Publications

Found 6 results
Filters: Author is B.C. Jiang  [Clear All Filters]
2012
B. C. Jiang, Yu, D. B., Wang, L. J., Dong, F. L., Kaleri, H. A., Wang, X. G., Ally, N., Li, J., and Liu, H. L., Doxycycline-regulated growth hormone gene expression system for swine, vol. 11, pp. 2946-2957, 2012.
Barton JS, Cullen S, Hindmarsh PC, Brook CG, et al. (1992). Growth hormone treatment in idiopathic short stature: a preliminary analysis of cardiovascular effects. Acta Pediatr. Suppl. 383: 35-38.   Bockamp E, Sprengel R, Eshkind L, Lehmann T, et al. (2008). Conditional transgenic mouse models: from the basics to genome-wide sets of knockouts and current studies of tissue regeneration. Regen. Med. 3: 217-235. http://dx.doi.org/10.2217/17460751.3.2.217 PMid:18307405   Dick E, Matsa E, Young L, Darling D, et al. (2011). Accelerating the generation of human induced pluripotent stem cells by coupling high titre lentivirus and column-based positive selection of hiPSCs. Nat. Protoc. 6: 701-714. http://dx.doi.org/10.1038/nprot.2011.320 PMid:21637193   Dull T, Zufferey R, Kelly M, Mandel RJ, et al. (1998). A third-generation lentivirus vector with a conditional packaging system. J. Virol. 72: 8463-8471. PMid:9765382 PMCid:110254   Hens JR, Amstutz MD, Schanbacher FL and Mather IH (2000). Introduction of the human growth hormone gene into the guinea pig mammary gland by in vivo transfection promotes sustained expression of human growth hormone in the milk throughout lactation. Biochim. Biophys. Acta 1523: 161-171. http://dx.doi.org/10.1016/S0304-4165(00)00117-3   Johansen J, Rosenblad C, Andsberg K, Moller A, et al. (2002). Evaluation of Tet-on system to avoid transgene down-regulation in ex vivo gene transfer to the CNS. Gene Ther. 9: 1291-1301. http://dx.doi.org/10.1038/sj.gt.3301778 PMid:12224012   Kolb E (1977). Recent findings relating to the importance of growth hormone to both regulation of metabolism and production performance of ruminants (author's transl). Monatsh. Veterinarmed. 32: 230-235. PMid:327288   Krasnov A, Agren JJ, Pitaknen TI and Molsa H (1999). Transfer of growth hormone (GH) transgenes into Arctic charr. (Salvelinus alpinus L.) II. Nutrient partitioning in rapidly growing fish. Genet. Anal. 15: 99-105. http://dx.doi.org/10.1016/S1050-3862(99)00026-1   Lipinski D, Jura J, Kalak R, Plawski A, et al. (2003). Transgenic rabbit producing human growth hormone in milk. J. Appl. Genet. 44: 165-174. PMid:12773794   Madsen K, Friberg U, Roos P, Eden S, et al. (1983). Growth hormone stimulates the proliferation of cultured chondrocytes from rabbit ear and rat rib growth cartilage. Nature 304: 545-547. http://dx.doi.org/10.1038/304545a0 PMid:6877376   Mayo KE, Vale W, Rivier J, Rosenfeld MG, et al. (1983). Expression-cloning and sequence of a cDNA encoding human growth hormone-releasing factor. Nature 306: 86-88. http://dx.doi.org/10.1038/306086a0 PMid:6415488   Naldini L, Blomer U, Gallay P, Ory D, et al. (1996). In vivo gene delivery and stable transduction of nondividing cells by a lentiviral vector. Science 272: 263-267. http://dx.doi.org/10.1126/science.272.5259.263 PMid:8602510   Orian JM, Lee CS, Weiss LM and Brandon MR (1989). The expression of a metallothionein-ovine growth hormone fusion gene in transgenic mice does not impair fertility but results in pathological lesions in the liver. Endocrinology 124: 455-463. http://dx.doi.org/10.1210/endo-124-1-455 PMid:2642419   Palmiter RD, Brinster RL, Hammer RE, Trumbauer ME, et al. (1982). Dramatic growth of mice that develop from eggs microinjected with metallothionein-growth hormone fusion genes. Nature 300: 611-616. http://dx.doi.org/10.1038/300611a0 PMid:6958982   Takiguchi M, James C, Josefsson EC, Carmichael CL, et al. (2010). Transgenic, inducible RNAi in megakaryocytes and platelets in mice. J. Thromb. Haemost. 8: 2751-2756. http://dx.doi.org/10.1111/j.1538-7836.2010.04077.x PMid:21138522 PMCid:3285240   Wiederschain D, Wee S, Chen L, Loo A, et al. (2009). Single-vector inducible lentiviral RNAi system for oncology target validation. Cell Cycle 8: 498-504. http://dx.doi.org/10.4161/cc.8.3.7701 PMid:19177017
F. L. Dong, Kaleri, H. A., Lu, Y. D., Song, C. L., Jiang, B. C., Zhang, B. L., Wang, L. J., Wang, X. G., Ma, X. S., Wu, B. J., Song, H., Li, J., and Liu, H. L., Generation of induced pluripotent mouse stem cells in an indirect co-culture system, vol. 11, pp. 4179-4186, 2012.
