Publications

Found 11 results
Filters: Author is R.J. Ma  [Clear All Filters]
2016
X. Q. Wang, Han, J., Wen, Y., Jiang, W. B., Fang, J. G., Zhang, B. B., Ma, R. J., Wang, X. Q., Han, J., Wen, Y., Jiang, W. B., Fang, J. G., Zhang, B. B., and Ma, R. J., Cloning and bioinformatic analysis of transcription factor MYB10 from the red-leaf peach, vol. 15, no. 4, p. -, 2016.
Conflicts of interestThe authors declare no conflict of interest.ACKNOWLEDGMENTSResearch supported by the National Natural Science Foundation of China (#31101517) and the Science and Technology Innovation Foundation of Nanjing Agricultural University Young Teachers (#KJ09010).REFERENCESAharoni A, De Vos CH, Wein M, Sun Z, et al (2001). The strawberry FaMYB1 transcription factor suppresses anthocyanin and flavonol accumulation in transgenic tobacco. Plant J. 28: 319-332. http://dx.doi.org/10.1046/j.1365-313X.2001.01154.x Ban Y, Honda C, Hatsuyama Y, Igarashi M, et al (2007). Isolation and functional analysis of a MYB transcription factor gene that is a key regulator for the development of red coloration in apple skin. Plant Cell Physiol. 48: 958-970. http://dx.doi.org/10.1093/pcp/pcm066 Boase MR, Brendolise C, Wang L, Ngo H, et al (2015). Failure to launch: the self-regulating Md-MYB10 R6 gene from apple is active in flowers but not leaves of Petunia. Plant Cell Rep. 34: 1817-1823. http://dx.doi.org/10.1007/s00299-015-1827-4 Borevitz JO, Xia Y, Blount J, Dixon RA, et al (2000). Activation tagging identifies a conserved MYB regulator of phenylpropanoid biosynthesis. Plant Cell 12: 2383-2394. http://dx.doi.org/10.1105/tpc.12.12.2383 Butelli E, Titta L, Giorgio M, Mock HP, et al (2008). Enrichment of tomato fruit with health-promoting anthocyanins by expression of select transcription factors. Nat. Biotechnol. 26: 1301-1308. http://dx.doi.org/10.1038/nbt.1506 Chagné D, Lin-Wang K, Espley RV, Volz RK, et al (2013). An ancient duplication of apple MYB transcription factors is responsible for novel red fruit-flesh phenotypes. Plant Physiol. 161: 225-239. http://dx.doi.org/10.1104/pp.112.206771 Deluc L, Barrieu F, Marchive C, Lauvergeat V, et al (2006). Characterization of a grapevine R2R3-MYB transcription factor that regulates the phenylpropanoid pathway. Plant Physiol. 140: 499-511. http://dx.doi.org/10.1104/pp.105.067231 Dong ZD, Chen J, Li T, Chen F, et al (2015). Molecular survey of Tamyb10-1 genes and their association with grain colour and germinability in Chinese wheat and Aegilops tauschii. J. Genet. 94: 453-459. http://dx.doi.org/10.1007/s12041-015-0559-0 Grotewold E, Chamberlin M, Snook M, Siame B, et al (1998). Engineering secondary metabolism in maize cells by ectopic expression of transcription factors. Plant Cell 10: 721-740. Ivanova V, Stefova M, Vojnoski B, Dornyei A, et al (2011). Identification of polyphenolic compounds in red and white grape varieties grown in R. Macedonia and changes of their content during ripening. Food Res. Int. 44: 2851-2860. http://dx.doi.org/10.1016/j.foodres.2011.06.046 Kobayashi S, Ishimaru M, Hiraoka K, Honda C, et al (2002). Myb-related genes of the Kyoho grape ( Vitis labruscana) regulate anthocyanin biosynthesis. Planta 215: 924-933. http://dx.doi.org/10.1007/s00425-002-0830-5 Li P, Zhang Y, Einhorn TC, Cheng L, et al (2014). Comparison of phenolic metabolism and primary metabolism between green ‘Anjou’ pear and its bud mutation, red ‘Anjou’. Physiol. Plant. 