Publications

Found 10 results
Filters: Author is K.H. Chua  [Clear All Filters]
2013
L. H. Lian, Lau, T. P., Lee, V. L., Lee, W. S., Hilmi, I., Goh, K. L., and Chua, K. H., Lack of association between TYK2 and STAT3 genes and Crohn’s disease in the Malaysian population, vol. 12, pp. 167-174, 2013.
Abraham C and Cho JH (2009). IL-23 and autoimmunity: new insights into the pathogenesis of inflammatory bowel disease. Annu. Rev. Med. 60: 97-110. http://dx.doi.org/10.1146/annurev.med.60.051407.123757 PMid:18976050   Baumgart DC (2008). What's new in inflammatory bowel disease in 2008? World J. Gastroenterol. 14: 329-330. http://dx.doi.org/10.3748/wjg.14.329 PMid:18200655 PMCid:2679121   Cavanaugh J (2001). International collaboration provides convincing linkage replication in complex disease through analysis of a large pooled data set: Crohn disease and chromosome 16. Am. J. Hum. Genet. 68: 1165-1171. http://dx.doi.org/10.1086/320119 PMid:11309682   Cho JH (2008). The genetics and immunopathogenesis of inflammatory bowel disease. Nat. Rev. Immunol. 8: 458-466. http://dx.doi.org/10.1038/nri2340 PMid:18500230   Chua KH, Hilmi I, Ng CC, Eng TL, et al. (2009a). Identification of NOD2/CARD15 mutations in Malaysian patients with Crohn's disease. J. Dig. Dis. 10: 124-130. http://dx.doi.org/10.1111/j.1751-2980.2009.00374.x PMid:19426395   Chua KH, Lau TP, Yee ZY, Tan SY, et al. (2009b). Genetic polymorphisms of the IL-1 511 and +3954 single nucleotide polymorphisms (SNPs) in the Malaysian systemic lupus erythematosus (SLE) patients. J. Health Sci. 55: 657-662. http://dx.doi.org/10.1248/jhs.55.657   Chua KH, Puah SM, Chew CH, Tan SY, et al. (2010). Study of the CTLA-4 gene polymorphisms in systemic lupus erythematosus (SLE) samples from Malaysia. Ann. Hum. Biol. 37: 274-280. http://dx.doi.org/10.3109/03014460903325185 PMid:19951233   Chua KH, Lian LH, Kee BP, Thum CM, et al. (2011a). Identification of DLG5 and SLC22A5 gene polymorphisms in Malaysian patients with Crohn's disease. J. Dig. Dis. 12: 459-466. http://dx.doi.org/10.1111/j.1751-2980.2011.00533.x PMid:22118696   Chua KH, Puah SM, Chew CH, Wong CH, et al. (2011b). Interaction between a novel intronic IVS3+172 variant and N29I mutation in PRSS1 gene is associated with pancreatitis in a Malaysian Chinese family. Pancreatology 11: 441-444. http://dx.doi.org/10.1159/000330943 PMid:21952138   Chua KH, Hilmi I, Lian LH, Patmanathan SN, et al. (2012). Association between inflammatory bowel disease gene 5 (IBD5) and interleukin-23 receptor (IL23R) genetic polymorphisms in Malaysian patients with Crohn's disease. J. Dig. Dis. 13: 459-465. http://dx.doi.org/10.1111/j.1751-2980.2012.00617.x PMid:22908971   Cunninghame Graham DS, Akil M and Vyse TJ (2007). Association of polymorphisms across the tyrosine kinase gene, TYK2 in UK SLE families. Rheumatology 46: 927-930. http://dx.doi.org/10.1093/rheumatology/kel449 PMid:17384181   David M (2002). Signal transduction by type I interferons. Biotechniques (Suppl): 58-65. PMid:12395928   Goh KL (2007). Changing trends in gastrointestinal disease in the Asia-Pacific region. J. Dig. Dis. 8: 179-185. http://dx.doi.org/10.1111/j.1751-2980.2007.00304.x PMid:17970873   Hugot JP, Chamaillard M, Zouali H, Lesage S, et al. (2001). Association of NOD2 leucine-rich repeat variants with susceptibility to Crohn's disease. Nature 411: 599-603. http://dx.doi.org/10.1038/35079107 PMid:11385576   Kyogoku C, Morinobu A, Nishimura K, Sugiyama D, et al. (2009). Lack of association between tyrosine kinase 2 (TYK2) gene polymorphisms and susceptibility to SLE in a Japanese population. Mod. Rheumatol. 19: 401-406. http://dx.doi.org/10.1007/s10165-009-0173-1 PMid:19440814   Leong RW, Lau JY and Sung JJ (2004). The epidemiology and phenotype of Crohn's disease in the Chinese population. Inflamm. Bowel. Dis. 10: 646-651. http://dx.doi.org/10.1097/00054725-200409000-00022 PMid:15472528   Lindqvist AK, Steinsson K, Johanneson B, Kristjansdottir H, et al. (2000). A susceptibility locus for human systemic lupus erythematosus (hSLE1) on chromosome 2q. J. Autoimmun. 14: 169-178. http://dx.doi.org/10.1006/jaut.1999.0357 PMid:10677248   Lovato P, Brender C, Agnholt J, Kelsen J, et al. (2003). Constitutive STAT3 activation in intestinal T cells from patients with Crohn's disease. J. Biol. Chem. 278: 16777-16781. http://dx.doi.org/10.1074/jbc.M207999200 PMid:12615922   McGovern D and Powrie F (2007). The IL23 axis plays a key role in the pathogenesis of IBD. Gut 56: 1333-1336. http://dx.doi.org/10.1136/gut.2006.115402 PMid:17872562 PMCid:2000291   Nakamura R, Shibata K, Yamada H, Shimoda K, et al. (2008). Tyk2-signaling plays an important role in host defense against Escherichia coli through IL-23-induced IL-17 production by gammadelta T cells. J. Immunol. 181: 2071- 2075. PMid:18641345   Ng ZX, Kuppusamy UR, Tajunisah I, Fong KC, et al. (2012). 