Abraham S, Sheridan SD, Laurent LC, Albert K, et al. (2010). Propagation of human embryonic and induced pluripotent stem cells in an indirect co-culture system. Biochem. Biophys. Res. Commun. 393: 211-216. http://dx.doi.org/10.1016/j.bbrc.2010.01.101 PMid:20117095 PMCid:2834855   Chen J, Liu J, Han Q, Qin D, et al. (2010). Towards an optimized culture medium for the generation of mouse induced pluripotent stem cells. J. Biol. Chem. 285: 31066-31072. http://dx.doi.org/10.1074/jbc.M110.139436 PMid:20595395 PMCid:2945597   Chen M, Sun X, Jiang R, Shen W, et al. (2009). Role of MEF feeder cells in direct reprogramming of mousetail-tip fibroblasts. Cell Biol. Int. 33: 1268-1273. http://dx.doi.org/10.1016/j.cellbi.2009.06.004 PMid:19524692   Eiselleova L, Peterkova I, Neradil J, Slaninova I, et al. (2008). Comparative study of mouse and human feeder cells for human embryonic stem cells. Int. J. Dev. Biol. 52: 353-363. http://dx.doi.org/10.1387/ijdb.082590le PMid:18415935   Esteban MA, Xu J, Yang J, Peng M, et al. (2009). Generation of induced pluripotent stem cell lines from Tibetan miniature pig. J. Biol. Chem. 284: 17634-17640. http://dx.doi.org/10.1074/jbc.M109.008938 PMid:19376775 PMCid:2719402   Esteban MA, Wang T, Qin B, Yang J, et al. (2010). Vitamin C enhances the generation of mouse and human induced pluripotent stem cells. Cell Stem. Cell 6: 71-79. http://dx.doi.org/10.1016/j.stem.2009.12.001 PMid:20036631   Hanna J, Wernig M, Markoulaki S, Sun CW, et al. (2007). Treatment of sickle cell anemia mouse model with iPS cells generated from autologous skin. Science 318: 1920-1923. http://dx.doi.org/10.1126/science.1152092 PMid:18063756   Kim S, Ahn SE, Lee JH, Lim DS, et al. (2007). A novel culture technique for human embryonic stem cells using porous membranes. Stem. Cells 25: 2601-2609. http://dx.doi.org/10.1634/stemcells.2006-0814 PMid:17628020   Lim JW and Bodnar A (2002). Proteome analysis of conditioned medium from mouse embryonic fibroblast feeder layers which support the growth of human embryonic stem cells. Proteomics 2: 1187-1203. http://dx.doi.org/10.1002/1615-9861(200209)2:9<1187::AID-PROT1187>3.0.CO;2-T   Maherali N, Ahfeldt T, Rigamonti A, Utikal J, et al. (2008). A high-efficiency system for the generation and study of human induced pluripotent stem cells. Cell Stem. Cell 3: 340-345. http://dx.doi.org/10.1016/j.stem.2008.08.003 PMid:18786420   Okita K, Ichisaka T and Yamanaka S (2007). Generation of germline-competent induced pluripotent stem cells. Nature 448: 313-317. http://dx.doi.org/10.1038/nature05934 PMid:17554338   Soh BS, Song CM, Vallier L, Li P, et al. (2007). Pleiotrophin enhances clonal growth and long-term expansion of human embryonic stem cells. Stem. Cells 25: 3029-3037. http://dx.doi.org/10.1634/stemcells.2007-0372 PMid:17823238   Sun N, Panetta NJ, Gupta DM, Wilson KD, et al. (2009). Feeder-free derivation of induced pluripotent stem cells from adult human adipose stem cells. Proc. Natl. Acad. Sci. U. S. A. 106: 15720-15725. http://dx.doi.org/10.1073/pnas.0908450106 PMid:19805220 PMCid:2739869   Takahashi K and Yamanaka S (2006). Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 126: 663-676. http://dx.doi.org/10.1016/j.cell.2006.07.024 PMid:16904174   Takahashi K, Okita K, Nakagawa M and Yamanaka S (2007). Induction of pluripotent stem cells from fibroblast cultures. Nat. Protoc. 2: 3081-3089. http://dx.doi.org/10.1038/nprot.2007.418 PMid:18079707
N. Ally, Zou, X. L., Jiang, B. C., Qin, L., Zhai, L., Xiao, P., and Liu, H. L., Inhibition of vascular endothelial growth factor A expression in mouse granulosa cells by lentivector-mediated RNAi, vol. 11, pp. 4019-4033, 2012.