150: 339-354. http://dx.doi.org/10.1111/ppl.12105 Lin-Wang K, McGhie TK, Wang M, Liu Y, et al (2014). Engineering the anthocyanin regulatory complex of strawberry (Fragaria vesca). Front. Plant Sci. 5: 651. http://dx.doi.org/10.3389/fpls.2014.00651 Liu YZ, Luo WL, Huang CH, Chen LK, et al (2013). Characterization of the regulatory dene hrd1(t) involved in anthocyanin biosynthesis. Zhongguo Nong Ye Ke Xue 46: 3955-3964. Medina-Puche L, Cumplido-Laso G, Amil-Ruiz F, Hoffmann T, et al (2014). MYB10 plays a major role in the regulation of flavonoid/phenylpropanoid metabolism during ripening of Fragaria x ananassa fruits. J. Exp. Bot. 65: 401-417. http://dx.doi.org/10.1093/jxb/ert377 Nesi N, Jond C, Debeaujon I, Caboche M, et al (2001). The Arabidopsis TT2 gene encodes an R2R3 MYB domain protein that acts as a key determinant for proanthocyanidin accumulation in developing seed. Plant Cell 13: 2099-2114. Palmer CM, Hindt MN, Schmidt H, Clemens S, et al (2013). MYB10 and MYB72 are required for growth under iron-limiting conditions. PLoS Genet. 9: e1003953. http://dx.doi.org/10.1371/journal.pgen.1003953 Poovaiah CR, Bewg WP, Lan W, Ralph J, et al (2016). Sugarcane transgenics expressing MYB transcription factors show improved glucose release. Biotechnol. Biofuels 9: 143. http://dx.doi.org/10.1186/s13068-016-0559-1 Quattrocchio F, Verweij W, Kroon A, Spelt C, et al (2006). PH4 of Petunia is an R2R3 MYB protein that activates vacuolar acidification through interactions with basic-helix-loop-helix transcription factors of the anthocyanin pathway. Plant Cell 18: 1274-1291. http://dx.doi.org/10.1105/tpc.105.034041 Schwinn K, Venail J, Shang Y, Mackay S, et al (2006). A small family of MYB-regulatory genes controls floral pigmentation intensity and patterning in the genus Antirrhinum. Plant Cell 18: 831-851. http://dx.doi.org/10.1105/tpc.105.039255 Shan T, Rong W, Xu H, Du L, et al (2016). The wheat R2R3-MYB transcription factor TaRIM1 participates in resistance response against the pathogen Rhizoctonia cerealis infection through regulating defense genes. Sci. Rep. 6: 28777. http://dx.doi.org/10.1038/srep28777 Shimada S, Otsuki H, Sakuta M, et al (2007). Transcriptional control of anthocyanin biosynthetic genes in the Caryophyllales. J. Exp. Bot. 58: 957-967. http://dx.doi.org/10.1093/jxb/erl256 Starkevič P, Paukštytė J, Kazanavičiūtė V, Denkovskienė E, et al (2015). Expression and anthocyanin biosynthesis-modulating potential of sweet cherry (Prunus avium L.) MYB10 and bHLH genes. PLoS One 10: e0126991. http://dx.doi.org/10.1371/journal.pone.0126991 Tuan PA, Bai S, Yaegaki H, Tamura T, et al (2015). The crucial role of PpMYB10.1 in anthocyanin accumulation in peach and relationships between its allelic type and skin color phenotype. BMC Plant Biol. 15: 280. http://dx.doi.org/10.1186/s12870-015-0664-5 Wan H, Zhang J, Song T, Tian J, et al (2015). Promotion of flavonoid biosynthesis in leaves and calli of ornamental crabapple (Malus sp.) by high carbon to nitrogen ratios. Front. Plant Sci. 6: 673. http://dx.doi.org/10.3389/fpls.2015.00673 Wang ZW, Qu SC, Zhang Z, Zhang JY, et al (2004). A fast method for total RNA extraction from the tissue culture material of Malus sp. Guoshu Xuebao 21: 385-387. Xu LL, Jiang WB, Han J, Weng ML, et al (2011). Effects of foliage spray of KH2PO4 and sucrose solution on changes of pigments and net photosynthetic rate in leaves of red-leaf peach in early summer. Sci. Silvae Sin. 47: 170-174. Yang YN, Yao GF, Zheng D, Zhang SL, et al (2015). Expression differences of anthocyanin biosynthesis genes reveal regulation patterns for red pear coloration. Plant Cell Rep. 34: 189-198. http://dx.doi.org/10.1007/s00299-014-1698-0 Zhang YZ, Xu SZ, Cheng YW, Ya HY, et al (2016). Transcriptome analysis and anthocyanin-related genes in red leaf lettuce. Genet. Mol. Res. 15: .http://dx.doi.org/10.4238/gmr.15017023 Zhou MJ, Hu SL, Cao Y, Lu XQ, et al (2012). Cloning and bioinformation analysis of C3H gene in Neosinocalamus affinis. Bull. Bot. Res. 32: 38-46.    
X. Q. Wang, Han, J., Wen, Y., Jiang, W. B., Fang, J. G., Zhang, B. B., Ma, R. J., Wang, X. Q., Han, J., Wen, Y., Jiang, W. B., Fang, J. G., Zhang, B. B., and Ma, R. J., Cloning and bioinformatic analysis of transcription factor MYB10 from the red-leaf peach, vol. 15, no. 4, p. -, 2016.
