Publications

Found 1 results
Filters: Author is J.Y. Mai  [Clear All Filters]
2013
M. L. Li, Chen, J. H., Zhao, Z. Y., Zhang, K. J., Li, Z., Li, J., Mai, J. Y., Zhu, X. M., and Cai, M. S., Molecular cloning and characterization of the pseudorabies virus US1 gene, vol. 12, pp. 85-98, 2013.
Advani SJ, Weichselbaum RR and Roizman B (2003). Herpes simplex virus 1 activates cdc2 to recruit topoisomerase II alpha for post-DNA synthesis expression of late genes. Proc. Natl. Acad. Sci. U. S. A. 100: 4825-4830. http://dx.doi.org/10.1073/pnas.0730735100 PMid:12665617 PMCid:153640   Ambagala AP and Cohen JI (2007). Varicella-Zoster virus IE63, a major viral latency protein, is required to inhibit the alpha interferon-induced antiviral response. J. Virol. 81: 7844-7851. http://dx.doi.org/10.1128/JVI.00325-07 PMid:17507475 PMCid:1951283   Antunes RS, Gomes VN, Prioli SM, Prioli RA, et al. (2010). Molecular characterization and phylogenetic relationships among species of the genus Brycon (Characiformes: Characidae) from four hydrographic basins in Brazil. Genet. Mol. Res. 9: 674-684. http://dx.doi.org/10.4238/vol9-2gmr759 PMid:20449799   Barbara KE, Willis KA, Haley TM, Deminoff SJ, et al. (2007). Coiled coil structures and transcription: an analysis of the S. cerevisiae coilome. Mol. Genet. Genomics 278: 135-147. http://dx.doi.org/10.1007/s00438-007-0237-x PMid:17476531   Bastian TW, Livingston CM, Weller SK and Rice SA (2010). Herpes simplex virus type 1 immediate-early protein ICP22 is required for VICE domain formation during productive viral infection. J. Virol. 84: 2384-2394. http://dx.doi.org/10.1128/JVI.01686-09 PMid:20032172 PMCid:2820935   Bowman JJ, Orlando JS, Davido DJ, Kushnir AS, et al. (2009). Transient expression of herpes simplex virus type 1 ICP22 represses viral promoter activity and complements the replication of an ICP22 null virus. J. Virol. 83: 8733-8743. http://dx.doi.org/10.1128/JVI.00810-09 PMid:19535441 PMCid:2738139   Brandt CR and Kolb AW (2003). Tyrosine 116 of the herpes simplex virus type 1 IEalpha22 protein is an ocular virulence determinant and potential phosphorylation site. Invest. Ophthalmol. Vis. Sci. 44: 4601-4607. http://dx.doi.org/10.1167/iovs.03-0582 PMid:14578374   Brukman A and Enquist LW (2006). Pseudorabies virus EP0 protein counteracts an interferon-induced antiviral state in a species-specific manner. J. Virol. 80: 10871-10873. http://dx.doi.org/10.1128/JVI.01308-06 PMid:16928746 PMCid:1641768   Coller KE, Lee JI, Ueda A and Smith GA (2007). The capsid and tegument of the alphaherpesviruses are linked by an interaction between the UL25 and VP1/2 proteins. J. Virol. 81: 11790-11797. http://dx.doi.org/10.1128/JVI.01113-07 PMid:17715218 PMCid:2168758   Feng ZP (2002). An overview on predicting the subcellular location of a protein. In Silico Biol. 2: 291-303. PMid:12542414   Ferrari M, Gualandi GL, Corradi A, Monaci C, et al. (2000). The response of pigs inoculated with a thymidine kinase-negative (TK-) pseudorabies virus to challenge infection with virulent virus. Comp. Immunol. Microbiol. Infect. Dis. 23: 15-26. http://dx.doi.org/10.1016/S0147-9571(99)00019-3   Geiss BJ, Tavis JE, Metzger LM, Leib DA, et al. (2001). Temporal regulation of herpes simplex virus type 2 VP22 expression and phosphorylation. J. Virol. 