2245G/A polymorphism of the receptor for advanced glycation end-products (RAGE) gene is associated with diabetic retinopathy in the Malaysian population. Br. J. Ophthalmol. 96: 289-292. http://dx.doi.org/10.1136/bjophthalmol-2011-300658 PMid:22116960 PMCid:3261748   Ogura Y, Bonen DK, Inohara N, Nicolae DL, et al. (2001). A frameshift mutation in NOD2 associated with susceptibility to Crohn's disease. Nature 411: 603-606. http://dx.doi.org/10.1038/35079114 PMid:11385577   Ouyang Q, Tandon R, Goh KL, Ooi CJ, et al. (2005). The emergence of inflammatory bowel disease in the Asian Pacific region. Curr. Opin. Gastroenterol. 21: 408-413. PMid:15930979   Puah SM, Lian LH, Chew CH, Chua KH, et al. (2007). A study of association of the complement C4 mutations with systemic lupus erythematosus in the Malaysian population. Lupus 16: 750-754. http://dx.doi.org/10.1177/0961203307079454 PMid:17728371   Raelson JV, Little RD, Ruether A, Fournier H, et al. (2007). Genome-wide association study for Crohn's disease in the Quebec Founder Population identifies multiple validated disease loci. Proc. Natl. Acad. Sci. U. S. A. 104: 14747- 14752. http://dx.doi.org/10.1073/pnas.0706645104 PMid:17804789 PMCid:1965486   Richter MF, Dumenil G, Uze G, Fellous M, et al. (1998). Specific contribution of Tyk2 JH regions to the binding and the expression of the interferon alpha/beta receptor component IFNAR1. J. Biol. Chem. 273: 24723-24729. http://dx.doi.org/10.1074/jbc.273.38.24723 PMid:9733772   Sato K, Shiota M, Fukuda S, Iwamoto E, et al. (2009). Strong evidence of a combination polymorphism of the tyrosine kinase 2 gene and the signal transducer and activator of transcription 3 gene as a DNA-based biomarker for susceptibility to Crohn's disease in the Japanese population. J. Clin. Immunol. 29: 815-825. http://dx.doi.org/10.1007/s10875-009-9320-x PMid:19653082 PMCid:2788098   Sehgal PB, Levy DE and Hirano T (Editors) (2003). Signal Transducers and Activators of Transcription (STATs). In: Activation and Biology. Kluwer Academic Publishers, Dordrecht, 12. PMid:12568241   Shanahan F (2002). Crohn's disease. Lancet 359: 62-69. http://dx.doi.org/10.1016/S0140-6736(02)07284-7   Suarez-Gestal M, Calaza M, Dieguez-Gonzalez R, Perez-Pampin E, et al. (2009). Rheumatoid arthritis does not share most of the newly identified systemic lupus erythematosus genetic factors. Arthritis Rheum. 60: 2558-2564. http://dx.doi.org/10.1002/art.24748 PMid:19714582   Tan JAMA, Lee PC, Wee YC, Tan KL, et al. (2010). High prevalence of alpha and beta-thalassemia in the kadazandusuns in east malaysia: challenges in providing effective health care for an indigenous group. J. Biomed. Biotechnol. DOI: 10.1155/2010/706872. http://dx.doi.org/10.1155/2010/706872   Tao JH, Zou YF, Feng XL, Li J, et al. (2011). Meta-analysis of TYK2 gene polymorphisms association with susceptibility to autoimmune and inflammatory diseases. Mol. Biol. Rep. 38: 4663-4672. http://dx.doi.org/10.1007/s11033-010-0601-5 PMid:21140222   Teh CS, Chua KH and Thong KL (2010a). Simultaneous differential detection of human pathogenic and nonpathogenic Vibrio species using a multiplex PCR based on gyrB and pntA genes. J. Appl. Microbiol. 108: 1940-1945. PMid:19891709   Teh CS, Chua KH and Thong KL (2010b). Multiple-locus variable-number tandem repeat analysis of Vibrio cholerae in comparison with pulsed field gel electrophoresis and virulotyping. J Biomed. Biotechnol. 2010: 817190. http://dx.doi.org/10.1155/2010/817190 PMid:20671932 PMCid:2910556   Thong KL, Lai MY, Teh CS and Chua KH (2011). Simultaneous detection of methicillin-resistant Staphylococcus aureus, Acinetobacter baumannii, Escherichia coli, Klebsiella pneumoniae and Pseudomonas aeruginosa by multiplex PCR. Trop. Biomed. 28: 21-31. PMid:21602765   Uhlig HH, McKenzie BS, Hue S, Thompson C, et al. (2006). Differential activity of IL-12 and IL-23 in mucosal and systemic innate immune pathology. Immunity 25: 309-318. http://dx.doi.org/10.1016/j.immuni.2006.05.017 PMid:16919486   Wang K, Zhang H, Kugathasan S, Annese V, et al. (2009). Diverse genome-wide association studies associate the IL12/ IL23 pathway with Crohn Disease. Am. J. Hum. Genet. 84: 399-405. http://dx.doi.org/10.1016/j.ajhg.2009.01.026 PMid:19249008 PMCid:2668006   Watford WT, Hissong BD, Bream JH, Kanno Y, et al. (2004). Signaling by IL-12 and IL-23 and the immunoregulatory roles of STAT4. Immunol. Rev. 202: 139-156. http://dx.doi.org/10.1111/j.0105-2896.2004.00211.x PMid:15546391   Yang SK, Loftus EV Jr and Sandborn WJ (2001). Epidemiology of inflammatory bowel disease in Asia. Inflamm. Bowel. Dis. 7: 260-270. http://dx.doi.org/10.1097/00054725-200108000-00013 PMid:11515854
S. L. Kho, Chua, K. H., George, E., and Tan, J. A. M. A., Specific and straightforward molecular investigation of β-thalassemia mutations in the Malaysian Malays and Chinese using direct TaqMan genotyping assays, vol. 12, pp. 2409-2415, 2013.