Conflicts of interestThe authors declare no conflict of interest.ACKNOWLEDGMENTSResearch supported by the National Natural Science Foundation of China (#31101517) and the Science and Technology Innovation Foundation of Nanjing Agricultural University Young Teachers (#KJ09010).REFERENCESAharoni A, De Vos CH, Wein M, Sun Z, et al (2001). The strawberry FaMYB1 transcription factor suppresses anthocyanin and flavonol accumulation in transgenic tobacco. Plant J. 28: 319-332. http://dx.doi.org/10.1046/j.1365-313X.2001.01154.x Ban Y, Honda C, Hatsuyama Y, Igarashi M, et al (2007). Isolation and functional analysis of a MYB transcription factor gene that is a key regulator for the development of red coloration in apple skin. Plant Cell Physiol. 48: 958-970. http://dx.doi.org/10.1093/pcp/pcm066 Boase MR, Brendolise C, Wang L, Ngo H, et al (2015). Failure to launch: the self-regulating Md-MYB10 R6 gene from apple is active in flowers but not leaves of Petunia. Plant Cell Rep. 34: 1817-1823. http://dx.doi.org/10.1007/s00299-015-1827-4 Borevitz JO, Xia Y, Blount J, Dixon RA, et al (2000). Activation tagging identifies a conserved MYB regulator of phenylpropanoid biosynthesis. Plant Cell 12: 2383-2394. http://dx.doi.org/10.1105/tpc.12.12.2383 Butelli E, Titta L, Giorgio M, Mock HP, et al (2008). Enrichment of tomato fruit with health-promoting anthocyanins by expression of select transcription factors. Nat. Biotechnol. 26: 1301-1308. http://dx.doi.org/10.1038/nbt.1506 Chagné D, Lin-Wang K, Espley RV, Volz RK, et al (2013). An ancient duplication of apple MYB transcription factors is responsible for novel red fruit-flesh phenotypes. Plant Physiol. 161: 225-239. http://dx.doi.org/10.1104/pp.112.206771 Deluc L, Barrieu F, Marchive C, Lauvergeat V, et al (2006). Characterization of a grapevine R2R3-MYB transcription factor that regulates the phenylpropanoid pathway. Plant Physiol. 140: 499-511. http://dx.doi.org/10.1104/pp.105.067231 Dong ZD, Chen J, Li T, Chen F, et al (2015). Molecular survey of Tamyb10-1 genes and their association with grain colour and germinability in Chinese wheat and Aegilops tauschii. J. Genet. 94: 453-459. http://dx.doi.org/10.1007/s12041-015-0559-0 Grotewold E, Chamberlin M, Snook M, Siame B, et al (1998). Engineering secondary metabolism in maize cells by ectopic expression of transcription factors. Plant Cell 10: 721-740. Ivanova V, Stefova M, Vojnoski B, Dornyei A, et al (2011). Identification of polyphenolic compounds in red and white grape varieties grown in R. Macedonia and changes of their content during ripening. Food Res. Int. 44: 2851-2860. http://dx.doi.org/10.1016/j.foodres.2011.06.046 Kobayashi S, Ishimaru M, Hiraoka K, Honda C, et al (2002). Myb-related genes of the Kyoho grape ( Vitis labruscana) regulate anthocyanin biosynthesis. Planta 215: 924-933. http://dx.doi.org/10.1007/s00425-002-0830-5 Li P, Zhang Y, Einhorn TC, Cheng L, et al (2014). Comparison of phenolic metabolism and primary metabolism between green ‘Anjou’ pear and its bud mutation, red ‘Anjou’. Physiol. Plant. 150: 339-354. http://dx.doi.org/10.1111/ppl.12105 Lin-Wang K, McGhie TK, Wang M, Liu Y, et al (2014). Engineering the anthocyanin regulatory complex of strawberry (Fragaria vesca). Front. Plant Sci. 5: 651. http://dx.doi.org/10.3389/fpls.2014.00651 Liu YZ, Luo WL, Huang CH, Chen LK, et al (2013). Characterization of the regulatory dene hrd1(t) involved in anthocyanin biosynthesis. Zhongguo Nong Ye Ke Xue 46: 3955-3964. Medina-Puche L, Cumplido-Laso G, Amil-Ruiz F, Hoffmann T, et al (2014). MYB10 plays a major role in the regulation of flavonoid/phenylpropanoid metabolism during ripening of Fragaria x ananassa fruits. J. Exp. Bot. 65: 401-417. http://dx.doi.org/10.1093/jxb/ert377 Nesi N, Jond C, Debeaujon I, Caboche M, et al (2001). The Arabidopsis TT2 gene encodes an R2R3 MYB domain protein that acts as a key determinant for proanthocyanidin accumulation in developing seed. Plant Cell 13: 2099-2114. Palmer CM, Hindt MN, Schmidt H, Clemens S, et al (2013). MYB10 and MYB72 are required for growth under iron-limiting conditions. PLoS Genet. 