Publications
Found 148 results
Filters: Author is Y. Wang [Clear All Filters]
“Genetic diversity and population structure of wild Dipsacus asperoides in China as indicated by ISSR markers”, vol. 13, pp. 6340-6349, 2014.
, “Genetic variants of the endothelial NO synthase gene (eNOS) may confer increased risk of sporadic congenital heart disease”, vol. 13, pp. 3805-3811, 2014.
, “Genome-wide survey and phylogenetic analysis on subunit sequences of eukaryotic DNA polymerase delta”, vol. 13, pp. 9558-9568, 2014.
, “Glucagon-induced angiogenesis and tumor growth through the HIF-1-VEGF-dependent pathway in hyperglycemic nude mice”, vol. 13, pp. 7173-7183, 2014.
, “Homing of chloromethylbenzoyl ammonia-labeled bone marrow mesenchymal stem cells in an immune-mediated bone marrow failure mouse model in vivo”, vol. 13, pp. 11-21, 2014.
, “Isolation and expression studies of the ERD15 gene involved in drought-stressed responses”, vol. 13, pp. 10852-10862, 2014.
, “Molecular characterization and expression pattern of an α-amylase gene (HcAmy) from the freshwater pearl mussel, Hyriopsis cumingii”, vol. 13, pp. 6653-6664, 2014.
, “Molecular cloning and expression analysis of the GNAS gene in pig and porcine fibroblast cells”, vol. 13, pp. 5463-5473, 2014.
, “A novel mutation of PAX6 identified in a Chinese twin family with congenital aniridia complicated with nystagmus”, vol. 13, pp. 8679-8685, 2014.
, “A novel NF1 frame-shift mutation (c.702_703delGT) in a Chinese family with neurofibromatosis type 1”, vol. 13, pp. 5395-5404, 2014.
, “Prevalence and risk factors of overweight and obesity among individuals over 40 years old in Luzhou city”, vol. 13, pp. 9262-9270, 2014.
, “Repair of cartilage defects in BMSCs via CDMP1 gene transfection”, vol. 13, pp. 291-301, 2014.
, “Role of inflammatory parameters in the susceptibility of cerebral thrombosis”, vol. 13, pp. 6350-6355, 2014.
, “S100A4 expression and prognosis of gastric cancer: a meta-analysis”, vol. 13, pp. 10398-10403, 2014.
, “Serum thyroid hormone reference intervals in the apparently healthy individuals of Zhengzhou area of China”, vol. 13, pp. 7275-7281, 2014.
, “Study of Hgp44 from Porphyromonas gingivalis on inducing HUVECs to secrete IL-6 and IL-8”, vol. 13, pp. 2208-2219, 2014.
, “Analysis of differentially expressed genes in various stages of Duchenne muscular dystrophy by using a network view”, vol. 12, pp. 4480-4488, 2013.
, “Analysis of fusion gene expression in prostate tumors by using single-end reads”, vol. 12, pp. 2886-2894, 2013.
, “Conservation genetics of Annamocarya sinensis (Dode) Leroy, an endangered endemic species”, vol. 12, pp. 3965-3974, 2013.
, “Construction of a cDNA library of the Chinese wild Vitis amurensis under cold stress and analysis of potential hardiness-related expressed sequence tags”, vol. 12, pp. 1182-1193, 2013.
, Cheng H, Cai HB and Huang HS (2008). Construction of full-length cDNA library in rubber tree under cold stress. Chin. J. Trop. Crops 29: 410-414.
da Silva FG, Iandolino A, Al-Kayal F, Bohlmann MC, et al. (2005). Characterizing the grape transcriptome. Analysis of expressed sequence tags from multiple Vitis species and development of a compendium of gene expression during berry development. Plant Physiol. 139: 574-597.
http://dx.doi.org/10.1104/pp.105.065748
PMid:16219919 PMCid:1255978
Dalbó MA, Ye GN, Weeden NF, Wilcox WF, et al. (2001). Marker-assisted selection for powdery mildew resistance in grapes. J. Am. Soc. Hortic. Sci. 126: 83-89.
