Publications

Found 10 results
Filters: Author is G. Wang  [Clear All Filters]
2012
G. Wang, He, Q. Q., Xu, Z. K., and Song, R. T., High segregation distortion in maize B73 x teosinte crosses, vol. 11, pp. 693-706, 2012.
Birky CW Jr and Walsh JB (1988). Effects of linkage on rates of molecular evolution. Proc. Natl. Acad. Sci. U. S. A. 85: 6414-6418. http://dx.doi.org/10.1073/pnas.85.17.6414 Bonierbale MW, Plaisted RL and Tanksley SD (1988). RFLP maps based on a common set of clones reveal modes of chromosomal evolution in potato and tomato. Genetics 120: 1095-1103. PMid:17246486    PMCid:1203572 Borts RH and Haber JE (1987). Meiotic recombination in yeast: alteration by multiple heterozygosities. Science 237: 1459-1465. http://dx.doi.org/10.1126/science.2820060 PMid:2820060 Bregger J (1918). Linkage in maize: the C aleurone factor and waxy endosperm. Am. Nat. 52: 57-61. http://dx.doi.org/10.1086/279655 Briggs WH, McMullen MD, Gaut BS and Doebley JD (2007). Advance QTL mapping in a RIL resource for positional cloning of maize domestication genes. Genetics 177: 1915-1928. http://dx.doi.org/10.1534/genetics.107.076497 PMid:17947434    PMCid:2147989 Burnham CR (1936). Differential fertilization in the Bt-Pr linkage group of maize. J. Am. Soc. Agron. 28: 968-975. http://dx.doi.org/10.2134/agronj1936.00021962002800120002x Coe EH, Hoisincton DA and Neuffer MG (1990). Linkage Map of Corn (Zea mays L.). In: Genetic Maps (O’Brienc SJ, ed.). Spring Harbor Laboratory, Cold Spring Harbor, 639-667. Cohen JI and Galinat WC (1984). Potential use of alien germplasm for maize improvement. Crop Sci. 24: 1011-1015. http://dx.doi.org/10.2135/cropsci1984.0011183X002400060002x Doebley J and Stec A (1991). Genetic analysis of the morphological differences between maize and teosinte. Genetics 129: 285-295. PMid:1682215    PMCid:1204577 Doebley J and Stec A (1993). Inheritance of the morphological differences between maize and teosinte: comparison of results for two F2 populations. Genetics 134: 559-570. PMid:8325489    PMCid:1205498 Doebley J, Goodman MM and Stuber CW (1984). Isoenzymatic variation in Zea (Gramineae). Syst. Boatany 9: 203-218. http://dx.doi.org/10.2307/2418824 Doerge RW (2002). Mapping and analysis of quantitative trait loci in experimental populations. Nat. Rev. Genet. 3: 43-52. http://dx.doi.org/10.1038/nrg703 PMid:11823790 Emerson RA and Beadle GW (1932). Studies of Euchlaena and its hybrids with Zea: crossing over between the chromosomes of Euchlana and those of Zea. Z. indukt Abstamm-u. VererbLehre 62: 305-315. Gardiner JM, Coe EH, Melia-Hancock S, Hoisington DA, et al. (1993). Development of a core RFLP map in maize using an immortalized F2 population. Genetics 134: 917-930. PMid:8102344    PMCid:1205526 Harushima Y, Kurata N, Yano M, Nagamura Y, et al. (1996). Detection of segregation distortions in an indica-japonica rice cross using a high-resolution molecular map. Theor. Appl. Genet. 92: 145-150. http://dx.doi.org/10.1007/BF00223368 Jain SK (1967). Population dynamics of a gametophyte factor controlling selective fertilization. Genetica 38: 485-503. http://dx.doi.org/10.1007/BF01507478 Konishi T, Yano Y and Abe K (1992). Geographic distribution of alleles at the Ga2 locus for segregation distortion in barley. Theor. Appl. Genet. 85: 419-422. http://dx.doi.org/10.1007/BF00222323 Lander ES, Green P, Abrahamson J, Barlow A, et al. (1987). MAPMAKER: an interactive computer package for constructing primary genetic linkage maps of experimental and natural populations. Genomics 1: 174-181. http://dx.doi.org/10.1016/0888-7543(87)90010-3 Lauter N and Doebley JD (2002). Evidence for genetic variation for phenotypically invariant traits in teosinte. Maize Genet. Newslett. 76: 54-55. Lu H, Romero-Severson J and Bernardo R (2002). Chromosomal regions associated with segregation distortion in maize. Theor. Appl. Genet. 105: 622-628. http://dx.doi.org/10.1007/s00122-002-0970-9 PMid:12582513 Mangelsdorf PC and Jones DF (1926). The expression of Mendelian factors in the gametophyte of maize. Genetics 11: 423-455. PMid:17246465    PMCid:1200910 Mano Y, Muraki M, Fujimori M, Takamizo T, et al. (2005a). AFLP-SSR maps of maize x teosinte and maize X maize: comparison of map length and segregation distortion. Plant Breed. 