2012
K. H. Chua, Ng, C. C., Hilmi, I., and Goh, K. L., Co-inheritance of variants/mutations in Malaysian patients with Crohn’s disease, vol. 11, pp. 3115-3121, 2012.
Bennett RA, Rubin PH and Present DH (1991). Frequency of inflammatory bowel disease in offspring of couples both presenting with inflammatory bowel disease. Gastroenterology 100: 1638-1643. PMid:2019369   Chan KG, Puthucheary SD, Chan XY, Yin WF, et al. (2011). Quorum sensing in Aeromonas species isolated from patients in Malaysia. Curr. Microbiol. 62: 167-172. http://dx.doi.org/10.1007/s00284-010-9689-z PMid:20544198   Chua KH, Hilmi I, Ng CC, Eng TL, et al. (2009). Identification of NOD2/CARD15 mutations in Malaysian patients with Crohn's disease. J. Dig. Dis. 10: 124-130. http://dx.doi.org/10.1111/j.1751-2980.2009.00374.x PMid:19426395   Chua KH, Lian LH, Kee BP, Thum CM, et al. (2011a). Identification of DLG5 and SLC22A5 gene polymorphisms in Malaysian patients with Crohn's disease. J. Dig. Dis. 12: 459-466. http://dx.doi.org/10.1111/j.1751-2980.2011.00533.x PMid:22118696   Chua KH, Puah SM, Chew CH, Wong CH, et al. (2011b). Interaction between a novel intronic IVS3+172 variant and N29I mutation in PRSS1 gene is associated with pancreatitis in a Malaysian Chinese family. Pancreatology 11: 441-444. http://dx.doi.org/10.1159/000330943 PMid:21952138   Chua KH, Hilmi I, Lian LH, Patmanathan SN, et al. (2012). Association of the inflammatory bowel disease (IBD5) and Interleukin-23 receptor (IL23R) genetic polymorphisms in Malaysian patients with Crohn's disease. J. Dig. Dis. (In Press). http://dx.doi.org/10.1111/j.1751-2980.2012.00617.x PMid:22908971   Fielding JF (1986). The relative risk of inflammatory bowel disease among parents and siblings of Crohn's disease patients. J. Clin. Gastroenterol. 8: 655-657. http://dx.doi.org/10.1097/00004836-198612000-00013 PMid:3805664   Hugot JP, Chamaillard M, Zouali H, Lesage S, et al. (2001). Association of NOD2 leucine-rich repeat variants with susceptibility to Crohn's disease. Nature 411: 599-603. http://dx.doi.org/10.1038/35079107 PMid:11385576   Lesage S, Zouali H, Cezard JP, Colombel JF, et al. (2002). CARD15/NOD2 mutational analysis and genotype-phenotype correlation in 612 patients with inflammatory bowel disease. Am. J. Hum. Genet. 70: 845-857. http://dx.doi.org/10.1086/339432 PMid:11875755 PMCid:379113   Moum B, Vatn MH, Ekbom A, Aadland E, et al. (1996). Incidence of Crohn's disease in four counties in southeastern Norway, 1990-93. A prospective population-based study. The Inflammatory Bowel South-Eastern Norway (IBSEN) Study Group of Gastroenterologists. Scand. J. Gastroenterol. 31: 355-361.   Ng ZX, Kuppusamy UR, Poh R, Tajunisah I, et al. (2012a). Lack of association between Gly82Ser, 1704G/T and 2184A/G of RAGE gene polymorphisms and retinopathy susceptibility in Malaysian diabetic patients. Genet. Mol. Res. 11: 455-461. http://dx.doi.org/10.4238/2012.March.1.2 PMid:22427038   Ng ZX, Kuppusamy UR, Tajunisah I, Fong KC, et al. (2012b). 2245G/A polymorphism of the receptor for advanced glycation end-products (RAGE) gene is associated with diabetic retinopathy in the Malaysian population. Br. J. Ophthalmol. 