi.org/10.1248/bpb.29.2313 PMid:17077537   Kako M, Miura T, Usami M, Kato A, et al. (1995). Hypoglycemic effect of the rhizomes of ophiopogonis tuber in normal and diabetic mice. Biol. Pharm. Bull. 18: 785-787. http://dx.doi.org/10.1248/bpb.18.785 PMid:7493002   Kim SW, Chang IM and Oh KB (2002). Inhibition of the bacterial surface protein anchoring transpeptidase sortase by medicinal plants. Biosci. Biotechnol. Biochem. 66: 2751-2754. http://dx.doi.org/10.1271/bbb.66.2751 PMid:12596883   Lee MY, Doh EJ, Park CH, Kim YH, et al. (2006). Development of SCAR marker for discrimination of Artemisia princeps and A. argyi from other Artemisia herbs. Biol. Pharm. Bull. 29: 629-633. http://dx.doi.org/10.1248/bpb.29.629 PMid:16595892   Li G, Ra W-H, Park J-W and Kwon S-W (2011). Developing EST-SSR markers to study molecular diversity in Liriope and Ophiopogon. Biochem. Syst. Ecol. 39: 241-252. http://dx.doi.org/10.1016/j.bse.2011.08.012   Lin J, Wang XC, Chang YH and Fang JG (2011). Development of a novel and efficient strategy for practical identification of Pyrus spp (Rosaceae) cultivars using RAPD fingerprints. Genet. Mol. Res. 10: 932-942. http://dx.doi.org/10.4238/vol10-2gmr1097 PMid:21644210   Liu J, Chen X, Liu S, Yang W, et al. (2010). Evaluation of germplasm resource of Ophiopogon japonicus in Sichuan basin based on principal component and cluster analysis. Zhongguo Zhong Yao Za Zhi 35: 569-573. PMid:20506813   Liu X, Liu Z, Yang M and Chen KL (2010). Study on diversity of Liriope spicata var. prolifera and its affinis species with ISSR method. Zhong Yao Cai 33: 1052-1055. PMid:21137359   Oliveira EC, Amaral Junior AT, Goncalves LS, Pena GF, et al. (2010). Optimizing the efficiency of the touchdown technique for detecting inter-simple sequence repeat markers in corn (Zea mays). Genet. Mol. Res. 9: 835-842. http://dx.doi.org/10.4238/vol9-2gmr767 PMid:20449816   Park YJ, Lee JK and Kim NS (2009). Simple sequence repeat polymorphisms (SSRPs) for evaluation of molecular diversity and germplasm classification of minor crops. Molecules 14: 4546-4569. http://dx.doi.org/10.3390/molecules14114546 PMid:19924085   Rafalski JA and Tingey SV (1993). Genetic diagnostics in plant breeding: RAPDs, microsatellites and machines. Trends Genet. 9: 275-280. http://dx.doi.org/10.1016/0168-9525(93)90013-8   Raux E, Lanois A, Warren MJ, Rambach A, et al. (1998). Cobalamin (vitamin B12) biosynthesis: identification and characterization of a Bacillus megaterium cobI operon. Biochem. J. 335: 159-166. PMid:9742225 PMCid:1219764   Ray T and Roy SC (2009). Genetic diversity of Amaranthus species from the Indo-Gangetic plains revealed by RAPD analysis leading to the development of ecotype-specific SCAR marker. J. Hered. 100: 338-347. http://dx.doi.org/10.1093/jhered/esn102 PMid:19060233   Techen N, Crockett SL, Khan IA and Scheffler BE (2004). Authentication of medicinal plants using molecular biology techniques to compliment conventional methods. Curr. Med. Chem. 11: 1391-1401. http://dx.doi.org/10.2174/0929867043365206 PMid:15180573   Wang J, Ha WY, Ngan FN, But PP, et al. (2001). Application of sequence characterized amplified region (SCAR) analysis to authenticate Panax species and their adulterants. Planta Med. 67: 781-783. http://dx.doi.org/10.1055/s-2001-18340 