9: e1003953. http://dx.doi.org/10.1371/journal.pgen.1003953 Poovaiah CR, Bewg WP, Lan W, Ralph J, et al (2016). Sugarcane transgenics expressing MYB transcription factors show improved glucose release. Biotechnol. Biofuels 9: 143. http://dx.doi.org/10.1186/s13068-016-0559-1 Quattrocchio F, Verweij W, Kroon A, Spelt C, et al (2006). PH4 of Petunia is an R2R3 MYB protein that activates vacuolar acidification through interactions with basic-helix-loop-helix transcription factors of the anthocyanin pathway. Plant Cell 18: 1274-1291. http://dx.doi.org/10.1105/tpc.105.034041 Schwinn K, Venail J, Shang Y, Mackay S, et al (2006). A small family of MYB-regulatory genes controls floral pigmentation intensity and patterning in the genus Antirrhinum. Plant Cell 18: 831-851. http://dx.doi.org/10.1105/tpc.105.039255 Shan T, Rong W, Xu H, Du L, et al (2016). The wheat R2R3-MYB transcription factor TaRIM1 participates in resistance response against the pathogen Rhizoctonia cerealis infection through regulating defense genes. Sci. Rep. 6: 28777. http://dx.doi.org/10.1038/srep28777 Shimada S, Otsuki H, Sakuta M, et al (2007). Transcriptional control of anthocyanin biosynthetic genes in the Caryophyllales. J. Exp. Bot. 58: 957-967. http://dx.doi.org/10.1093/jxb/erl256 Starkevič P, Paukštytė J, Kazanavičiūtė V, Denkovskienė E, et al (2015). Expression and anthocyanin biosynthesis-modulating potential of sweet cherry (Prunus avium L.) MYB10 and bHLH genes. PLoS One 10: e0126991. http://dx.doi.org/10.1371/journal.pone.0126991 Tuan PA, Bai S, Yaegaki H, Tamura T, et al (2015). The crucial role of PpMYB10.1 in anthocyanin accumulation in peach and relationships between its allelic type and skin color phenotype. BMC Plant Biol. 15: 280. http://dx.doi.org/10.1186/s12870-015-0664-5 Wan H, Zhang J, Song T, Tian J, et al (2015). Promotion of flavonoid biosynthesis in leaves and calli of ornamental crabapple (Malus sp.) by high carbon to nitrogen ratios. Front. Plant Sci. 6: 673. http://dx.doi.org/10.3389/fpls.2015.00673 Wang ZW, Qu SC, Zhang Z, Zhang JY, et al (2004). A fast method for total RNA extraction from the tissue culture material of Malus sp. Guoshu Xuebao 21: 385-387. Xu LL, Jiang WB, Han J, Weng ML, et al (2011). Effects of foliage spray of KH2PO4 and sucrose solution on changes of pigments and net photosynthetic rate in leaves of red-leaf peach in early summer. Sci. Silvae Sin. 47: 170-174. Yang YN, Yao GF, Zheng D, Zhang SL, et al (2015). Expression differences of anthocyanin biosynthesis genes reveal regulation patterns for red pear coloration. Plant Cell Rep. 34: 189-198. http://dx.doi.org/10.1007/s00299-014-1698-0 Zhang YZ, Xu SZ, Cheng YW, Ya HY, et al (2016). Transcriptome analysis and anthocyanin-related genes in red leaf lettuce. Genet. Mol. Res. 15: .http://dx.doi.org/10.4238/gmr.15017023 Zhou MJ, Hu SL, Cao Y, Lu XQ, et al (2012). Cloning and bioinformation analysis of C3H gene in Neosinocalamus affinis. Bull. Bot. Res. 32: 38-46.    
2013
C. H. Zhang, Shangguan, L. F., Ma, R. J., Sun, X., Tao, R., Guo, L., Korir, N. K., and Yu, M. L., Genome-wide analysis of the AP2/ERF superfamily in peach (Prunus persica), vol. 11, pp. 4789-4809, 2013.
