Publications

Found 7 results
Filters: Author is X.F. Yang  [Clear All Filters]
2013
Y. S. Wang, Liu, Z. Y., Li, Y. F., Zhang, Y., Yang, X. F., and Feng, H., Identification of sequence-related amplified polymorphism markers linked to the red leaf trait in ornamental kale (Brassica oleracea L. var. acephala), vol. 12, pp. 870-877, 2013.
Bassam BJ, Caetano-Anolles G and Gresshoff PM (1991). Fast and sensitive silver staining of DNA in polyacrylamide gels. Anal. Biochem. 196: 80-83. http://dx.doi.org/10.1016/0003-2697(91)90120-I   Chen F, Zhang JF, Chen S, Gu H, et al. (2007). SRAP markers linked to recessive genic male sterile gene in rapeseed (Brassica napus L.). Jiangsu J. Agric. Sci. 23: 283-284.   Clark MS (1997). Plant Molecular Biology: A Laboratory Manual. Springer, Berlin.   Fang DQ and Roose ML (1997). Identification of closely related citrus cultivars with inter-simple sequence repeat markers. Theor. Appl. Genet. 95: 408-471. http://dx.doi.org/10.1007/s001220050577   Feng H, Jiang FY, Feng JY and Wang CN (2007). Establishment and application of the system for isolated microspore culture in Kale (Brassica oleracea L. var. acephala DC.). Acta. Hort. 34: 1019-1022.   Ferriol M, Pico B and Nuez F (2003). Genetic diversity of a germplasm collection of Cucurbita pepo using SRAP and AFLP markers. Theor. Appl. Genet. 107: 271-282. http://dx.doi.org/10.1007/s00122-003-1242-z PMid:12845442   Gu WH, Zheng HJ, Zhang Y and Liu ZY (2002). A preliminary study on selection and breeding of new lines and main genetic characteristics of ornamental kale. J. Shanghai Jiaotong Univ. 20: 129-132.   Isaacson T, Ronen G, Zamir D and Hirschberg J (2002). Cloning of tangerine from tomato reveals a carotenoid isomerase essential for the production of beta-carotene and xanthophylls in plants. Plant Cell 14: 333-342. http://dx.doi.org/10.1105/tpc.010303 PMid:11884678 PMCid:152916   Kosambi DD (1944). The estimation of map distance from recombination values. Ann. Eugen. 12: 172-175.   Lands R and Thompson R (1990). Efficiency of marker-assisted selection in the improvement of quantitative traits. Genetics 124: 743-756.   Li G and Quiros CF (2001). Sequence-related amplified polymorphism (SRAP), a new marker system based on a simple PCR reaction: its application to mapping and gene tagging in Brassica. Theor. Appl. Genet. 103: 455-461. http://dx.doi.org/10.1007/s001220100570   Li G, Gao M, Yang B and Quiros CF (2003). Gene for gene alignment between the Brassica and Arabidopsis genomes by direct transcriptome mapping. Theor. Appl. Genet. 107: 168-180. PMid:12835942   Lichter R (1989). Efficient yield of embryods by culture of isolated microspores of different Brassicaceae species. Plant Breed. 103: 119-123. http://dx.doi.org/10.1111/j.1439-0523.1989.tb00359.x   Lin ZX, Zhang XL and Nie YC (2004). Evaluation of application of a new molecular marker SRAP on analysis of F2 segregation population and genetic diversity in cotton. Yi Chuan Xue Bao 31: 622-626. PMid:15490882   Liu LJ, Liu ZC, Chen HR and Luo LJ (2009). SRAP marker technique and its application in genetic diversity analyses of vegetable crops. Chin. Agric. Sci. Bull. 25: 43-48.   Liu LW, Gong YQ, Huang H and Zhu XW (2004). Novel molecular marker systems - SRAP and TRAP and their application. Yi Chuan 26: 777-781. PMid:15640101   Michelmore RW, Paran I and Kesseli RV (1991). Identification of markers linked to disease-resistance genes by bulked segregant analysis: a rapid method to detect markers in specific genomic regions by using segregating populations. Proc. Natl. Acad. Sci. U. S. A. 88: 9828-9832. http://dx.doi.org/10.1073/pnas.88.21.9828 PMid:1682921 PMCid:52814   Rahman M, McVetty PB and Li G (2007). Development of SRAP, SNP and multiplexed SCAR molecular markers for the major seed coat color gene in Brassica rapa L. Theor. Appl. Genet. 