96: 289-292. http://dx.doi.org/10.1136/bjophthalmol-2011-300658 PMid:22116960 PMCid:3261748   Ogura Y, Bonen DK, Inohara N, Nicolae DL, et al. (2001). A frameshift mutation in NOD2 associated with susceptibility to Crohn's disease. Nature 411: 603-606. http://dx.doi.org/10.1038/35079114 PMid:11385577   Podolsky DK (1991a). Inflammatory bowel disease (Part I). N. Engl. J. Med. 325: 928-937. http://dx.doi.org/10.1056/NEJM199109263251306 PMid:1881418   Podolsky DK (1991b). Inflammatory bowel disease (Part II). N. Engl. J. Med. 325: 1008-1016. http://dx.doi.org/10.1056/NEJM199110033251406 PMid:1886623   Podolsky DK (2002). Inflammatory bowel disease. N. Engl. J. Med. 346: 417-429. http://dx.doi.org/10.1056/NEJMra020831 PMid:12167685   Polito JM, Childs B, Mellits ED, Tokayer AZ, et al. (1996). Crohn's disease: influence of age at diagnosis on site and clinical type of disease. Gastroenterology 111: 580-586. http://dx.doi.org/10.1053/gast.1996.v111.pm8780560 PMid:8780560   Puah SM, Lian LH, Chew CH, Chua KH, et al. (2007). A study of association of the complement C4 mutations with systemic lupus erythematosus in the Malaysian population. Lupus 16: 750-754. http://dx.doi.org/10.1177/0961203307079454 PMid:17728371   Russell RK, Nimmo ER and Satsangi J (2004). Molecular genetics of Crohn's disease. Curr. Opin Genet. Dev. 14: 264-270. http://dx.doi.org/10.1016/j.gde.2004.04.004 PMid:15172669   Shivananda S, Lennard-Jones J, Logan R, Fear N, et al. (1996). Incidence of inflammatory bowel disease across Europe: is there a difference between north and south? Results of the European Collaborative Study on Inflammatory Bowel Disease (EC-IBD). Gut 39: 690-697. http://dx.doi.org/10.1136/gut.39.5.690 PMid:9014768 PMCid:1383393   Sugimura K, Taylor KD, Lin YC, Hang T, et al. (2003). A novel NOD2/CARD15 haplotype conferring risk for Crohn disease in Ashkenazi Jews. Am. J. Hum. Genet. 72: 509-518. http://dx.doi.org/10.1086/367848 PMid:12577202 PMCid:1180227   Tan JAMA, Lee PC, Wee YC, Tan KL, et al. (2010). High prevalence of alpha- and beta-thalassemia in the Kadazandusuns in East Malaysia: challenges in providing effective health care for an indigenous group. J. Biomed. Biotechnol. DOI 10.1155/2010/706872. http://dx.doi.org/10.1155/2010/706872   Teh CSJ, Thong KL and Chua KH (2010). Multiple-locus variable number tandem repeat analysis of Vibrio cholerae in comparison with pulsed field gel electrophoresis and virulotyping. J. Biomed. Biotechnol. DOI 10.1155/2010/817190. http://dx.doi.org/10.1155/2010/817190   Thong KL, Lai MY, Teh CS and Chua KH (2011). Simultaneous detection of methicillin-resistant Staphylococcus aureus, Acinetobacter baumannii, Escherichia coli, Klebsiella pneumoniae and Pseudomonas aeruginosa by multiplex PCR. Trop. Biomed. 28: 21-31. PMid:21602765   Tysk C, Lindberg E, Jarnerot G and Floderus-Myrhed B (1988). Ulcerative colitis and Crohn's disease in an unselected population of monozygotic and dizygotic twins. A study of heritability and the influence of smoking. Gut 29: 990-996. http://dx.doi.org/10.1136/gut.29.7.990 PMid:3396969 PMCid:1433769   Vermeire S, Wild G, Kocher K, Cousineau J, et al. (2002). CARD15 genetic variation in a Quebec population: prevalence, genotype-phenotype relationship, and haplotype structure. Am. J. Hum. Genet. 71: 74-83. http://dx.doi.org/10.1086/341124 PMid:12019468 PMCid:384994   Vermeire S, Rutgeerts P, Van Steen K, Joossens S, et al. (2004). Genome wide scan in a Flemish inflammatory bowel disease population: support for the IBD4 locus, population heterogeneity, and epistasis. Gut 53: 980-986. http://dx.doi.org/10.1136/gut.2003.034033 PMid:15194648 PMCid:1774099
K. A. Muthusamy, Lian, L. H., Vairavan, N., Chua, K. H., and Waran, V., Genetic polymorphisms of EGF 5'-UTR and NAT2 857G/A associated with glioma in a case control study of Malaysian patients, vol. 11, pp. 2939-2945, 2012.