Abramovich D, Irusta G, Parborell F and Tesone M (2010). Intrabursal injection of vascular endothelial growth factor trap in eCG-treated prepubertal rats inhibits proliferation and increases apoptosis of follicular cells involving the PI3K/ AKT signaling pathway. Fertil. Steril. 93: 1369-1377. http://dx.doi.org/10.1016/j.fertnstert.2009.01.127 PMid:19328472   Accili D and Arden KC (2004). FoxOs at the crossroads of cellular metabolism, differentiation, and transformation. Cell 117: 421-426. http://dx.doi.org/10.1016/S0092-8674(04)00452-0   Barboni B, Turriani M, Galeati G, Spinaci M, et al. (2000). Vascular endothelial growth factor production in growing pig antral follicles. Biol. Reprod. 63: 858-864. http://dx.doi.org/10.1095/biolreprod63.3.858 PMid:10952932   Brummelkamp TR, Bernards R and Agami R (2002). A system for stable expression of short interfering RNAs in mammalian cells. Science 296: 550-553. http://dx.doi.org/10.1126/science.1068999 PMid:11910072   Bruno JB, Celestino JJ, Lima-Verde IB, Lima LF, et al. (2009). Expression of vascular endothelial growth factor (VEGF) receptor in goat ovaries and improvement of in vitro caprine preantral follicle survival and growth with VEGF. Reprod. Fertil. Dev. 21: 679-687. http://dx.doi.org/10.1071/RD08181 PMid:19486605   Celik-Ozenci C, Akkoyunlu G, Kayisli UA, Arici A, et al. (2003). Localization of vascular endothelial growth factor in the zona pellucida of developing ovarian follicles in the rat: a possible role in destiny of follicles. Histochem. Cell Biol. 120: 383-390. http://dx.doi.org/10.1007/s00418-003-0586-4 PMid:14605899   Chang HY, Nishitoh H, Yang X, Ichijo H, et al. (1998). Activation of apoptosis signal-regulating kinase 1 (ASK1) by the adapter protein Daxx. Science 281: 1860-1863. http://dx.doi.org/10.1126/science.281.5384.1860 PMid:9743501   Danforth DR, Arbogast LK, Ghosh S, Dickerman A, et al. (2003). Vascular endothelial growth factor stimulates preantral follicle growth in the rat ovary. Biol. Reprod. 68: 1736-1741. http://dx.doi.org/10.1095/biolreprod.101.000679 PMid:12606430   Doyle LK, Walker CA and Donadeu FX (2010). VEGF modulates the effects of gonadotropins in granulosa cells. Domest. Anim. Endocrinol. 38: 127-137. http://dx.doi.org/10.1016/j.domaniend.2009.08.008 PMid:19815366   Einspanier R, Schonfelder M, Muller K, Stojkovic M, et al. (2002). Expression of the vascular endothelial growth factor and its receptors and effects of VEGF during in vitro maturation of bovine cumulus-oocyte complexes (COC). Mol. Reprod. Dev. 62: 29-36. http://dx.doi.org/10.1002/mrd.10068 PMid:11933158   Elbashir SM, Harborth J, Lendeckel W, Yalcin A, et al. (2001). Duplexes of 21-nucleotide RNAs mediate RNA interference in cultured mammalian cells. Nature 411: 494-498. http://dx.doi.org/10.1038/35078107 PMid:11373684   Elbashir SM, Harborth J, Weber K and Tuschl T (2002). Analysis of gene function in somatic mammalian cells using small interfering RNAs. Methods 26: 199-213. http://dx.doi.org/10.1016/S1046-2023(02)00023-3   Ferrara N (2002). VEGF and the quest for tumour angiogenesis factors. Nat. Rev. Cancer 2: 795-803. http://dx.doi.org/10.1038/nrc909 PMid:12360282   Giering JC, Grimm D, Storm TA and Kay MA (2008). Expression of shRNA from a