115: 1101-1107. http://dx.doi.org/10.1007/s00122-007-0636-8 PMid:17846742   Riaz A, Li G, Quresh Z, Swati MS, et al. (2001). Genetic diversity of oil seed Brassica napus inbred lines based on sequence-related amplified polymorphism and its relation to hybrid performance. Plant Breed. 120: 411-415. http://dx.doi.org/10.1046/j.1439-0523.2001.00636.x   Ronen G, Carmel-Goren L, Zamir D and Hirschberg J (2000). An alternative pathway to β-carotene formation in plant chromoplasts discovered by map-based cloning of Beta and old-gold color mutations in tomato. Proc. Natl. Acad. Sci. U. S. A. 97: 11102-11107. http://dx.doi.org/10.1073/pnas.190177497 PMid:10995464 PMCid:27155   Tanksley SD, Ganal MW and Martin GB (1995). Chromosome landing: a paradigm for map-based gene cloning in plants with large genomes. Trends Genet. 11: 63-68. http://dx.doi.org/10.1016/S0168-9525(00)88999-4   Van Ooijen JW and Voorrips RE (2001). JoinMap® 3.0, Software for the Calculation of Genetic Linkage Maps. Plant Research International, Wageningen, The Netherlands.   Voorrips RE (2002). MapChart: software for the graphical presentation of linkage maps and QTLs. J. Hered. 93: 77-78. http://dx.doi.org/10.1093/jhered/93.1.77 PMid:12011185   Wang HM, Du GC, Jia CY, Tan XW, et al. (1995). In vitro propagation of ornamental kale (Brassica oleracea var. acephala f. tricolor hort.). Acta. Agric. Boreal.-Sin. 10: 64-69.   Wang YS, Tong Y, Li YF, Zhang Y, et al. (2011). High frequency plant regeneration from microspore-derived embryos of ornamental kale (Brassica oleracea L. var. acephala). Sci. Hortic. 130: 296-302. http://dx.doi.org/10.1016/j.scienta.2011.06.029   Wu J, Tan WF, He JR, Pu ZG, et al. (2005). Construct on of SRAP linkage map and QTL mapping for starch content in sweet potato. Mol. Plant Breed. 3: 841-845.   Xiao JP, Chen LG, Xie M, Liu HL, et al. (2009). Identification of AFLP fragments linked to seedlessness in Ponkan mandarin (Citrus reticulata Blanco) and conversion to SCAR markers. Sci. Hortic. 121: 505-510. http://dx.doi.org/10.1016/j.scienta.2009.03.006   Xie LN (2003). Genetic Analysis of Leaf Color and Shape and Mechanism of Self-Incompatibility of Brassica oleracea var. acephala. Master's thesis, Northeast Forestry University, Harbin.   Xu C and Zhao BH (2009). The development and application of SRAP molecular markers. Life Sci. Instrum. 7: 24-27.   Young ND (1999). A cautiously optimistic vision for marker-assisted breeding. Mol. Breed. 5: 505-510. http://dx.doi.org/10.1023/A:1009684409326   Yu YJ, Zhang YW and Zhang DS (2009). SRAP markers linked to purple trait in Chinese cabbage. Mol. Plant Breed. 7: 573-578. http://dx.doi.org/10.1007/s11032-009-9257-z   Yuan XJ, Pan JS, Cai R, Guan Y, et al. (2008). Genetic mapping and QTL analysis of fruit and flower related traits in cucumber (Cucumis sativus L.) using recombinant inbred lines. Euphytica 164: 473-491. http://dx.doi.org/10.1007/s10681-008-9722-5   Zhao XS, Li MY, Zhang WL and Liu F (2009). Establishment of high adventitious shoot regeneration system of ornamental kale. Genom. Appl. Biol. 28: 141-148.
2012
X. F. Yang, Ge, Y. M., Zhang, H. T., Ning, H. M., Jiang, J. Q., Qi, Y. H., and Wang, Z. L., Damaging effects of water-borne cadmium chloride on DNA of lung cells of immature mice, vol. 11, pp. 4323-4329, 2012.