Agarwal P, Agarwal PK, Joshi AJ, Sopory SK, et al. (2010). Overexpression of PgDREB2A transcription factor enhances abiotic stress tolerance and activates downstream stress-responsive genes. Mol. Biol. Rep. 37: 1125-1135. http://dx.doi.org/10.1007/s11033-009-9885-8 PMid:19826914   Agarwal PK, Agarwal P, Reddy MK and Sopory SK (2006). Role of DREB transcription factors in abiotic and biotic stress tolerance in plants. Plant Cell Rep. 25: 1263-1274. http://dx.doi.org/10.1007/s00299-006-0204-8 PMid:16858552   Allen MD, Yamasaki K, Ohme-Takagi M, Tateno M, et al. (1998). A novel mode of DNA recognition by a beta-sheet revealed by the solution structure of the GCC-box binding domain in complex with DNA. EMBO J. 17: 5484-5496. http://dx.doi.org/10.1093/emboj/17.18.5484 PMid:9736626 PMCid:1170874   Alonso JM, Stepanova AN, Leisse TJ, Kim CJ, et al. (2003). Genome-wide insertional mutagenesis of Arabidopsis thaliana. Science 301: 653-657. http://dx.doi.org/10.1126/science.1086391 PMid:12893945   Anfinsen CB (1973). Principles that govern the folding of protein chains. Science 181: 223-230. http://dx.doi.org/10.1126/science.181.4096.223 PMid:4124164   Anfinsen CB, Haber E, Sela M and White FH Jr (1961). The kinetics of formation of native ribonuclease during oxidation of the reduced polypeptide chain. Proc. Natl. Acad. Sci. U. S. A. 47: 1309-1314. http://dx.doi.org/10.1073/pnas.47.9.1309 PMid:13683522 PMCid:223141   Arnold K, Bordoli L, Kopp J and Schwede T (2006). The SWISS-MODEL workspace: a web-based environment for protein structure homology modelling. Bioinformatics 22: 195-201. http://dx.doi.org/10.1093/bioinformatics/bti770 PMid:16301204   Bailey TL, Williams N, Misleh C and Li WW (2006). MEME: discovering and analyzing DNA and protein sequence motifs. Nucleic Acids Res. 34: W369-W373. http://dx.doi.org/10.1093/nar/gkl198 PMid:16845028 PMCid:1538909   Blanc G and Wolfe KH (2004). Functional divergence of duplicated genes formed by polyploidy during Arabidopsis evolution. Plant Cell 16: 1679-1691. http://dx.doi.org/10.1105/tpc.021410 PMid:15208398 PMCid:514153   Chuck G, Meeley RB and Hake S (1998). The control of maize spikelet meristem fate by the APETALA2-like gene indeterminate spikelet1. Genes Dev. 12: 1145-1154. http://dx.doi.org/10.1101/gad.12.8.1145 PMid:9553044 PMCid:316712   Clifton SW and Mitreva M (2009). Strategies for undertaking expressed sequence tag (EST) projects. Methods Mol. Biol. 533: 13-32. http://dx.doi.org/10.1007/978-1-60327-136-3_2 PMid:19277564   Goff SA, Ricke D, Lan TH, Presting G, et al. (2002). A draft sequence of the rice genome (Oryza sativa L. ssp. japonica). Science 296: 92-100. http://dx.doi.org/10.1126/science.1068275 PMid:11935018   Guillaumot D, Lelu-Walter MA, Germot A, Meytraud F, et al. (2008). Expression patterns of LmAP2L1 and LmAP2L2 encoding two-APETALA2 domain proteins during somatic embryogenesis and germination of hybrid larch (Larix x marschlinsii). J. Plant Physiol. 165: 1003-1010. http://dx.doi.org/10.1016/j.jplph.2007.08.009 PMid:18160178   Guo H and Ecker JR (2004). The ethylene signaling pathway: new insights. Curr. Opin. Plant Biol. 7: 40-49. http://dx.doi.org/10.1016/j.pbi.2003.11.011 PMid:14732440   Hu LF and Liu SQ (2011). Genome-wide identification and phylogenetic analysis of the ERF gene family in cucumbers. Genet. Mol. Biol. 34: 624-633. http://dx.doi.org/10.1590/S1415-47572011005000054 PMid:22215967 PMCid:3229118   Hu YX, Wang YX, Liu XF and Li JY (2004). Arabidopsis RAV1 is down-regulated by brassinosteroid and may act as a negative regulator during plant development. Cell Res. 14: 8-15. http://dx.doi.org/10.1038/sj.cr.7290197 PMid:15040885   Huala E, Dickerman AW, Garcia-Hernandez M, Weems D, et al. (2001). The Arabidopsis Information Resource (TAIR): a comprehensive database and web-based information retrieval, analysis, and visualization system for a model plant. Nucleic Acids Res. 29: 102-105. http://dx.doi.org/10.1093/nar/29.1.102 PMid:11125061 PMCid:29827   Jofuku KD, den Boer BG, Van Montagu M and Okamuro JK (1994). Control of Arabidopsis flower and seed development by the homeotic gene APETALA2. Plant Cell 6: 1211-1225. PMid:7919989 PMCid:160514   Jung S, Staton M, Lee T, Blenda A, et al. (2008). GDR (Genome Database for Rosaceae): integrated web-database for Rosaceae genomics and genetics data. Nucleic Acids Res. 36: D1034-D1040. http://dx.doi.org/10.1093/nar/gkm803 PMid:17932055 PMCid:2238863   Kagaya Y, Ohmiya K and Hattori T (1999). RAV1, a novel DNA-binding protein, binds to bipartite recognition sequence through two distinct DNA-binding domains uniquely found in higher plants. Nucleic Acids Res. 27: 470-478. http://dx.doi.org/10.1093/nar/27.2.470 PMid:9862967 PMCid:148202   