75: 10721-10729. http://dx.doi.org/10.1128/JVI.75.22.10721-10729.2001 PMid:11602713 PMCid:114653   Habran L, Bontems S, Di VE, Sadzot-Delvaux C, et al. (2005). Varicella-zoster virus IE63 protein phosphorylation by roscovitine-sensitive cyclin-dependent kinases modulates its cellular localization and activity. J. Biol. Chem. 280: 29135-29143. http://dx.doi.org/10.1074/jbc.M503312200 PMid:15955820   Hopp TP and Woods KR (1981). Prediction of protein antigenic determinants from amino acid sequences. Proc. Natl. Acad. Sci. U. S. A. 78: 3824-3828. http://dx.doi.org/10.1073/pnas.78.6.3824 PMid:6167991 PMCid:319665   Jahedi S, Markovitz NS, Filatov F and Roizman B (1999). Colocalization of the herpes simplex virus 1 UL4 protein with infected cell protein 22 in small, dense nuclear structures formed prior to onset of DNA synthesis. J. Virol. 73: 5132- 5138. PMid:10233976 PMCid:112558   Jones JO and Arvin AM (2005). Viral and cellular gene transcription in fibroblasts infected with small plaque mutants of varicella-zoster virus. Antiviral Res. 68: 56-65. http://dx.doi.org/10.1016/j.antiviral.2005.06.011 PMid:16118026   Kalamvoki M and Roizman B (2011). The histone acetyltransferase CLOCK is an essential component of the herpes simplex virus 1 transcriptome that includes TFIID, ICP4, ICP27, and ICP22. J. Virol. 85: 9472-9477. http://dx.doi.org/10.1128/JVI.00876-11 PMid:21734043 PMCid:3165755   Kost RG, Kupinsky H and Straus SE (1995). Varicella-zoster virus gene 63: transcript mapping and regulatory activity. Virology 209: 218-224. http://dx.doi.org/10.1006/viro.1995.1246 PMid:7747473   Kramer T, Greco TM, Enquist LW and Cristea IM (2011). Proteomic characterization of pseudorabies virus extracellular virions. J. Virol. 85: 6427-6441. http://dx.doi.org/10.1128/JVI.02253-10 PMid:21525350 PMCid:3126529   Krautwald M, Maresch C, Klupp BG, Fuchs W, et al. (2008). Deletion or green fluorescent protein tagging of the pUL35 capsid component of pseudorabies virus impairs virus replication in cell culture and neuroinvasion in mice. J. Gen. Virol. 89: 1346-1351. http://dx.doi.org/10.1099/vir.0.83652-0 PMid:18474549   Kyte J and Doolittle RF (1982). A simple method for displaying the hydropathic character of a protein. J. Mol. Biol. 157: 105-132. http://dx.doi.org/10.1016/0022-2836(82)90515-0   Li M, Wang S, Cai M, Guo H, et al. (2011a). Characterization of molecular determinants for nucleocytoplasmic shuttling of PRV UL54. Virology 417: 385-393. http://dx.doi.org/10.1016/j.virol.2011.06.004 PMid:21777931   Li M, Wang S, Cai M and Zheng C (2011b). Identification of nuclear and nucleolar localization signals of pseudorabies virus (PRV) early protein UL54 reveals that its nuclear targeting is required for efficient production of PRV. J. Virol. 85: 10239-10251. http://dx.doi.org/10.1128/JVI.05223-11 PMid:21795331 PMCid:3196411   Lin HW, Hsu WL, Chang YY, Jan MS, et al. (2010). Role of the UL41 protein of pseudorabies virus in host shutoff, pathogenesis and induction of TNF-alpha expression. J. Vet. Med. Sci. 72: 1179-1187. http://dx.doi.org/10.1292/jvms.10-0059 PMid:20448414   Luxton GW, Lee JI, Haverlock-Moyns S, Schober JM, et al. (2006). The pseudorabies virus VP1/2 tegument protein is required for intracellular capsid transport. J. Virol. 80: 201-209. http://dx.doi.org/10.1128/JVI.80.1.201-209.2006 PMid:16352544 PMCid:1317523   Mason JM and Arndt KM (2004). Coiled coil domains: stability, specificity, and biological implications. Chembiochem 5: 170-176. http://dx.doi.org/10.1002/cbic.200300781 PMid:14760737   McGeoch DJ, Dolan A and Ralph AC (2000). Toward a comprehensive phylogeny for mammalian and avian herpesviruses. J. Virol. 