PMid:11731932   Wang KW, Zhang H, Shen LQ and Wang W (2011). Novel steroidal saponins from Liriope graminifolia (Linn.) Baker with anti-tumor activities. Carbohydr. Res. 346: 253-258. http://dx.doi.org/10.1016/j.carres.2010.11.015 PMid:21163470   Weder JK (2002). Identification of plant food raw material by RAPD-PCR: legumes. J. Agric. Food Chem. 50: 4456-4463. http://dx.doi.org/10.1021/jf020216f PMid:12137460   Zhang J and Chen R (2010). Genetic diversity of Liriope muscari by TRAP analysis. Zhongguo Zhong Yao Za Zhi 35: 3108-3113. PMid:21355228
G. Li, Kwon, S. W., and Park, Y. J., Updates and perspectives on the utilization of molecular makers of complex traits in rice, vol. 11, pp. 4157-4168, 2012.
Ando T, Yamamoto T, Shimizu T, Ma XF, et al. (2008). Genetic dissection and pyramiding of quantitative traits for panicle architecture by using chromosomal segment substitution lines in rice. Theor. Appl. Genet. 116: 881-890. http://dx.doi.org/10.1007/s00122-008-0722-6 PMid:18274726   Ashikari M, Sakakibara H, Lin S, Yamamoto T, et al. (2005). Cytokinin oxidase regulates rice grain production. Science 309: 741-745. http://dx.doi.org/10.1126/science.1113373 PMid:15976269   Clark RM (2010). Genome-wide association studies coming of age in rice. Nat. Genet. 42: 926-927. http://dx.doi.org/10.1038/ng1110-926 PMid:20980987   Collins FS (1995). Positional cloning moves from perditional to traditional. Nat. Genet. 9: 347-350. http://dx.doi.org/10.1038/ng0495-347 PMid:7795639   Doi K, Izawa T, Fuse T, Yamanouchi U, et al. (2004). Ehd1, a B-type response regulator in rice, confers short-day promotion of flowering and controls FT-like gene expression independently of Hd1. Genes Dev. 18: 926-936. http://dx.doi.org/10.1101/gad.1189604 PMid:15078816 PMCid:395851   Fukuoka S and Saka N (2006). Marker assisted combination of QTLs for yield resistance blast in rice. Breed. Res. 8: 191.   Gilchrist EJ, Haughn GW, Ying CC, Otto SP, et al. (2006). Use of Ecotilling as an efficient SNP discovery tool to survey genetic variation in wild populations of Populus trichocarpa. Mol. Ecol. 15: 1367-1378. http://dx.doi.org/10.1111/j.1365-294X.2006.02885.x PMid:16626459   Gore MA, Chia JM, Elshire RJ, Sun Q, et al. (2009). A first-generation haplotype map of maize. Science 326: 1115-1117. http://dx.doi.org/10.1126/science.1177837 PMid:19965431   Hadiarto T and Tran LS (2011). Progress studies of drought-responsive genes in rice. Plant Cell Rep. 30: 297-310. http://dx.doi.org/10.1007/s00299-010-0956-z PMid:21132431   Han B, Xue Y, Li J, Deng XW, et al. (2007). Rice functional genomics research in China. Philos. Trans. R. Soc. Lond. B Biol. Sci. 362: 1009-1021. http://dx.doi.org/10.1098/rstb.2007.2030 PMid:17347106 PMCid:2435567   Hao W and Lin HX (2010). Toward understanding genetic mechanisms of complex traits in rice. J. Genet. Genomics 37: 653-666. http://dx.doi.org/10.1016/S1673-8527(09)60084-9   Hu KM, Qiu DY, Shen XL, Li XH, et al. (2008). Isolation and manipulation of quantitative trait loci for disease resistance in rice using a candidate gene approach. Mol. Plant 1: 786-793. http://dx.doi.org/10.1093/mp/ssn039 PMid:19825581   Huang X, Feng Q, Qian Q, Zhao Q, et al. (2009). High-throughput genotyping by whole-genome resequencing. Genome Res. 19: 1068-1076. http://dx.doi.org/10.1101/gr.089516.108 PMid:19420380 PMCid:2694477   Huang X, Wei X, Sang T, Zhao Q, et al. (2010). Genome-wide association studies of 14 agronomic traits in rice landraces. Nat. Genet. 