Denekamp M and Smeekens SC (2003). Integration of wounding and osmotic stress signals determines the expression of the AtMYB102 transcription factor gene. Plant Physiol. 132: 1415-1423.
http://dx.doi.org/10.1104/pp.102.019273
PMid:12857823 PMCid:167081
Dhanaraj AL, Slovin JP and Rowland LJ (2004). Analysis of gene expression associated with cold acclimation in blueberry floral buds using expressed sequence tags. Plant Sci. 166: 863-872.
http://dx.doi.org/10.1016/j.plantsci.2003.11.013
Fowler S and Thomashow MF (2002). Arabidopsis transcriptome profiling indicates that multiple regulatory pathways are activated during cold acclimation in addition to the CBF cold response pathway. Plant Cell 14: 1675-1690.
http://dx.doi.org/10.1105/tpc.003483
PMid:12172015 PMCid:151458
He PC and Luo GG (1994). Grape Science. China Agriculture Press, Beijing.
He PC, Wang YJ, Wang GY, Ren ZB, et al. (1991). The studies on the disease resistance of Chinese wild Vitis species. Sci. Agric. Sin. 24: 50-56.
Jia DS, Mao XG, Wu RL, Zhang XK, et al. (2008). Cloning and expression of transcription factor TaMyb2s in wheat. Acta Agronom. Sin. 34: 1323-1329.
http://dx.doi.org/10.3724/SP.J.1006.2008.01323
Kariola T, Brader G, Helenius E, Li J, et al. (2006). EARLY RESPONSIVE TO DEHYDRATION 15, a negative regulator of abscisic acid responses in Arabidopsis. Plant Physiol. 142: 1559-1573.
http://dx.doi.org/10.1104/pp.106.086223
PMid:17056758 PMCid:1676049
Kiyosue T, Abe H, Yamaguchi-Shinozaki K and Shinozaki K (1998). ERD6, a cDNA clone for an early dehydration-induced gene of Arabidopsis, encodes a putative sugar transporter. Biochim. Biophys. Acta 1370: 187-191.
http://dx.doi.org/10.1016/S0005-2736(98)00007-8
Maestrini P, Cavallini A, Rizzo M, Giordani T, et al. (2009). Isolation and expression analysis of low temperature-induced genes in white poplar (Populus alba). J. Plant Physiol. 166: 1544-1556.
http://dx.doi.org/10.1016/j.jplph.2009.03.014
PMid:19464753
Nagaoka S and Takano T (2003). Salt tolerance-related protein STO binds to a Myb transcription factor homologue and confers salt tolerance in Arabidopsis. J Exp. Bot. 54: 2231-2237.
http://dx.doi.org/10.1093/jxb/erg241
PMid:12909688
Nasser W, de Tapia M and Burkard G (1990). Maize pathogenesis-related proteins: characterization and cellular distribution of 1,3-β-glucanases and chitinases induced by brome mosaic virus infection or mercuric chloride treatment. Physiol. Mol. Plant Pathol. 36: 1-14.
http://dx.doi.org/10.1016/0885-5765(90)90087-E
Nogueira FTS, De Rosa V Jr, Menossi M, Ulian EC, et al. (2003). RNA expression profiles and data mining of sugarcane response to low temperature. Plant Physiol. 132: 1811-1824.
http://dx.doi.org/10.1104/pp.102.017483
PMid:12913139 PMCid:181268
Shen DX (1985). Fruit Trees Breeding. China Agriculture Press, Beijing.
Shi JL, Wang YJ, Zhu ZG and Zhang CH (2010). The EST analysis of a suppressive subtraction cDNA library of Chinese wild Vitis pseudoreticulata inoculated with Uncinula necator. Agric. Sci. China 9: 233-241.
http://dx.doi.org/10.1016/S1671-2927(09)60088-2
Su CF, Wang YC, Hsieh TH, Lu CA, et al. (2010). A novel MYBS3-dependent pathway confers cold tolerance in rice. Plant Physiol. 153: 145-158.
http://dx.doi.org/10.1104/pp.110.153015
PMid:20130099 PMCid:2862423
Todgham AE, Hoaglund EA and Hofmann GE (2007). Is cold the new hot? Elevated ubiquitin-conjugated protein levels in tissues of Antarctic fish as evidence for cold-denaturation of proteins in vivo. J. Comp. Physiol. B 177: 857-866.
http://dx.doi.org/10.1007/s00360-007-0183-2
PMid:17710411
Wang GL and Guo ZF (2003). The progress of researches on molecular mechanism of chilling tolerance in plants. Chin. Bull. Bot. 20: 671-679.