tissue-specific pol II promoter is an effective and safe RNAi therapeutic. Mol. Ther. 16: 1630-1636. http://dx.doi.org/10.1038/mt.2008.144 PMid:18665161   Greenaway J, Connor K, Pedersen HG, Coomber BL, et al. (2004). Vascular endothelial growth factor and its receptor, Flk- 1/KDR, are cytoprotective in the extravascular compartment of the ovarian follicle. Endocrinology 145: 2896-2905. http://dx.doi.org/10.1210/en.2003-1620 PMid:14988387   Hannon GJ (2002). RNA interference. Nature 418: 244-251. http://dx.doi.org/10.1038/418244a PMid:12110901   Hicklin DJ and Ellis LM (2005). Role of the vascular endothelial growth factor pathway in tumor growth and angiogenesis. J. Clin. Oncol. 23: 1011-1027. http://dx.doi.org/10.1200/JCO.2005.06.081 PMid:15585754   Irusta G, Abramovich D, Parborell F and Tesone M (2010). Direct survival role of vascular endothelial growth factor (VEGF) on rat ovarian follicular cells. Mol. Cell Endocrinol. 325: 93-100. http://dx.doi.org/10.1016/j.mce.2010.04.018 PMid:20417686   Klagsbrun M and D'Amore PA (1996). Vascular endothelial growth factor and its receptors. Cytokine Growth Factor Rev. 7: 259-270. http://dx.doi.org/10.1016/S1359-6101(96)00027-5   Kosaka N, Sudo N, Miyamoto A and Shimizu T (2007). Vascular endothelial growth factor (VEGF) suppresses ovarian granulosa cell apoptosis in vitro. Biochem. Biophys. Res. Commun. 363: 733-737. http://dx.doi.org/10.1016/j.bbrc.2007.09.061 PMid:17904528   Lee NS, Dohjima T, Bauer G, Li H, et al. (2002). Expression of small interfering RNAs targeted against HIV-1 rev transcripts in human cells. Nat. Biotechnol. 20: 500-505. PMid:11981565   McManus MT and Sharp PA (2002). Gene silencing in mammals by small interfering RNAs. Nat. Rev. Genet. 3: 737-747. http://dx.doi.org/10.1038/nrg908 PMid:12360232   Okamura Y, Myoumoto A, Manabe N, Tanaka N, et al. (2001). Protein tyrosine kinase expression in the porcine ovary. Mol. Hum. Reprod. 7: 723-729. http://dx.doi.org/10.1093/molehr/7.8.723 PMid:11470859   Paul CP, Good PD, Winer I and Engelke DR (2002). Effective expression of small interfering RNA in human cells. Nat. Biotechnol. 20: 505-508. http://dx.doi.org/10.1038/nbt0502-505 PMid:11981566   Petersen CP, Bordeleau ME, Pelletier J and Sharp PA (2006). Short RNAs repress translation after initiation in mammalian cells. Mol. Cell 21: 533-542. http://dx.doi.org/10.1016/j.molcel.2006.01.031 PMid:16483934   Reynolds A, Leake D, Boese Q, Scaringe S, et al. (2004). Rational siRNA design for RNA interference. Nat. Biotechnol. 22: 326-330. http://dx.doi.org/10.1038/nbt936 PMid:14758366   Shen HL, Xu W, Wu ZY, Zhou LL, et al. (2007). Vector-based RNAi approach to isoform-specific downregulation of vascular endothelial growth factor (VEGF)165 expression in human leukemia cells. Leuk. Res. 31: 515-521. http://dx.doi.org/10.1016/j.leukres.2006.09.011 PMid:17034851   Shi Y (2003). Mammalian RNAi for the masses. Trends Genet. 