124: 432-439. http://dx.doi.org/10.1111/j.1439-0523.2005.01128.x Mano Y, Muraki M, Fujimori M, Takamizo T, et al. (2005b). Identification of QTL controlling adventitious root formation during flooding conditions in teosinte (Zea mays ssp. huehuetenangensis) seedlings. Euphytica 142: 33-42. http://dx.doi.org/10.1007/s10681-005-0449-2 Mano Y, Omori F, Takamizo T, Kindiger B, et al. (2007). QTL mapping of root aerenchyma formation in seedlings of a maize x rare teosinte “Zea nicaraguensis” cross. Plant Soil 295: 103-113. http://dx.doi.org/10.1007/s11104-007-9266-9 Mano Y, Omori F, Kindiger B and Takahashi H (2008). A linkage map of maize x teosinte Zea luxurians and identification of QTLs controlling root aerenchyma formation. Mol. Breed. 21: 327-337. http://dx.doi.org/10.1007/s11032-007-9132-8 Mano Y, Omori F, Loaisiga CH and Bird R McK (2009). QTL mapping of above-ground adventitious roots during flooding in maize x teosinte “Zea nicaraguensis” backcross population. Plant Root 3: 3-9. http://dx.doi.org/10.3117/plantroot.3.3 Matsushita S, Iseki T, Fukuta Y, Araki E, et al. (2003). Characterization of segregation distortion on chromosome 3 induced in wide hybridization between indica and japonica type rice varieties. Euphytica 134: 27-32. http://dx.doi.org/10.1023/A:1026182312730 Murray MG and Thompson WF (1980). Rapid isolation of high molecular weight plant DNA. Nucleic Acids Res. 8: 4321- 4325. http://dx.doi.org/10.1093/nar/8.19.4321 PMid:7433111    PMCid:324241 Neuffer MG, Coe EH and Wessler SR (1997). Mutants of Maize. Cold Spring Harbor Laboratory Press, Cold Spring Harbor. Omori F and Mano Y (2007). QTL mapping of root angle in F2 populations from maize ‘B73’ X teosinte ‘Zea luxurians’. Plant Root 1: 57-65. http://dx.doi.org/10.3117/plantroot.1.57 Paterson AH, Damon S, Hewitt JD, Zamir D, et al. (1991). Mendelian factors underlying quantitative traits in tomato: comparison across species, generations, and environments. Genetics 127: 181-197. PMid:1673106    PMCid:1204303 Pereira MG, Lee M, Bramel-Cox P, Woodman W, et al. (1994). Construction of an RFLP map in sorghum and comparative mapping in maize. Genome 37: 236-243. http://dx.doi.org/10.1139/g94-033 PMid:18470074 Sibov ST, de Souza CLJ, Garcia AA, Garcia AF, et al. (2003). Molecular mapping in tropical maize (Zea mays L.) using microsatellite markers. 1. Map construction and localization of loci showing distorted segregation. Hereditas 139: 96-106. http://dx.doi.org/10.1111/j.1601-5223.2003.01666.x PMid:15061810 Tulsieram L, Compton WA, Morris R, Thomas-Compton M, et al. (1992). Analysis of genetic recombination in maize populations using molecular markers. Theor. Appl. Genet. 84: 65-72. http://dx.doi.org/10.1007/BF00223982 Wendel JF, Edwards MD and Stuber CW (1987). Evidence for multilocus genetic control of preferential fertilisation in maize. Heredity 58: 297-301. http://dx.doi.org/10.1038/hdy.1987.44 PMid:3471740 Westerbergh A and Doebley J (2002). Morphological traits defining species differences in wild relatives of maize are controlled by multiple quantitative trait loci. Evolution 56: 273-283. PMid:11926495 Williams CG, Goodman MM and Stuber CW (1995). Comparative recombination distances among Zea mays L. inbreds, wide crosses and interspecific hybrids. Genetics 141: 1573-1581. PMid:8601495    PMCid:1206888 Xu Y, Zhu L, Xiao J, Huang N, et al. (1997). Chromosomal regions associated with segregation distortion of molecular markers in F2, backcross, doubled haploid, and recombinant inbred populations in rice (Oryza sativa L.). Mol. Gen. Genet. 253: 535-545. http://dx.doi.org/10.1007/s004380050355 Yan JB, Tang H, Huang YQ, Zheng YL, et al. (2003). Genetic analysis of segregation distortion of molecular markers in maize F2 population. Yi Chuan Xue Bao 30: 913-918. PMid:14669507 Yao H and Schnable PS (2005). Cis-effects on meiotic recombination across distinct a1-sh2 intervals in a common Zea genetic background. Genetics 170: 1929-1944. http://dx.doi.org/10.1534/genetics.104.034454 PMid:15937141    PMCid:1449771
Y. Wang, Tang, Y., Zhang, M., Cai, F., Qin, J., Wang, Q., Liu, C., Wang, G., Xu, L., Yang, L., Li, J., Wang, Z., and Li, X., Molecular cloning and functional characterization of a glutathione S-transferase involved in both anthocyanin and proanthocyanidin accumulation in Camelina sativa (Brassicaceae), vol. 11, pp. 4711-4719, 2012.