Layne DR and Bassi D (2008). The Peach: Botany, Production and Uses. CABI, London. http://dx.doi.org/10.1079/9781845933869.0000   Li Y, Zhu B, Xu W, Zhu H, et al. (2007). LeERF1 positively modulated ethylene triple response on etiolated seedling, plant development and fruit ripening and softening in tomato. Plant Cell Rep. 26: 1999-2008. http://dx.doi.org/10.1007/s00299-007-0394-8 PMid:17639404   Licausi F, Giorgi FM, Zenoni S, Osti F, et al. (2010). Genomic and transcriptomic analysis of the AP2/ERF superfamily in Vitis vinifera. BMC Genomics 11: 719. http://dx.doi.org/10.1186/1471-2164-11-719 PMid:21171999 PMCid:3022922   Moose SP and Sisco PH (1996). Glossy15, an APETALA2-like gene from maize that regulates leaf epidermal cell identity. Genes Dev. 10: 3018-3027. http://dx.doi.org/10.1101/gad.10.23.3018 PMid:8957002   Nakano T, Suzuki K, Fujimura T and Shinshi H (2006). Genome-wide analysis of the ERF gene family in Arabidopsis and rice. Plant Physiol. 140: 411-432. http://dx.doi.org/10.1104/pp.105.073783 PMid:16407444 PMCid:1361313   Ohme-Takagi M and Shinshi H (1995). Ethylene-inducible DNA binding proteins that interact with an ethylene-responsive element. Plant Cell 7: 173-182. PMid:7756828 PMCid:160773   Ren Y, Zhang Z, Liu J, Staub JE, et al. (2009). An integrated genetic and cytogenetic map of the cucumber genome. PLoS One 4: e5795. http://dx.doi.org/10.1371/journal.pone.0005795 PMid:19495411 PMCid:2685989   Sakuma Y, Liu Q, Dubouzet JG, Abe H, et al. (2002). DNA-binding specificity of the ERF/AP2 domain of Arabidopsis DREBs, transcription factors involved in dehydration- and cold-inducible gene expression. Biochem. Biophys. Res. Commun. 290: 998-1009. http://dx.doi.org/10.1006/bbrc.2001.6299 PMid:11798174   Shangguan LF, Wang C, Fang JG, Li XY, et al. (2011). Isolation of effective genes with digital northern platform of NCBI Grapevine (Vitis vinifera L.) EST sequences. Sci. Agr. Sin. 44: 2748-2759.   Sharoni AM, Nuruzzaman M, Satoh K, Shimizu T, et al. (2011). Gene structures, classification and expression models of the AP2/EREBP transcription factor family in rice. Plant Cell Physiol. 52: 344-360. http://dx.doi.org/10.1093/pcp/pcq196 PMid:21169347   Shi J, Blundell TL and Mizuguchi K (2001). FUGUE: sequence-structure homology recognition using environment-specific substitution tables and structure-dependent gap penalties. J. Mol. Biol. 310: 243-257. http://dx.doi.org/10.1006/jmbi.2001.4762 PMid:11419950   Singh M (2001). Predicting Protein Secondary and Supersecondary Structure. CRC Press LLC, Florida.   Tamura K, Dudley J, Nei M and Kumar S (2007). MEGA4: Molecular Evolutionary Genetics Analysis (MEGA) software version 4.0. Mol. Biol. Evol. 24: 1596-1599. http://dx.doi.org/10.1093/molbev/msm092 PMid:17488738   Tournier B, Sanchez-Ballesta MT, Jones B, Pesquet E, et al. (2003). New members of the tomato ERF family show specific expression pattern and diverse DNA-binding capacity to the GCC box element. FEBS Lett. 550: 149-154. http://dx.doi.org/10.1016/S0014-5793(03)00757-9   Velasco R, Zharkikh A, Troggio M, Cartwright DA, et al. (2007). A high quality draft consensus sequence of the genome of a heterozygous grapevine variety. PLoS One 2: e1326. http://dx.doi.org/10.1371/journal.pone.0001326 PMid:18094749 PMCid:2147077   Wang C, Wang H, Zhang J and Chen S (2008). A seed-specific AP2-domain transcription factor from soybean plays a certain role in regulation of seed germination. Sci. China C Life Sci. 51: 336-345. http://dx.doi.org/10.1007/s11427-008-0044-6 PMid:18368311   Wang Y, Deng D, Bian Y, Lv Y, et al. (2010). Genome-wide analysis of primary auxin-responsive Aux/IAA gene family in maize (Zea mays L.). Mol. Biol. Rep. 37: 3991-4001. http://dx.doi.org/10.1007/s11033-010-0058-6 PMid:20232157   Yamamoto S, Suzuki K and Shinshi H (1999). Elicitor-responsive, ethylene-independent activation of GCC box-mediated transcription that is regulated by both protein phosphorylation and dephosphorylation in cultured tobacco cells. Plant J. 20: 571-579. http://dx.doi.org/10.1046/j.1365-313X.1999.00634.x PMid:10652129   Yin XR, Allan AC, Chen KS and Ferguson IB (2010). Kiwifruit EIL and ERF genes involved in regulating fruit ripening. Plant Physiol. 153: 1280-1292. http://dx.doi.org/10.1104/pp.110.157081 PMid:20457803 PMCid:2899921   Zhang GY, Chen M, Chen XP and Xu ZS (2008). Phylogeny, gene structures, and expression patterns of the ERF gene family in soybean (Glycine max L.). J. Exp. Bot. 59: 4095-4107. http://dx.doi.org/10.1093/jxb/ern248 PMid:18832187 PMCid:2639015
2012
M. L. Yu, Wang, W. Y., Ma, R. J., Shen, Z. J., and Fang, J. G., An improved strategy based on RAPD markers efficiently identified 95 peach cultivars, vol. 11. pp. 1158-1168, 2012.