Burger J (2008). Assessment and management of risk to wildlife from cadmium. Sci. Total Environ. 389: 37-45. http://dx.doi.org/10.1016/j.scitotenv.2007.08.037 PMid:17910979   Calderón J, Ortiz-Pérez D, Yá-ez L and Díaz-Barriga F (2003). Human exposure to metals. Pathways of exposure, biomarkers of effect, and host factors. Ecotoxicol. Environ. Saf 56: 93-103. http://dx.doi.org/10.1016/S0147-6513(03)00053-8   Collins AR (2004). The comet assay for DNA damage repair. Mol. Biotechnol. 26: 249-261. http://dx.doi.org/10.1385/MB:26:3:249   Godt J, Scheidig F, Grosse-Siestrup C, Esche V, et al. (2006). The toxicity of cadmium and resulting hazards for human health. J. Occup. Med. Toxicol. 1: 22. http://dx.doi.org/10.1186/1745-6673-1-22 PMid:16961932 PMCid:1578573   Kostial K, Kello D, Jugo S, Rabar I, et al. (1978). Influence of age on metal metabolism and toxicity. Environ. Health Perspect. 25: 81-86. http://dx.doi.org/10.1289/ehp.782581 PMid:720306 PMCid:1637177   Kundu S, Sengupta S, Chatterjee S, Mitra S, et al. (2009). Cadmium induces lung inflammation independent of lung cell proliferation: a molecular approach. J. Inflamm. 6: 19. http://dx.doi.org/10.1186/1476-9255-6-19 PMid:19523218 PMCid:2702298   Lag M, Westly S, Lerstad T, Bjornsrud C, et al. (2002). Cadmium-induced apoptosis of primary epithelial lung cells: involvement of Bax and p53, but not of oxidative stress. Cell Biol. Toxicol. 18: 29-42. http://dx.doi.org/10.1023/A:1014467112463 PMid:11991084   Mikhailova MV, Littlefield NA, Hass BS, Poirier LA, et al. (1997). Cadmium-induced 8-hydroxydeoxyguanosine formation, DNA strand breaks and antioxidant enzyme activities in lymphoblastoid cells. Cancer Lett. 115: 141-148. http://dx.doi.org/10.1016/S0304-3835(97)04720-4   Oberdörster G (1992). Pulmonary deposition, clearance and effects of inhaled soluble and insoluble cadmium compounds. IARC Sci. Publ. 189-204. PMid:1303941   Pei XC and Xu ZF (2003). Chronic toxicity and remote effect of cadmium. Chin. J. Environ. Occup. Med. 20: 58-61.   Potts RJ, Bespalov IA, Wallace SS, Melamede RJ, et al. (2001). Inhibition of oxidative DNA repair in cadmium-adapted alveolar epithelial cells and the potential involvement of metallothionein. Toxicology 161: 25-38. http://dx.doi.org/10.1016/S0300-483X(00)00419-4   Prieto González EA, Ortega Soler M, Fuchs AG, Brito R, et al. (2011). Differences in DNA repair kinetics of lesions induced by hydrogen peroxide in lymphocytes from premenopausal breast cancer patients and healthy Women resident in Great Buenos Aires. J. Med. Med. Sci. 2: 1036-1046.   Seidal K, Jorgensen N, Elinder CG, Sjogren B, et al. (1993). Fatal cadmium-induced pneumonitis. Scand. J. Work Environ. Health 19: 429-431. http://dx.doi.org/10.5271/sjweh.1450 PMid:8153597   Sekihashi K, Yamamoto A, Matsumura Y, Ueno S, et al. (2002). Comparative investigation of multiple organs of mice and rats in the comet assay. Mutat. Res. 517: 53-75. http://dx.doi.org/10.1016/S1383-5718(02)00034-7   Singh NP, McCoy MT, Tice RR and Schneider EL (1988). A simple technique for quantitation of low levels of DNA damage in individual cells. Exp. Cell Res. 175: 184-191. http://dx.doi.org/10.1016/0014-4827(88)90265-0   Takaki A, Jimi S, Segawa M, Hisano S, et al. (2004). Long-term cadmium exposure accelerates age-related mitochondrial changes in renal epithelial cells. Toxicology 203: 145-154. http://dx.doi.org/10.1016/j.tox.2004.06.005 PMid:15363590   Yang XF, Ge YM, Jiang JQ, Xu ZY, et al. (2012). Acute toxic effect of cadmium chloride in mice. Chin. J. Vet. Sci. 32: 467-471.   Yu RA (2000). Cadmium and DNA damage, oncogene expression as well as cell apoptosis. Overseas Med. Health 27: 359-363.