19: 9-12. http://dx.doi.org/10.1016/S0168-9525(02)00005-7   Tamanini C and De Ambrogi M (2004). Angiogenesis in developing follicle and corpus luteum. Reprod. Domest. Anim. 39: 206-216. http://dx.doi.org/10.1111/j.1439-0531.2004.00505.x PMid:15225273   Tang TT and Lasky LA (2003). The forkhead transcription factor FOXO4 induces the down-regulation of hypoxia-inducible factor 1 alpha by a von Hippel-Lindau protein-independent mechanism. J. Biol. Chem. 278: 30125-30135. http://dx.doi.org/10.1074/jbc.M302042200 PMid:12761217   Terman BI and Dougher-Vermazen M (1996). Biological properties of VEGF/VPF receptors. Cancer Metastasis Rev. 15: 159-163. http://dx.doi.org/10.1007/BF00437468 PMid:8842487   Wolters NM and Mackeigan JP (2008). From sequence to function: using RNAi to elucidate mechanisms of human disease. Cell Death Differ. 15: 809-819. http://dx.doi.org/10.1038/sj.cdd.4402311 PMid:18202701   Wulff C, Wilson H, Wiegand SJ, Rudge JS, et al. (2002). Prevention of thecal angiogenesis, antral follicular growth, and ovulation in the primate by treatment with vascular endothelial growth factor Trap R1R2. Endocrinology 143: 2797-2807. http://dx.doi.org/10.1210/en.143.7.2797 PMid:12072415   Yoo JY, Kim JH, Kwon YG, Kim EC, et al. (2007). VEGF-specific short hairpin RNA-expressing oncolytic adenovirus elicits potent inhibition of angiogenesis and tumor growth. Mol. Ther. 15: 295-302. http://dx.doi.org/10.1038/sj.mt.6300023 PMid:17235307   Zhang GY, Yi CG, Li X, Zheng Y, et al. (2008). Inhibition of vascular endothelial growth factor expression in keloid fibroblasts by vector-mediated vascular endothelial growth factor shRNA: a therapeutic potential strategy for keloid. Arch. Dermatol. Res. 300: 177-184. http://dx.doi.org/10.1007/s00403-007-0825-y PMid:18239926   Zhang L, Yang N, Mohamed-Hadley A, Rubin SC, et al. (2003). Vector-based RNAi, a novel tool for isoform-specific knock-down of VEGF and anti-angiogenesis gene therapy of cancer. Biochem. Biophys. Res. Commun. 303: 1169-1178. http://dx.doi.org/10.1016/S0006-291X(03)00495-9
2011
B. C. Jiang, Kaleri, H. A., Zhang, H. X., Chen, J., and Liu, H. L., Application of the Sleeping Beauty system in Saanen goat fibroblast cells for establishing persistent transgene expression, vol. 10, pp. 3347-3355, 2011.
Bruder JT and Kovesdi I (1997). Adenovirus infection stimulates the Raf/MAPK signaling pathway and induces interleukin-8 expression. J. Virol. 71: 398-404. PMid:8985363 PMCid:191064   Chen H, Lan XY, Li RB, Lei CZ, et al. (2005). The effect of CSN1 S2, CSN3 and beta-lg genes on milk performance in Xinong Saanen dairy goat. Yi Chuan Xue Bao 32: 804-810. PMid:16231734   Cole GM, Bell L, Truong QB and Saitoh T (1992). An endosomal-lysosomal pathway for degradation of amyloid precursor protein. Ann. N. Y. Acad. Sci. 674: 103-117. http://dx.doi.org/10.1111/j.1749-6632.1992.tb27480.x PMid:1288357   Davidson AE, Gratsch TE, Morell MH, O'Shea KS, et al. (2009). Use of the Sleeping Beauty transposon system for stable gene expression in mouse embryonic stem cells. Cold Spring Harb. Protoc. 2009: db.   Dupuy AJ, Fritz S and Largaespada DA (2001). Transposition and gene disruption in the male germline of the mouse. Genesis 30: 82-88. http://dx.doi.org/10.1002/gene.1037 PMid:11416868   Dupuy AJ, Clark K, Carlson CM, Fritz S, et al. (2002). Mammalian germ-line transgenesis by transposition. Proc. Natl. Acad. Sci. U. S. A. 99: 4495-4499. http://dx.doi.org/10.1073/pnas.062630599 PMid:11904379 PMCid:123676   Fischer SE, Wienholds E and Plasterk RH (2001). Regulated transposition of a fish transposon in the mouse germ line. Proc. Natl. Acad. Sci. U. S. A. 98: 6759-6764. http://dx.doi.org/10.1073/pnas.121569298 PMid:11381141 PMCid:34426   Gordon EM and Anderson WF (1994). Gene therapy using retroviral vectors. Curr. Opin. Biotechnol. 