74: 10401-10406. http://dx.doi.org/10.1128/JVI.74.22.10401-10406.2000 PMid:11044084 PMCid:110914   Mueller NH, Walters MS, Marcus RA, Graf LL, et al. (2010). Identification of phosphorylated residues on varicella-zoster virus immediate-early protein ORF63. J. Gen. Virol. 91: 1133-1137. http://dx.doi.org/10.1099/vir.0.019067-0 PMid:20089801 PMCid:2888152   Nixdorf R, Klupp BG and Mettenleiter TC (2001a). Restoration of function of carboxy-terminally truncated pseudorabies virus glycoprotein B by point mutations in the ectodomain. J. Virol. 75: 11526-11533. http://dx.doi.org/10.1128/JVI.75.23.11526-11533.2001 PMid:11689634 PMCid:114739   Nixdorf R, Klupp BG and Mettenleiter TC (2001b). Role of the cytoplasmic tails of pseudorabies virus glycoproteins B, E and M in intracellular localization and virion incorporation. J. Gen. Virol. 82: 215-226. PMid:11125174   Orlando JS, Balliet JW, Kushnir AS, Astor TL, et al. (2006). ICP22 is required for wild-type composition and infectivity of herpes simplex virus type 1 virions. J. Virol. 80: 9381-9390. http://dx.doi.org/10.1128/JVI.01061-06 PMid:16973544 PMCid:1617265   Pelletier A, Do F, Brisebois JJ, Lagace L, et al. (1997). Self-association of herpes simplex virus type 1 ICP35 is via coiled-coil interactions and promotes stable interaction with the major capsid protein. J. Virol. 71: 5197-5208. PMid:9188587 PMCid:191755   Pomeranz LE and Blaho JA (1999). Modified VP22 localizes to the cell nucleus during synchronized herpes simplex virus type 1 infection. J. Virol. 73: 6769-6781. PMid:10400775 PMCid:112762   Ren X, Harms JS and Splitter GA (2001). Tyrosine phosphorylation of bovine herpesvirus 1 tegument protein VP22 correlates with the incorporation of VP22 into virions. J. Virol. 75: 9010-9017. http://dx.doi.org/10.1128/JVI.75.19.9010-9017.2001 PMid:11533164 PMCid:114469   Smith GA and Enquist LW (2000). A self-recombining bacterial artificial chromosome and its application for analysis of herpesvirus pathogenesis. Proc. Natl. Acad. Sci. U. S. A. 97: 4873-4878. http://dx.doi.org/10.1073/pnas.080502497 PMid:10781094 PMCid:18325   Szpara ML, Tafuri YR, Parsons L, Shamim SR, et al. (2011). A wide extent of inter-strain diversity in virulent and vaccine strains of alphaherpesviruses. PLoS Pathog. 7: e1002282. http://dx.doi.org/10.1371/journal.ppat.1002282 PMid:22022263 PMCid:3192842   Tomioka Y, Miyazaki T, Taharaguchi S, Yoshino S, et al. (2008). Cerebellar pathology in transgenic mice expressing the pseudorabies virus immediate-early protein IE180. Eur. J. Neurosci. 27: 2115-2132. http://dx.doi.org/10.1111/j.1460-9568.2008.06174.x PMid:18412631   Walters MS, Kyratsous CA, Wan S and Silverstein S (2008). Nuclear import of the varicella-zoster virus latency-associated protein ORF63 in primary neurons requires expression of the lytic protein ORF61 and occurs in a proteasome-dependent manner. J. Virol. 82: 8673-8686. http://dx.doi.org/10.1128/JVI.00685-08 PMid:18562514 PMCid:2519623   Welling GW, Weijer WJ, van der Zee R and Welling-Wester S (1985). Prediction of sequential antigenic regions in proteins. FEBS Lett. 188: 215-218. http://dx.doi.org/10.1016/0014-5793(85)80374-4   Xing J, Wang S, Lin F, Pan W, et al. (2011). Comprehensive characterization of interaction complexes of herpes simplex virus type 1 ICP22, UL3, UL4, and UL20.5. J. Virol. 85: 1881-1886. http://dx.doi.org/10.1128/JVI.01730-10 PMid:21147926 PMCid:3028915   Zhang G and Leader DP (1990). The structure of the pseudorabies virus genome at the end of the inverted repeat sequences proximal to the junction with the short unique region. J. Gen. Virol. 71: 2433-2441. http://dx.doi.org/10.1099/0022-1317-71-10-2433 PMid:2172457