Agundez JA, Jimenez-Jimenez FJ, Luengo A, Molina JA, et al. (1998). Slow allotypic variants of the NAT2 gene and susceptibility to early-onset Parkinson's disease. Neurology 51: 1587-1592. http://dx.doi.org/10.1212/WNL.51.6.1587 PMid:9855506   Ambrosone CB, Freudenheim JL, Graham S, Marshall JR, et al. (1996). Cigarette smoking, N-acetyltransferase 2 genetic polymorphisms, and breast cancer risk. JAMA 276: 1494-1501. http://dx.doi.org/10.1001/jama.1996.03540180050032 PMid:8903261   Bhowmick DA, Zhuang Z, Wait SD and Weil RJ (2004). A functional polymorphism in the EGF gene is found with increased frequency in glioblastoma multiforme patients and is associated with more aggressive disease. Cancer Res. 64: 1220-1223. http://dx.doi.org/10.1158/0008-5472.CAN-03-3137 PMid:14973082   Butcher NJ, Boukouvala S, Sim E and Minchin RF (2002). Pharmacogenetics of the arylamine N-acetyltransferases. Pharmacogenomics J. 2: 30-42. http://dx.doi.org/10.1038/sj.tpj.6500053 PMid:11990379   Cascorbi I, Drakoulis N, Brockmoller J, Maurer A, et al. (1995). Arylamine N-acetyltransferase (NAT2) mutations and their allelic linkage in unrelated Caucasian individuals: correlation with phenotypic activity. Am. J. Hum. Genet. 57: 581-592. PMid:7668286 PMCid:1801274   Chua KH, Kee BP, Tan SY and Lian LH (2009a). Interleukin-6 promoter polymorphisms (-174 G/C) in Malaysian patients with systemic lupus erythematosus. Braz. J. Med. Biol. Res. 42: 551-555. http://dx.doi.org/10.1590/S0100-879X2009000600012 PMid:19448905   Chua KH, Lau TP, Tee ZY, Tan SY, et al. (2009b). Genetic polymorphisms of the IL-1 511 and +3954 SNPs in the Malaysian SLE patients. J. Health Sci. 55: 657-662. http://dx.doi.org/10.1248/jhs.55.657   Chua KH, Lian LH, Kee BP, Thum CM, et al. (2011a). Identification of DLG5 and SLC22A5 gene polymorphisms in Malaysian patients with Crohn's disease. J. Dig. Dis. 12: 459-466. http://dx.doi.org/10.1111/j.1751-2980.2011.00533.x PMid:22118696   Chua KH, Puah SM, Chew CH, Wong CH, et al. (2011b). Interaction between a novel intronic IVS3+172 variant and N29I mutation in PRSS1 gene is associated with pancreatitis in a Malaysian Chinese family. Pancreatology 11: 441-444. http://dx.doi.org/10.1159/000330943 PMid:21952138   Costa BM, Ferreira P, Costa S, Canedo P, et al. (2007). Association between functional EGF+61 polymorphism and glioma risk. Clin. Cancer Res. 13: 2621-2626. http://dx.doi.org/10.1158/1078-0432.CCR-06-2606 PMid:17473192   Davis FG, Freels S, Grutsch J, Barlas S, et al. (1998). Survival rates in patients with primary malignant brain tumors stratified by patient age and tumor histological type: an analysis based on Surveillance, Epidemiology, and End Results (SEER) data, 1973-1991. J. Neurosurg. 88: 1-10. http://dx.doi.org/10.3171/jns.1998.88.1.0001 PMid:9420066   Halatsch ME, Schmidt U, Behnke-Mursch J, Unterberg A, et al. (2006). Epidermal growth factor receptor inhibition for the treatment of glioblastoma multiforme and other malignant brain tumours. Cancer Treat. Rev. 32: 74-89. http://dx.doi.org/10.1016/j.ctrv.2006.01.003 PMid:16488082   Kleihues P and Cavanee WK (2000). Pathology and Genetics of Tumours of the Nervous System. 2nd edn. IARC Press, Lyon.   Liu Y, Shete S, Hosking FJ, Robertson LB, et al. (2010). New insights into susceptibility to glioma. Arch. Neurol. 67: 275-278. http://dx.doi.org/10.1001/archneurol.2010.4 PMid:20212223   Ng ZX, Kuppusamy UR, Tajunisah I, Fong KC, et al. (2012). 2245G/A polymorphism of the receptor for advanced glycation end-products (RAGE) gene is associated with diabetic retinopathy in the Malaysian population. Br. J. Ophthalmol. 96: 289-292. http://dx.doi.org/10.1136/bjophthalmol-2011-300658 PMid:22116960 PMCid:3261748   Nicholson RI, Gee JM and Harper ME (2001). EGFR and cancer prognosis. Eur. J. Cancer 37 (Suppl 4): S9-15. http://dx.doi.org/10.1016/S0959-8049(01)00231-3   Olayioye MA, Neve RM, Lane HA and Hynes NE (2000). The ErbB signaling network: receptor heterodimerization in development and cancer. EMBO J. 19: 3159-3167. http://dx.doi.org/10.1093/emboj/19.13.3159 PMid:10880430 PMCid:313958   Salomon DS, Brandt R, Ciardiello F and Normanno N (1995). Epidermal growth factor-related peptides and their receptors in human malignancies. Crit. Rev. Oncol. Hematol. 19: 183-232. http://dx.doi.org/10.1016/1040-8428(94)00144-I   Shahbazi M, Pravica V, Nasreen N, Fakhoury H, et al. (2002). Association between functional polymorphism in EGF gene and malignant melanoma. Lancet 359: 397-401. http://dx.doi.org/10.1016/S0140-6736(02)07600-6   Thong KL, Lai MY, Teh CS and Chua KH (2011). Simultaneous detection of methicillin-resistant Staphylococcus aureus, Acinetobacter baumannii, Escherichia coli, Klebsiella pneumoniae and Pseudomonas aeruginosa by multiplex PCR. Trop. Biomed. 28: 21-31. PMid:21602765   von Schmiedeberg S, Fritsche E, Ronnau AC, Specker C, et al. (1999). Polymorphisms of the xenobiotic-metabolizing enzymes CYP1A1 and NAT-2 in systemic sclerosis and lupus erythematosus. Adv. Exp. Med. Biol. 455: 147-152. http://dx.doi.org/10.1007/978-1-4615-4857-7_21 PMid:10599336
K. H. Chua and Chai, H. C., Hemagglutinin protein of Asian strains of human influenza virus A H1N1 binds to sialic acid - a major component of human airway receptors, vol. 11, pp. 636-643, 2012.