5: 611-616. http://dx.doi.org/10.1016/0958-1669(94)90083-3   Horie K, Kuroiwa A, Ikawa M, Okabe M, et al. (2001). Efficient chromosomal transposition of a Tc1/mariner- like transposon Sleeping Beauty in mice. Proc. Natl. Acad. Sci. U. S. A. 98: 9191-9196. http://dx.doi.org/10.1073/pnas.161071798 PMid:11481482 PMCid:55396   Ivics Z, Hackett PB, Plasterk RH and Izsvak Z (1997). Molecular reconstruction of Sleeping Beauty, a Tc1-like transposon from fish, and its transposition in human cells. Cell 91: 501-510. http://dx.doi.org/10.1016/S0092-8674(00)80436-5   Jaenisch R, Dausman J, Cox V and Fan H (1976). Infection of developing mouse embryos with murine leukemia virus: tissue specificity and genetic transmission of the virus. Hamatol. Bluttransfus. 19: 341-356. PMid:1010468   Kovesdi I, Brough DE, Bruder JT and Wickham TJ (1997). Adenoviral vectors for gene transfer. Curr. Opin. Biotechnol. 8: 583-589. http://dx.doi.org/10.1016/S0958-1669(97)80033-X   Latchman DS (1994). Herpes simplex virus vectors for gene therapy. Mol. Biotechnol. 2: 179-195. http://dx.doi.org/10.1007/BF02824809 PMid:7866875   Li Y, Wu KF, Guo XD, Guo JT, et al. (2002). Optimization of parameters of exogene transfection of bovine fetal fibroblasts in vitro mediated by liposome. Yi Chuan 24: 653-655. PMid:15979962   Naldini L (1998). Lentiviruses as gene transfer agents for delivery to non-dividing cells. Curr. Opin. Biotechnol. 9: 457- 463. http://dx.doi.org/10.1016/S0958-1669(98)80029-3   Padeh B, Wyskoki M and Soller M (1971). Further studies on a Robertsonian translocation in the Saanen dairy goat. Cytogenetics 10: 61-69. http://dx.doi.org/10.1159/000130127 PMid:5107073   Patterson GH and Lippincott-Schwartz J (2002). A photoactivatable GFP for selective photolabeling of proteins and cells. Science 297: 1873-1877. http://dx.doi.org/10.1126/science.1074952 PMid:12228718   Rabinowitz JE and Samulski J (1998). Adeno-associated virus expression systems for gene transfer. Curr. Opin. Biotechnol. 9: 470-475. http://dx.doi.org/10.1016/S0958-1669(98)80031-1   Thierry AR, Rabinovich P, Peng B, Mahan LC, et al. (1997). Characterization of liposome-mediated gene delivery: expression, stability and pharmacokinetics of plasmid DNA. Gene Ther. 4: 226-237. http://dx.doi.org/10.1038/sj.gt.3300350 PMid:9135736   Yant SR, Meuse L, Chiu W, Ivics Z, et al. (2000). Somatic integration and long-term transgene expression in normal and haemophilic mice using a DNA transposon system. Nat. Genet. 25: 35-41. http://dx.doi.org/10.1038/75568 PMid:10802653   Zhu J, Park CW, Sjeklocha L, Kren BT, et al. (2010). High-level genomic integration, epigenetic changes, and expression of sleeping beauty transgene. Biochemistry 49: 1507-1521. http://dx.doi.org/10.1021/bi9016846 PMid:20041635 PMCid:2822882
D. B. Yu, Chen, R., Kaleri, H. A., Jiang, B. C., Xu, H. X., and Du, W. - X., Testing the utility of mitochondrial cytochrome oxidase subunit 1 sequences for phylogenetic estimates of relationships between crane (Grus) species, vol. 10, pp. 4048-4062, 2011.