Baxter IR, Young JC, Armstrong G, Foster N, et al. (2005). A plasma membrane H+-ATPase is required for the formation of proanthocyanidins in the seed coat endothelium of Arabidopsis thaliana. Proc. Natl. Acad. Sci. U. S. A. 102: 2649-2654. http://dx.doi.org/10.1073/pnas.0406377102 PMid:15695592 PMCid:548969   Clough SJ and Bent AF (1998). Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant J. 16: 735-743. http://dx.doi.org/10.1046/j.1365-313x.1998.00343.x PMid:10069079   Davis PB, Menalled FD, Peterson RKD and Maxwell BD (2011). Refinement of weed risk assessments for biofuels using Camelina sativa as a model species. J. Appl. Ecol. 48: 989-997. http://dx.doi.org/10.1111/j.1365-2664.2011.01991.x   Debeaujon I, Peeters AJ, Leon-Kloosterziel KM and Koornneef M (2001). The TRANSPARENT TESTA12 gene of Arabidopsis encodes a multidrug secondary transporter-like protein required for flavonoid sequestration in vacuoles of the seed coat endothelium. Plant Cell 13: 853-871. PMid:11283341 PMCid:135529   Fröhlich A and Rice B (2005). Evaluation of Camelina sativa oil as a feedstock for biodiesel production. Ind. Crops Prod. 21: 25-31. http://dx.doi.org/10.1016/j.indcrop.2003.12.004   Gao MJ, Lydiate DJ, Li X, Lui H, et al. (2009). Repression of seed maturation genes by a trihelix transcriptional repressor in Arabidopsis seedlings. Plant Cell 21: 54-71. http://dx.doi.org/10.1105/tpc.108.061309 PMid:19155348 PMCid:2648069   Ghamkhar K, Croser J, Aryamanesh N, Campbell M, et al. (2010). Camelina (Camelina sativa (L.) Crantz) as an alternative oilseed: molecular and ecogeographic analyses. Genome 53: 558-567. http://dx.doi.org/10.1139/G10-034 PMid:20616877   Imbrea F, Jurcoane S, Hălmăjan HV, Duda M, et al. (2011). Camelina sativa: a new source of vegetal oils. Rom. Biotech. Lett. 16: 6263-6270.   Lepiniec L, Debeaujon I, Routaboul JM, Baudry A, et al. (2006). Genetics and biochemistry of seed flavonoids. Annu. Rev. Plant Biol. 57: 405-430. http://dx.doi.org/10.1146/annurev.arplant.57.032905.105252 PMid:16669768   Li X, Gao P, Cui D, Wu L, et al. (2011). The Arabidopsis tt19-4 mutant differentially accumulates proanthocyanidin and anthocyanin through a 3' amino acid substitution in glutathione S-transferase. Plant Cell Environ. 34: 374-388. http://dx.doi.org/10.1111/j.1365-3040.2010.02249.x PMid:21054438   Marles MA, Ray H and Gruber MY (2003). New perspectives on proanthocyanidin biochemistry and molecular regulation. Phytochemistry 64: 367-383. http://dx.doi.org/10.1016/S0031-9422(03)00377-7   Onyilagha J, Bala A, Hallett R, Gruber M, et al. (2003). Leaf flavonoids of the cruciferous species, Camelina sativa, Crambe spp., Thlaspi arvense and several other genera of the family Brassicaceae. Biochem. Syst. Ecol. 31: 1309-1322. http://dx.doi.org/10.1016/S0305-1978(03)00074-7   Saghai-Maroof MA, Soliman KM, Jorgensen RA and Allard RW (1984). Ribosomal DNA spacer-length polymorphisms in barley: mendelian inheritance, chromosomal location, and population dynamics. Proc. Natl. Acad. Sci. U. S. A. 81: 8014-8018. http://dx.doi.org/10.1073/pnas.81.24.8014 PMid:6096873 PMCid:392284   Southern EM (1975). Detection of specific sequences among DNA fragments separated by gel electrophoresis. J. Mol. Biol. 98: 503-517. http://dx.doi.org/10.1016/S0022-2836(75)80083-0   Tian L, Pang Y and Dixon RA (2008). Biosynthesis and genetic engineering of proanthocyanidins and (iso)flavonoids. Phytochem. Rev. 7: 445-465. http://dx.doi.org/10.1007/s11101-007-9076-y   Xie DY, Sharma SB, Paiva NL, Ferreira D, et al. (2003). Role of anthocyanidin reductase, encoded by BANYULS in plant flavonoid biosynthesis. Science 299: 396-399. http://dx.doi.org/10.1126/science.1078540 PMid:12532018