Arnold K, Bordoli L, Kopp J and Schwede T (2006). The SWISS-MODEL workspace: a web-based environment for protein structure homology modelling. Bioinformatics 22: 195-201. http://dx.doi.org/10.1093/bioinformatics/bti770 PMid:16301204 Aytay S and Schulze IT (1991). Single amino acid substitutions in the hemagglutinin can alter the host range and receptor binding properties of H1 strains of influenza A virus. J. Virol. 65: 3022-3028. PMid:2033664    PMCid:240956 Brankston G, Gitterman L, Hirji Z, Lemieux C, et al. (2007). Transmission of influenza A in human beings. Lancet Infect. Dis. 7: 257-265. http://dx.doi.org/10.1016/S1473-3099(07)70029-4 Carrat F, Vergu E, Ferguson NM, Lemaitre M, et al. (2008). Time lines of infection and disease in human influenza: a review of volunteer challenge studies. Am. J. Epidemiol. 167: 775-785. http://dx.doi.org/10.1093/aje/kwm375 PMid:18230677 Centers for Disease Control and Prevention (CDC) (2009). Swine influenza A (H1N1) in two children - southern California, March-April 2009. MMWR Morb. Mortal. Wkly. Rep. 58: 400-402. PMid:19390508 Centers for Disease Control and Prevention (CDC) (2010). Interim results: influenza A (H1N1) 2009 monovalent vaccination coverage - United States, October-December 2009. MMWR Morb. Mortal. Wkly. Rep. 59: 44-48. PMid:20094027 Fitch WM, Leiter JM, Li XQ and Palese P (1991). Positive Darwinian evolution in human influenza A viruses. Proc. Natl. Acad. Sci. U. S. A. 88: 4270-4274. http://dx.doi.org/10.1073/pnas.88.10.4270 Garten RJ, Davis CT, Russell CA, Shu B, et al. (2009). Antigenic and genetic characteristics of swine-origin 2009 A(H1N1) influenza viruses circulating in humans. Science 325: 197-201. http://dx.doi.org/10.1126/science.1176225 PMid:19465683    PMCid:3250984 Guex N and Peitsch MC (1997). SWISS-MODEL and the Swiss-PdbViewer: an environment for comparative protein modeling. Electrophoresis 18: 2714-2723. http://dx.doi.org/10.1002/elps.1150181505 PMid:9504803 Ito T, Couceiro JN, Kelm S, Baum LG, et al. (1998). Molecular basis for the generation in pigs of influenza A viruses with pandemic potential. J. Virol. 72: 7367-7373. PMid:9696833    PMCid:109961 Matrosovich M, Tuzikov A, Bovin N, Gambaryan A, et al. (2000). Early alterations of the receptor-binding properties of H1, H2, and H3 avian influenza virus hemagglutinins after their introduction into mammals. J. Virol. 74: 8502-8512. http://dx.doi.org/10.1128/JVI.74.18.8502-8512.2000 PMid:10954551    PMCid:116362 National Center for Biotechnology Information (NCBI) (2009). Influenza Virus Resource. Available at [http://www.ncbi.nlm.nih.gov/genomes/FLU/Database/select.cgi?go=1]. Accessed August 31, 2009. Nicholls JM, Peiris JS and Guan Y (2009). Sialic acid and receptor expression on the respiratory tract in normal subjects and H5N1 and non-avian influenza patients. Hong Kong Med. J. 15: 16-20. PMid:19509432 Novel Swine-Origin Influenza A (H1N1) Virus Investigation Team (2009). Emergence of a novel swine-origin influenza A (H1N1) virus in humans. N. Engl. Med. 360: 2605-2615. http://dx.doi.org/10.1056/NEJMoa0903810 PMid:19423869 Schwede T, Kopp J, Guex N and Peitsch MC (2003). SWISS-MODEL: An automated protein homology-modeling server. Nucleic Acids Res. 31: 3381-3385. http://dx.doi.org/10.1093/nar/gkg520 PMid:12824332    PMCid:168927 Shinya K, Ebina M, Yamada S, Ono M, et al. (2006). Avian flu: influenza virus receptors in the human airway. Nature 440: 435-436. http://dx.doi.org/10.1038/440435a PMid:16554799 Stevens J, Blixt O, Tumpey TM, Taubenberger JK, et al. (2006). Structure and receptor specificity of the hemagglutinin from an H5N1 influenza virus. Science 312: 404-410. http://dx.doi.org/10.1126/science.1124513 PMid:16543414 Swedish KA, Conenello G and Factor SH (2010). First season of 2009 H1N1 influenza. Mt. Sinai J. Med. 77: 103-113. http://dx.doi.org/10.1002/msj.20164 PMid:20101715 Trifonov V, Khiabanian H and Rabadan R (2009a). Geographic dependence, surveillance, and origins of the 2009 influenza A (H1N1) virus. N. Engl. J. Med. 361: 115-119. http://dx.doi.org/10.1056/NEJMp0904572 PMid:19474418 Trifonov V, Khiabanian H, Greenbaum B and Rabadan R (2009b). The origin of the recent swine influenza A(H1N1) virus infecting humans. Euro Surveill. 14: pii=19193. Turner SJ, Brown LE, Doherty PC and Kelso A (2009). Q&A: What have we found out about the influenza A (H1N1) 2009 pandemic virus? J. Biol. 8: 69. http://dx.doi.org/10.1186/jbiol179 PMid:19769786    PMCid:2776918 Ward P, Small I, Smith J, Suter P, et al. (2005). Oseltamivir (Tamiflu) and its potential for use in the event of an influenza pandemic. J. Antimicrob. Chemother. 55: i5-i21. http://dx.doi.org/10.1093/jac/dki018 PMid:15709056 White JM, Hoffman LR, Arevalo JH and Wilson IA (1997). Attachment and Entry of Influenza Virus Into Host Cells. Pivotal Roles of Hemagglutinin. In: Structural Biology of Viruses (Chiu W, Burnett RM and Garcea RL, eds.). Oxford University Press, Oxford, 80-104. Wilson IA and Cox NJ (1990). Structural basis of immune recognition of influenza virus hemagglutinin. Annu. Rev. Immunol. 8: 737-771. http://dx.doi.org/10.1146/annurev.iy.08.040190.003513 PMid:2188678
Z. X. Ng, Kuppusamy, U. R., Poh, R., Tajunisah, I., Koay, A. C. A., Fong, K. C. S., and Chua, K. H., Lack of association between Gly82Ser, 1704G/T and 2184A/G of RAGE gene polymorphisms and retinopathy susceptibility in Malaysian diabetic patients, vol. 11, pp. 455-461, 2012.