42: 961-967. http://dx.doi.org/10.1038/ng.695 PMid:20972439   International Rice Genome Sequencing Project (IRGSP) (2005). The map-based sequence of the rice genome. Nature 436: 793-800. http://dx.doi.org/10.1038/nature03895 PMid:16100779   Ito Y, Katsura K, Maruyama K, Taji T, et al. (2006). Functional analysis of rice DREB1/CBF-type transcription factors involved in cold-responsive gene expression in transgenic rice. Plant Cell Physiol. 47: 141-153. http://dx.doi.org/10.1093/pcp/pci230 PMid:16284406   Li X, Qian Q, Fu Z, Wang Y, et al. (2003). Control of tillering in rice. Nature 422: 618-621. http://dx.doi.org/10.1038/nature01518 PMid:12687001   Lin HX, Yamamoto T, Sasaki T and Yano M (2000). Characterization and detection of epistatic interactions of 3 QTLs, Hd1, Hd2, and Hd3, controlling heading date in rice using nearly isogenic lines. Theor. Appl. Genet. 101: 1021-1028. http://dx.doi.org/10.1007/s001220051576   Londo JP, Chiang YC, Hung KH, Chiang TY, et al. (2006). Phylogeography of Asian wild rice, Oryza rufipogon, reveals multiple independent domestications of cultivated rice, Oryza sativa. Proc. Natl. Acad. Sci. U. S. A. 103: 9578-9583. http://dx.doi.org/10.1073/pnas.0603152103 PMid:16766658 PMCid:1480449   Manosalva PM, Davidson RM, Liu B, Zhu X, et al. (2009). A germin-like protein gene family functions as a complex quantitative trait locus conferring broad-spectrum disease resistance in rice. Plant Physiol. 149: 286-296. http://dx.doi.org/10.1104/pp.108.128348 PMid:19011003 PMCid:2613727   McCouch SR, Zhao K, Wright M, Tung CW, et al. (2010). Development of genome-wide SNP assays for rice. Breed. Sci. 60: 524-535. http://dx.doi.org/10.1270/jsbbs.60.524   Mikami I, Uwatoko N, Ikeda Y, Yamaguchi J, et al. (2008). Allelic diversification at the wx locus in landraces of Asian rice. Theor. Appl. Genet. 116: 979-989. http://dx.doi.org/10.1007/s00122-008-0729-z PMid:18305920   Olsen KM, Halldorsdottir SS, Stinchcombe JR, Weinig C, et al. (2004). Linkage disequilibrium mapping of Arabidopsis CRY2 flowering time alleles. Genetics 167: 1361-1369. http://dx.doi.org/10.1534/genetics.103.024950 PMid:15280248 PMCid:1470957   Ookawa T, Hobo T, Yano M, Murata K, et al. (2010). New approach for rice improvement using a pleiotropic QTL gene for lodging resistance and yield. Nat. Commun. 1: 132. http://dx.doi.org/10.1038/ncomms1132 PMid:21119645 PMCid:3065348   Peltonen L, Palotie A and Lange K (2000). Use of population isolates for mapping complex traits. Nat. Rev. Genet. 1: 182-190. http://dx.doi.org/10.1038/35042049 PMid:11252747   Rabbani MA, Maruyama K, Abe H, Khan MA, et al. (2003). Monitoring expression profiles of rice genes under cold, drought, and high-salinity stresses and abscisic acid application using cDNA microarray and RNA gel-blot analyses. Plant Physiol. 133: 1755-1767. http://dx.doi.org/10.1104/pp.103.025742 PMid:14645724 PMCid:300730   Rafalski JA (2010). Association genetics in crop improvement. Curr. Opin. Plant Biol. 13: 174-180. http://dx.doi.org/10.1016/j.pbi.2009.12.004 PMid:20089441   Ren ZH, Gao JP, Li LG, Cai XL, et al. (2005). A rice quantitative trait locus for salt tolerance encodes a sodium transporter. Nat. Genet. 