Archak S, Gaikwad AB, Gautam D, Rao EVVB, et al. (2003). DNA fingerprinting of Indian cashew (Anacardium occidentale L.) varieties using RAPD and ISSR techniques. Euphytica 130: 397-404. http://dx.doi.org/10.1023/A:1023074617348 Baird WV, Ballard RE, Rajapkse S and Abbott AG (1996). Progress in Prunus mapping and application of molecular markers to germplasm improvement. Hortic. Sci. 31: 1099-1106. Baysal O, Siragusa M, Gumrukcu E, Zengin S, et al. (2010). Molecular characterization of Fusarium oxysporum f. melongenae by ISSR and RAPD markers on eggplant. Biochem. Genet. 48: 524-537. http://dx.doi.org/10.1007/s10528-010-9336-1 PMid:20390339 Belaj A, Satovic Z, Ismaili H, Panajoti D, et al. (2003). RAPD genetic diversity of Albanian olive germplasm and its relationships with other Mediterranean countries. Euphytic 130: 387-395. http://dx.doi.org/10.1023/A:1023042014081 Benjak A, Ercisli S, Vokurka A, Maletic E, et al. (2005). Genetic relationships amonggrapevine cultivars native to Croatia, Greece and Turkey. Vitis 44: 73-77. Bhau BS, Medhi K, Das Ambrish P, Saikia SP, et al. (2009). Analysis of genetic diversity of Persea bombycina "Som" using RAPD-based molecular markers. Biochem. Genet. 47: 486-497. http://dx.doi.org/10.1007/s10528-009-9242-6 PMid:19424786 Boronnikova SV, Kokaeva ZG, Gostimsky SA, Dribnokhodova OP, et al. (2007). Analysis of DNA polymorphism in a relict Uralian species, large-flowered foxglove (Digitalis grandiflora Mill.), using RAPD and ISSR markers. Russ. J. Genet. 43: 530-535. http://dx.doi.org/10.1134/S1022795407050080 Bousquet J, Simon L and Lalonde M (1990). DNA amplification from vegetative and sexual tissues of tree using polymerase chain reaction. Can. J. For. Res. 20: 254-257. http://dx.doi.org/10.1139/x90-037 Bunyard EA (1938). The history and cultivation of the peach and nectarine. J. Royal Hort. Sci. 63: 114-121. Byrne DH (1990). Isozyme variability in four diploid stone fruits compared with other woody perennial plants. J. Hered. 81: 68-71. Cheng ZP and Huang HW (2009). SSR fingerprinting Chinese peach cultivars and landraces (Prunus persica) and analysis of their genetic relationships. Sci. Hortic. 120: 188-193. http://dx.doi.org/10.1016/j.scienta.2008.10.008 Chiu T, Pang J, Chen M and Tsen H (2010). Improvement of strain discrimination by combination of RAPD with PFGE for the analysis of the swine isolates of Salmonella enterica serovar Choleraesuis. World J. Microbiol. Biotechnol. 27: 465-469. http://dx.doi.org/10.1007/s11274-010-0467-7 D'Onofrio C, Lorenzis G, de Giordani T, Natali L, et al. (2009). Retrotransposon-based molecular markers in grapevine species and cultivars identification and phylogenetic analysis. Acta Hortic. 827: 45-52. Demirsoy L, Demir T, Demirsoy H, Kacar YA, et al. (2008). Identification of some sweet cherry cultivars grown in Amasya by RAPD markers. Acta Hortic. 795: 147-152. Ding XD, Lu LX, Chen XJ and Guan X (2000). Identifying litchi cultivars and evaluating their genetic relationships by RAPD markers. J. Trop. Subtrop. Bot. 8: 49-54. Elidemir AY and Uzun I (2009). Assessment of genetic diversity of some important grape cultivars, rootstocks, and wild grapes in Turkey using RAPD markers. Acta Hortic. 827: 275-278. Lee GP, Lee CH and Kim CS (2004). Molecular markers derived from RAPD, SCAR, and the conserved 18S rDNA sequences for classification and identification in Pyrus pyrifolia and P. communis. Theor. Appl. Genet. 108: 1487- 1491. http://dx.doi.org/10.1007/s00122-003-1582-8 PMid:14749847 Mariniello L, Sommella MG, Sorrentino A, Forlani M, et al. (2002). Identification of Prunus armeniaca cultivars by RAPD and SCAR markers. Biotechnol. Lett. 24: 749-755. http://dx.doi.org/10.1023/A:1015516712754 Melgarejo P, Martcnez JJ, Hernández Fca, Martínez R, et al. (2009). Cultivar identification using 18S-28S rDNA intergenic spacer-RFLP in pomegranate (Punica granatum L.). Sci. Hortic. 