Basta G (2008). Receptor for advanced glycation endproducts and atherosclerosis: From basic mechanisms to clinical implications. Atherosclerosis 196: 9-21. http://dx.doi.org/10.1016/j.atherosclerosis.2007.07.025 PMid:17826783 Bierhaus A, Humpert PM, Morcos M, Wendt T, et al. (2005). Understanding RAGE, the receptor for advanced glycation end products. J. Mol. Med. 83: 876-886. http://dx.doi.org/10.1007/s00109-005-0688-7 PMid:16133426 Chua KH, Kee BP, Tan SY and Lian LH (2009). Interleukin-6 promoter polymorphisms (-174 G/C) in Malaysian patients with systemic lupus erythematosus (SLE). Braz. J. Med. Biol. Res. 42: 551-555. http://dx.doi.org/10.1590/S0100-879X2009000600012 PMid:19448905 Chua KH, Puah SM, Chew CH, Tan SY, et al. (2010). Study of the CTLA-4 gene polymorphisms in systemic lupus erythematosus (SLE) samples from Malaysia. Ann. Hum. Biol. 37: 275-281. http://dx.doi.org/10.3109/03014460903325185 PMid:19951233 dos Santos KG, Canani LH, Gross JL, Tschiedel B, et al. (2005). The -374A allele of the receptor for advanced glycation end products gene is associated with a decreased risk of ischemic heart disease in African-Brazilians with type 2 diabetes. Mol. Genet. Metab. 85: 149-156. http://dx.doi.org/10.1016/j.ymgme.2005.02.010 PMid:15896660 Esteves J, Laranjeira AF, Roggia MF, Dalpizol M, et al. (2008). Diabetic retinopathy risk factors. Arq. Bras. Endocrinol. Metabol. 52: 431-441. PMid:18506268 ETDRS (1991a). Fundus photographic risk factors for progression of diabetic retinopathy. ETDRS report number 12. Early Treatment Diabetic Retinopathy Study Research Group. Ophthalmology 98: 823-833. PMid:2062515 ETDRS (1991b). Grading diabetic retinopathy from stereoscopic color fundus photographs - an extension of the modified Airlie House classification. ETDRS report number 10. Early Treatment Diabetic Retinopathy Study Research Group. Ophthalmology 98: 786-806. PMid:2062513 Hallman DM, Huber JC Jr, Gonzalez VH, Klein BE, et al. (2005). Familial aggregation of severity of diabetic retinopathy in Mexican Americans from Starr County, Texas. Diabetes Care 28: 1163-1168. http://dx.doi.org/10.2337/diacare.28.5.1163 PMid:15855583 Hietala K, Forsblom C, Summanen P and Groop PH (2008). Heritability of proliferative diabetic retinopathy. Diabetes 57: 2176-2180. http://dx.doi.org/10.2337/db07-1495 PMid:18443200    PMCid:2494680 Hudson BI, Stickland MH and Grant PJ (1998). Identification of polymorphisms in the receptor for advanced glycation end products (RAGE) gene: prevalence in type 2 diabetes and ethnic groups. Diabetes 47: 1155-1157. http://dx.doi.org/10.2337/diabetes.47.7.1155 PMid:9648842 Hudson BI, Stickland MH, Futers TS and Grant PJ (2001). Effects of novel polymorphisms in the RAGE gene on transcriptional regulation and their association with diabetic retinopathy. Diabetes 50: 1505-1511. http://dx.doi.org/10.2337/diabetes.50.6.1505 PMid:11375354 JiXiong X, BiLin X, MingGong Y and ShuQin L (2003). -429T/C and -374T/A polymorphisms of RAGE gene promoter are not associated with diabetic retinopathy in Chinese patients with type 2 diabetes. Diabetes Care 26: 2696-2697. Kalousova M, Zima T, Tesar V, Dusilova-Sulkova S, et al. (2005). Advanced glycoxidation end products in chronic diseases - clinical chemistry and genetic background. Mutat. Res. 579: 37-46. http://dx.doi.org/10.1016/j.mrfmmm.2005.03.024 PMid:16084533 Kalousova M, Jachymova M, Mestek O, Hodkova M, et al. (2007). Receptor for advanced glycation end products - soluble form and gene polymorphisms in chronic haemodialysis patients. Nephrol. Dial. Transplant. 22: 2020-2026. http://dx.doi.org/10.1093/ndt/gfm050 PMid:17347281 Kankova K, Zahejsky J, Marova I, Muzik J, et al. (2001). Polymorphisms in the RAGE gene influence susceptibility to diabetes-associated microvascular dermatoses in NIDDM. J. Diabetes Complications 15: 185-192. http://dx.doi.org/10.1016/S1056-8727(00)00135-5 Kankova K, Beranek M, Hajek D and Vlkova E (2002). Polymorphisms 1704G/T, 2184A/G, and 2245G/A in the rage gene are not associated with diabetic retinopathy in NIDDM: pilot study. Retina 22: 119-121. http://dx.doi.org/10.1097/00006982-200202000-00026 Klein R, Klein BE, Moss SE, Davis MD, et al. (1984). The Wisconsin epidemiologic study of diabetic retinopathy. III. Prevalence and risk of diabetic retinopathy when age at diagnosis is 30 or more years. Arch. Ophthalmol. 