37: 1141-1146. http://dx.doi.org/10.1038/ng1643 PMid:16155566   Sasaki T (2003). Rice genome analysis: understanding the genetic secrets of the rice plant. Breed. Sci. 53: 281-289. http://dx.doi.org/10.1270/jsbbs.53.281   Steele KA, Edwards G, Zhu J and Witcombe JR (2004). Marker-evaluated selection in rice: shifts in allele frequency among bulks selected in contrasting agricultural environments identify genomic regions of importance to rice adaptation and breeding. Theor. Appl. Genet. 109: 1247-1260. http://dx.doi.org/10.1007/s00122-004-1732-7 PMid:15300383   Takeda T, Suwa Y, Suzuki M, Kitano H, et al. (2003). The OsTB1 gene negatively regulates lateral branching in rice. Plant J. 33: 513-520. http://dx.doi.org/10.1046/j.1365-313X.2003.01648.x PMid:12581309   Takeuchi Y, Ebitani T, Yamamoto T, Sato H, et al. (2006). Development of isogenic lines of rice cultivar Koshihikari with early and late heading by marker-assisted selection. Breed. Sci. 56: 405-413. http://dx.doi.org/10.1270/jsbbs.56.405   Tian Z, Qian Q, Liu Q, Yan M, et al. (2009). Allelic diversities in rice starch biosynthesis lead to a diverse array of rice eating and cooking qualities. Proc. Natl. Acad. Sci. U. S. A. 106: 21760-21765. http://dx.doi.org/10.1073/pnas.0912396106 PMid:20018713 PMCid:2793318   Wang LQ, Liu WJ, Xu Y, He YQ, et al. (2007). Genetic basis of 17 traits and viscosity parameters characterizing the eating and cooking quality of rice grain. Theor. Appl. Genet. 115: 463-476. http://dx.doi.org/10.1007/s00122-007-0580-7 PMid:17593343   Xiang Y, Tang N, Du H, Ye H, et al. (2008). Characterization of OsbZIP23 as a key player of the basic leucine zipper transcription factor family for conferring abscisic acid sensitivity and salinity and drought tolerance in rice. Plant Physiol. 148: 1938-1952. http://dx.doi.org/10.1104/pp.108.128199 PMid:18931143 PMCid:2593664   Xie W, Feng Q, Yu H, Huang X, et al. (2010). Parent-independent genotyping for constructing an ultrahigh-density linkage map based on population sequencing. Proc. Natl. Acad. Sci. U. S. A. 107: 10578-10583. http://dx.doi.org/10.1073/pnas.1005931107 PMid:20498060 PMCid:2890813   Xing Y and Zhang Q (2010). Genetic and molecular bases of rice yield. Annu. Rev. Plant Biol. 61: 421-442. http://dx.doi.org/10.1146/annurev-arplant-042809-112209 PMid:20192739   Xu K, Xu X, Fukao T, Canlas P, et al. (2006). Sub1A is an ethylene-response-factor-like gene that confers submergence tolerance to rice. Nature 442: 705-708. http://dx.doi.org/10.1038/nature04920 PMid:16900200   Xu X, Liu X, Ge S, Jensen JD, et al. (2012). Resequencing 50 accessions of cultivated and wild rice yields markers for identifying agronomically important genes. Nat. Biotechnol. 30: 105-111. http://dx.doi.org/10.1038/nbt.2050 PMid:22158310   Yano M and Sasaki T (1997). Genetic and molecular dissection of quantitative traits in rice. Plant Mol. Biol. 35: 145-153. http://dx.doi.org/10.1023/A:1005764209331 PMid:9291968   Zhang Q, Li J, Xue Y, Han B, et al. (2008). Rice 2020: a call for an international coordinated effort in rice functional genomics. Mol. Plant 1: 715-719. http://dx.doi.org/10.1093/mp/ssn043 PMid:19825575