120: 500-503. http://dx.doi.org/10.1016/j.scienta.2008.12.013 Murray MG and Thompson WF (1980). Rapid isolation of high molecular weight plant DNA. Nucleic Acids Res. 8: 4321- 4325. http://dx.doi.org/10.1093/nar/8.19.4321 PMid:7433111 PMCid:324241 Papp N, Szilvassy B, Abranko L, Szabo T, et al. (2010). Main quality attributes and antioxidants in Hungarian sour cherries: identification of genotypes with enhanced functional properties. Int. J. Food Sci. Technol. 45: 395-402. http://dx.doi.org/10.1111/j.1365-2621.2009.02168.x Sadder MT and Ateyyeh AF (2006). Molecular assessment of polymorphism among local Jordanian genotypes the common fig (Ficus carica L.). Sci. Hortic. 107: 347-351. http://dx.doi.org/10.1016/j.scienta.2005.11.006 Saker MM, Adawy SS, Mohamed AA and El-Itriby HA (2006). Monitoring of cultivar identity in tissue culture-derived date palms using RAPD and AFLP analysis. Biol. Plantarum 50: 198-204. http://dx.doi.org/10.1007/s10535-006-0007-3 Silvestrini M, Maluf MP, Silvarolla MB, Guerreiro-Filho O, et al. (2008). Genetic diversity of a Coffea germplasm collection assessed by RAPD markers. Genet. Res. Crop Evol. 55: 901-910. http://dx.doi.org/10.1007/s10722-007-9295-5 Stark-Urnau M (2002a). Use of RAPD-markers in Malus x domestica (apple) and Pyrus communis (pear) for cultivar identification - Part I: Malus x domestica (apple). RAPD-Marker bei Malus x domestica (Apfel) und Pyrus communis (Birne) als Mittel zur Sortenidentifizierung - Teil I: Malus x domestica (Apfel). Erwerbsobstbau 44: 139-144. Stark-Urnau M (2002b). Use of RAPD-Markers in Malus x domestica (apple) and Pyrus communis (pear) for cultivar identification - Part II: Pyrus communis (Birne). RAPD-Marker bei Malus x domestica (Apfel) und Pyrus communis (Birne) als Mittel zur Sortenidentifizierung - Teil II: Pyrus communis (Birne). Erwerbsobstbau 44: 167-171. Sun P, Li W, Jiang HY and Yao JC (2005). Analysis of genetic relationship among cutlivars of Prunus persica using RAPD markers. J. Gansu Agric. Univ. 40: 586-590. Vijayan K (2004). Genetic relationships of Japanese and Indian mulberry (Morus spp.) genotypes revealed by DNA fingerprinting. Plant Systemat. Evol. 243: 221-232. http://dx.doi.org/10.1007/s00606-003-0078-y Williams JG, Kubelik AR, Livak KJ, Rafalski JA, et al. (1990). DNA polymorphisms amplified by arbitrary primers are useful as genetic markers. Nucleic Acids Res. 18: 6531-6535. http://dx.doi.org/10.1093/nar/18.22.6531 PMid:1979162 PMCid:332606 Yamamoto T, Yamaguchi M and Hayashi T (2005). An intergrated genetic linkage map of peach by SSR, STS, AFLP and RAPD. J. Jpn. Soc. Hortic. Sci. 74: 204-213. http://dx.doi.org/10.2503/jjshs.74.204 Yang XG, Zhang KC, Qin L and Wang YX (2001). RAPD analysis of germplasm resources on peach. J. Fruit Sci. 18: 276-279. Yang YJ, Zhang KC and Lin K (2002). Studies on RAPD polymorphisms and genetic relationship of Prunus persica plants. J. Henan Agric. Univ. 36: 187-189. Yonemoto Y, Chowdhury AK, Kato H and Macha MM (2006). Cultivars identification and their genetic relationships in Dimocarpus longan subspecies based on RAPD markers. Sci. Hortic. 109: 147-152. http://dx.doi.org/10.1016/j.scienta.2006.04.003 Yuan Z, Luo LS, Xiao DX and Zhang DB (2002). A study on the genetic relationship of peach species using RAPD markers. Acta Agric. Univ. Jiangxiensis 24: 172-175. Zong CW, Gao HN, Zhao CR, Wang C, et al. (2005). Studies on analysis of peach cultivars based on RAPD markers. J. Nanjing Agric. Univ. 28: 35-39.