Chaves AV, Clozato CL, Lacerda DR, Sari EH, et al. (2008). Molecular taxonomy of Brazilian tyrant-flycatchers (Passeriformes: Tyrannidae). Mol. Ecol. Resour. 8: 1169-1177. http://dx.doi.org/10.1111/j.1755-0998.2008.02218.x PMid:21586004   Dessauer HC, Gee GF and Rogers JS (1992). Allozyme evidence for crane systematics and polymorphisms within populations of Sandhill, Sarus, Siberian, and whooping cranes. Mol. Phylogenet. Evol. 1: 279-288. http://dx.doi.org/10.1016/1055-7903(92)90003-Y   Fain MG (2001). Phylogeny and evolution of cranes (Aves: Gruidae) inferred from DNA sequences of multiple genes. Ph.D. dissertation.   Fain MG, Krajewski C and Houde P (2007). Phylogeny of "core Gruiformes" (Aves: Grues) and resolution of the Limpkin- Sungrebe problem. Mol. Phylogenet. Evol. 43: 515-529. http://dx.doi.org/10.1016/j.ympev.2007.02.015 PMid:17419074   Frezal L and Leblois R (2008). Four years of DNA barcoding: current advances and prospects. Infect. Genet. Evol. 8: 727-736. http://dx.doi.org/10.1016/j.meegid.2008.05.005 PMid:18573351   Funk DJ and Omland KE (2003). Species-level paraphyly and polyphyly: Frequency, causes, and consequences, with insights from animal mitochondrial DNA. Annu. Rev. Ecol. Evol. Systemat. 34: 397-423. http://dx.doi.org/10.1146/annurev.ecolsys.34.011802.132421   Hackett SJ, Kimball RT, Reddy S, Bowie RC, et al. (2008). A phylogenomic study of birds reveals their evolutionary history. Science 320: 1763-1768. http://dx.doi.org/10.1126/science.1157704 PMid:18583609   Hajibabaei M, Singer GA, Clare EL and Hebert PD (2007). Design and applicability of DNA arrays and DNA barcodes in biodiversity monitoring. BMC Biol. 5: 24. http://dx.doi.org/10.1186/1741-7007-5-24 PMid:17567898 PMCid:1906742   Hebert PD, Cywinska A, Ball SL and deWaard JR (2003a). Biological identifications through DNA barcodes. Proc. Biol. Sci. 270: 313-321. http://dx.doi.org/10.1098/rspb.2002.2218 PMid:12614582 PMCid:1691236   Hebert PD, Ratnasingham S and deWaard JR (2003b). Barcoding animal life: cytochrome c oxidase subunit 1 divergences among closely related species. Proc. Biol. Sci. 270 (Suppl 1): S96-S99. http://dx.doi.org/10.1098/rsbl.2003.0025 PMid:12952648 PMCid:1698023   Hebert PD, Stoeckle MY, Zemlak TS and Francis CM (2004). Identification of Birds through DNA Barcodes. PLoS Biol. 2: e312. http://dx.doi.org/10.1371/journal.pbio.0020312 PMid:15455034 PMCid:518999   Hebert PD, deWaard JR and Landry JF (2010). DNA barcodes for 1/1000 of the animal kingdom. Biol. Lett. 6: 359-362. http://dx.doi.org/10.1098/rsbl.2009.0848 PMid:20015856 PMCid:2880045   Houde P, Cooper A, Leslie E, Strand AE, et al (1997). Phylogeny and Evolution of 12S rDNA in Gruiformes. In: Avian Molecular Evolution and Systematics (Mindell DP, ed.). Academic Press, San Diego, 121-158. http://dx.doi.org/10.1016/B978-012498315-1/50009-1   Kerr KC, Stoeckle MY and Dove CJ (2007). Comprehensive DNA barcode coverage of North American birds. Mol. Ecol. Notes 7: 535-543. http://dx.doi.org/10.1111/j.1471-8286.2007.01670.x PMid:18784793 PMCid:2259444   Kerr KC, Birks SM and Kalyakin MV (2009a). Filling the gap - COI barcode resolution in eastern Palearctic birds. Front. Zool. 6: 29. http://dx.doi.org/10.1186/1742-9994-6-29 PMid:20003213 PMCid:2796652   Kerr KC, Lijtmaer DA, Barreira AS, Hebert PD, et al. (2009b). Probing evolutionary patterns in neotropical birds through DNA barcodes. PLoS One 4: e4379. http://dx.doi.org/10.1371/journal.pone.0004379 PMid:19194495 PMCid:2632745   Kimura M (1980). A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J. Mol. Evol. 16: 111-120. http://dx.doi.org/10.1007/BF01731581 PMid:7463489   Krajewski C (1989). Phylogenetic relationships among cranes (Gruiformes: Gruidae) based on DNA hybridization. Auk 106: 603-618.   