Xu Y, Zhu Z, Xiao Y and Wang Y (2009). Construction of a cDNA library of Vitis pseudoreticulata native to China inoculated with Uncinula necator and the analysis of potential defence-related expressed sequence tags (ESTs). S. Afr. J. Enol. Vitic. 30: 65-71.
Ying SY (2004). Complementary DNA libraries: an overview. Mol. Biotechnol. 27: 245-252.
http://dx.doi.org/10.1385/MB:27:3:245
Zhang JJ, Wang YJ and Wang XP (2003). An improved method for rapidly extracting total RNA from Vitis. J. Fruit Sci. 20: 178-181.
Zhang JW, Wang YJ, Zhu ZG, Wang PY, et al. (2009). Construction and preliminary analysis of the SSH library of Chinese wild Vitis pseudoretioulata resistance to downy mildew. Sci. Agric. Sin. 42: 960-966.
Zhu Q, Maher EA, Masoud S, Dixon RA, et al. (1994). Enhanced protection against fungal attack by constitutive co-expression of chitinase and glucanase genes in transgenic tobacco. Nat. Biotechnol. 12: 807-812.
http://dx.doi.org/10.1038/nbt0894-807
Zhu J, Dong CH and Zhu JK (2007). Interplay between cold-responsive gene regulation, metabolism and RNA processing during plant cold acclimation. Curr. Opin. Plant Biol. 10: 290-295.
http://dx.doi.org/10.1016/j.pbi.2007.04.010
PMid:17468037
“Development and characterization of new microsatellites for walnut (Juglans regia)”, vol. 12, pp. 4723-4734, 2013.
, “Differential expression of L-FABP and L-BABP between fat and lean chickens”, vol. 12, pp. 4192-4206, 2013.
, “Differentiation of neonatal dorsal root ganglion-derived neural stem cells into oligodendrocytes after intrathecal transplantation into a cauda equina lesion model”, vol. 12, pp. 6092-6102, 2013.
, “Genetic diversity in wild Dipsacus chinensis populations from China based on ISSR markers”, vol. 12, pp. 1205-1213, 2013.
, Ai TM, Chen HB, Cheng ZM and Wang YS (1990). A revision of genus Dipsacus in China. Bull. Bot. Res. 10: 1-18.
Chen DX, Li LY, Peng R and Qu XY (2006). Genetic diversity of Coptis chinensis germplasm based on ISSR analysis. Zhongguo Zhong Yao Za Zhi 31: 1937-1940.
PMid:17348182
Chen H and Ai T (1997). Medicinal plant resources of Dipsacaceae in China. Zhongguo Zhong Yao Za Zhi 22: 649-52, 702.
Editorial Committee of Flora of China & Chinese Academy of Sciences (1986). Flora Reipublicae Popularis Sinicae. Tomus 73-1. Science Press, Beijing.
Feng XF, Ai TM and Xu HN (2000). A study on pollen morphology of Dipsacus. Zhongguo Zhong Yao Za Zhi 25: 394-401.
PMid:12515219
Hamrick JL and Godt MJ (1990). Allozyme Diversity in Plant Species. In: Plant Population Genetics, Breeding and Genetic Resources (Brown AHD, Clegg MT, Kahler AL and Weir BS, eds.). Sinauer Associates Inc., Sunderland, 43-63.
Institutum Botanicum Beijingense Academiae Sinicae Edita (1975). Iconographia Cormophytorum Sinicorum. Tomus IV: 340. Science Press, Beijing.
Li JM, Jin ZX and Zhong ZC (2004). RAPD analysis of genetic diversity of Sargentodoxa cuneam at different altitude and the influence of environmental factors. Acta Ecol. Sin. 24: 567-573.