102: 527- 532. http://dx.doi.org/10.1001/archopht.1984.01040030405011 PMid:6367725 Kumaramanickavel G, Ramprasad VL, Sripriya S, Upadyay NK, et al. (2002). Association of Gly82Ser polymorphism in the RAGE gene with diabetic retinopathy in type II diabetic Asian Indian patients. J. Diabetes Complications 16: 391-394. http://dx.doi.org/10.1016/S1056-8727(02)00187-3 Liu L and Xiang K (1999). RAGE Gly82Ser polymorphism in diabetic microangiopathy. Diabetes Care 22: 646. http://dx.doi.org/10.2337/diacare.22.4.646 PMid:10189547 Roy MS, Hallman DM, Fu YP, Machado M, et al. (2009). Assessment of 193 candidate genes for retinopathy in African Americans with type 1 diabetes. Arch. Ophthalmol. 127: 605-612. http://dx.doi.org/10.1001/archophthalmol.2009.48 PMid:19433708 Salman AG, Mansour DE, Swelem AH, Al-Zawahary WM, et al. (2009). Pentosidine - a new biochemical marker in diabetic retinopathy. Ophthalmic Res. 42: 96-98. http://dx.doi.org/10.1159/000225661 PMid:19546600 Schlueter C, Hauke S, Flohr AM, Rogalla P, et al. (2003). Tissue-specific expression patterns of the RAGE receptor and its soluble forms - a result of regulated alternative splicing? Biochim. Biophys. Acta 1630: 1-6. http://dx.doi.org/10.1016/j.bbaexp.2003.08.008 The Diabetic Retinopathy Study Research Group (1981). A modification of the Airlie House Classification of Diabetic Retinopathy: Diabetic Retinopathy Study report number 7. Invest. Opthalmol. Vis. Sci. 21: 210-226. Uthra S, Raman R, Mukesh BN, Rajkumar SA, et al. (2008). Association of VEGF gene polymorphisms with diabetic retinopathy in a south Indian cohort. Ophthalmic Genet. 29: 11-15. http://dx.doi.org/10.1080/13816810701663527 PMid:18363167 Yamamoto T, Hosoi M, Sato T, Miyamoto M, et al. (2000). Gly82Ser polymorphism in the receptor for advanced glycation end products (RAGE) gene is not associated with the progression of diabetic nephropathy and retinopathy in Japanese patients with type 1 diabetes mellitus: Findings from 20 years of follow-up. Diabetes 49: A402. Yoshioka K, Yoshida T, Takakura Y, Umekawa T, et al. (2005). Relation between polymorphisms G1704T and G82S of rage gene and diabetic retinopathy in Japanese type 2 diabetic patients. Intern. Med. 44: 417-421. http://dx.doi.org/10.2169/internalmedicine.44.417 PMid:15942086 Zhang HM, Chen LL, Wang L, Liao YF, et al. (2009). Association of 1704G/T and G82S polymorphisms in the receptor for advanced glycation end products gene with diabetic retinopathy in Chinese population. J. Endocrinol. Invest. 32: 258-262. PMid:19542745
2011
B. P. Kee, Lian, L. H., Lee, P. C., Lai, T. X., and Chua, K. H., Genetic data for 15 STR loci in a Kadazan-Dusun population from East Malaysia, vol. 10, pp. 739-743, 2011.
Bellwood P (2007). Prehistory of the Indo-Malaysian Archipelago. ANU E Press, Australia. Blessmann M, Kaifi JT, Schurr PG, Cihan A, et al. (2008). Short tandem repeat polymorphism in exon 4 of esophageal cancer related gene 2 predicts relapse of oral squamous cell carcinoma. Oral Oncol. 44: 143-147. doi:10.1016/j.oraloncology.2007.01.013 PMid:17418617 Calafell F, Shuster A, Speed WC, Kidd JR, et al. (1998). Short tandem repeat polymorphism evolution in humans. Eur. J. Hum. Genet. 6: 38-49. doi:10.1038/sj.ejhg.5200151 PMid:9781013 Divine AM, Edlund H and Allen M (2010). Forensic analysis of autosomal STR markers using pyrosequencing. Forensic Sci. Int-Gen. 4: 122-129. Lewis CM Jr (2010). Hierarchical modeling of genome-wide short tandem repeat (STR) markers infers native American prehistory. Am. J. Phys. Anthropol. 141: 281-289. PMid:19672848 Schneider S, Roessli D and Excoffier L (2000). Arlequin: A Software for Population Genetics Data Analysis. Ver. 2.000. Genetics and Biometry Laboratory, Department of Anthropology, University of Geneva, Geneva. Tereba A (1999). Tools for Analysis of Population Statistics. Profiles in DNA 2: 14-16.