Krajewski C, Fain MG, Buckley L and King DG (1999). Dynamically heterogenous partitions and phylogenetic inference: an evaluation of analytical strategies with cytochrome b and ND6 gene sequences in cranes. Mol. Phylogenet. Evol. 13: 302-313. http://dx.doi.org/10.1006/mpev.1999.0646 PMid:10603258   Krajewski C, Sipiorski JT and Anderson FE (2010). Complete mitochondrial genomes and the phylogeny cranes (Gruiformes: Gruidae). Auk 127: 440-452. http://dx.doi.org/10.1525/auk.2009.09045   Kress WJ and Erickson DL (2008). DNA barcodes: genes, genomics, and bioinformatics. Proc. Natl. Acad. Sci. U. S. A. 105: 2761-2762. http://dx.doi.org/10.1073/pnas.0800476105 PMid:18287050 PMCid:2268532   Livezey BC (1989). Flightlessness in grebes (Aves, Podicipedidae): its independent evolution in three genera. Evolution 43: 29-54. http://dx.doi.org/10.2307/2409162   Livezey BC (1998). A phylogenetic analysis of the Gruiformes (Aves) based on morphological characters,with an emphasis on the rails (Rallidae). Philos. Trans. R. Soc. Lond. B Biol. Sci. 353: 2077-2151. http://dx.doi.org/10.1098/rstb.1998.0353 PMCid:1692427   Marshall E (2005). Taxonomy. Will DNA bar codes breathe life into classification? Science 307: 1037. http://dx.doi.org/10.1126/science.307.5712.1037 PMid:15718446   McKay BD and Zink RM (2010). The causes of mitochondrial DNA gene tree paraphyly in birds. Mol. Phylogenet. Evol. 54: 647-650. http://dx.doi.org/10.1016/j.ympev.2009.08.024 PMid:19716428   Park SH, Zhang Y, Piao H, Yu DH, et al. (2009). Use of cytochrome c oxidase subunit i (COI) nucleotide sequences for identification of the Korean Luciliinae fly species (Diptera: Calliphoridae) in forensic investigations. J. Korean Med. Sci. 24: 1058-1063. http://dx.doi.org/10.3346/jkms.2009.24.6.1058 PMid:19949660 PMCid:2775852   Pedersen N, Holyoak DT and Newton AE (2007). Systematics and morphological evolution within the moss family Bryaceae: a comparison between parsimony and Bayesian methods for reconstruction of ancestral character states. Mol. Phylogenet. Evol. 43: 891-907. http://dx.doi.org/10.1016/j.ympev.2006.10.018 PMid:17161629   Petersen JL, Bischof R, Krapu GL and Szalanski AL (2003). Genetic variation in the midcontinental population of sandhill cranes, Grus canadensis. Biochem. Genet. 41: 1-12. http://dx.doi.org/10.1023/A:1020985427461 PMid:12645869   Pleijel F, Jondelius U, Norlinder E, Nygren A, et al. (2008). Phylogenies without roots? A plea for the use of vouchers in molecular phylogenetic studies. Mol. Phylogenet. Evol. 48: 369-371. http://dx.doi.org/10.1016/j.ympev.2008.03.024 PMid:18424089   Ronquist F and Huelsenbeck JP (2003). MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics 19: 1572-1574. http://dx.doi.org/10.1093/bioinformatics/btg180 PMid:12912839   Sambrook J and Russell DW (2001). Molecular Cloning: A Laboratory Manual. 3rd edn. Cold Spring Harbor Laboratory Press, Cold Spring Harbor.   Sibley CG and Monroe BL (1990). Infraorder Gruides. In: Distribution and Taxonomy of Birds of the World Yale University Press, New Haven, London, 217-219.   Tamura K and Nei M (1993). Estimation of the number of nucleotide substitutions in the control region of mitochondrial DNA in humans and chimpanzees. Mol. Biol. Evol. 10: 512-526. PMid:8336541   Tamura K, Dudley J, Nei M and Kumar S (2007). MEGA4: molecular evolutionary genetics analysis (MEGA) software version 4.0. Mol. Biol. Evol. 24: 1596-1599. http://dx.doi.org/10.1093/molbev/msm092 PMid:17488738   Wilgenbusch JC and Swofford D (2003). Inferring Evolutionary Trees with PAUP*. Curr. Protoc. Bioinformatics Chapter 6, Unit 6 4.   Wood DS (1979). Phenetic relationships within the family Gruidae. Wilson Bull. 91: 384-399.   Xia X and Xie Z (2001). DAMBE: software package for data analysis in molecular biology and evolution. J. Hered. 92: 371-373. http://dx.doi.org/10.1093/jhered/92.4.371 PMid:11535656   Yang R, Wu X, Yan P and Li X (2010a). Using DNA barcodes to identify a bird involved in a birdstrike at a Chinese airport. Mol. Biol. Rep. 37: 3517-3523. http://dx.doi.org/10.1007/s11033-009-9945-0 PMid:20033492   Yang R, Wu X, Yan P, Su X, et al. (2010b). Complete mitochondrial genome of Otis tarda (Gruiformes: Otididae) and phylogeny of Gruiformes inferred from mitochondrial DNA sequences. Mol. Biol. Rep. 37: 3057-3066. http://dx.doi.org/10.1007/s11033-009-9878-7 PMid:19823949   Yoo HS, Eah JY, Kim JS, Kim YJ, et al. (2006). DNA barcoding Korean birds. Mol. Cells 22: 323-327. PMid:17202861