Nei M (1973). Analysis of gene diversity in subdivided populations. Proc. Natl. Acad. Sci. U. S. A. 70: 3321-3323.
http://dx.doi.org/10.1073/pnas.70.12.3321
PMid:4519626 PMCid:427228
O'Hanlon PC, Peakall R and Briese DT (2000). A review of new PCR-based genetic markers and their utility to weed ecology. Weed Res. 40: 239-254.
http://dx.doi.org/10.1046/j.1365-3180.2000.00191.x
Sagnard F, Barberot C and Fady D (2002). Structure of genetic diversity in Abies alba Mil1. from southwestern Alps: multivariate analysis of adaptive and nonadaptive traits for conservation in France. Forest Ecol. Manag. 157: 175-189.
http://dx.doi.org/10.1016/S0378-1127(00)00664-2
Senapati SK, Aparajita S and Rout GR (2011). Identification of species-diagnostic inter simple sequence repeat markers for ten Phyllanthus species. Z. Naturforsch. C. 66: 167-172.
http://dx.doi.org/10.5560/ZNC.2011.66c0167
PMid:21630591
Shen J, Ding XY, Liu DL, Ding G, et al. (2006). Intersimple sequence repeats (ISSR) molecular fingerprinting markers for authenticating populations of Dendrobium officinale Kimura et Migo. Biol. Pharm. Bull. 29: 420-422.
http://dx.doi.org/10.1248/bpb.29.420
PMid:16508138
Solhrig OT (1991). From Genes to Ecosystems: A Research Agenda for Biodiversity. International Union of Biological Sciences, Paris.
Song Z, Li X, Wang H and Wang J (2010). Genetic diversity and population structure of Salvia miltiorrhiza Bge in China revealed by ISSR and SRAP. Genetica 138: 241-249.
http://dx.doi.org/10.1007/s10709-009-9416-5
PMid:19844793
Wright S (1951). The genetic structure of populations. Ann. Eugen. J. 15: 323-354.
http://dx.doi.org/10.1111/j.1469-1809.1949.tb02451.x
Yang S, Chen C, Zhao Y, Xi W, et al. (2011). Association between chemical and genetic variation of wild and cultivated populations of Scrophularia ningpoensis Hemsl. Planta Med. 77: 865-871.
http://dx.doi.org/10.1055/s-0030-1250601
PMid:21157679
Yu M, Ma B, Luo X, Zheng L, et al. (2008). Molecular diversity of Auricularia polytricha revealed by inter-simple sequence repeat and sequence-related amplified polymorphism markers. Curr. Microbiol. 56: 240-245.
http://dx.doi.org/10.1007/s00284-007-9067-7
PMid:18180993
Zhang F, Lv Y, Dong H and Guo S (2010). Analysis of genetic stability through intersimple sequence repeats molecular markers in micropropagated plantlets of Anoectochilus formosanus Hayata, a medicinal plant. Biol. Pharm. Bull. 33: 384-388.
http://dx.doi.org/10.1248/bpb.33.384
PMid:20190397
Zietkiewicz E, Rafalski A and Labuda D (1994). Genome fingerprinting by simple sequence repeat (SSR)-anchored polymerase chain reaction amplification. Genomics 20: 176-183.
http://dx.doi.org/10.1006/geno.1994.1151
PMid:8020964
“Gαq gene promoter polymorphisms and rheumatoid arthritis in the Han Chinese population are not associated”, vol. 12, pp. 1841-1848, 2013.
, “Mitotic and meiotic behavior of rye chromosomes in wheat - Psathyrostachys huashanica amphiploid x triticale progeny”, vol. 12, pp. 2537-2548, 2013.
, “Physical properties of gastrointestinal stromal tumors based on atomic force microscope analysis”, vol. 12, pp. 5774-5785, 2013.
, “Single-nucleotide polymorphism of the pri-miR-34b/c gene is not associated with susceptibility to congenital heart disease in the Han Chinese population”, vol. 12, pp. 2937-2944, 2013.
, “Survey of simple sequence repeats in woodland strawberry (Fragaria vesca)”, vol. 12, pp. 2637-2651, 2013.
, “Association of AFLP and SCAR markers with common leafspot resistance in autotetraploid alfalfa (Medicago sativa)”, vol. 11, pp. 606-616, 2012.
, Barloy D, Lemoine J, Abelard P and Tanguy AM (2007). Marker-assisted pyramiding of two cereal cyst nematode resistance genes from Aegilops variabilis in wheat. Mol. Breed. 20: 31-40.
http://dx.doi.org/10.1007/s11032-006-9070-x
Bassam BJ, Caetano-Anolles G and Gresshoff PM (1991). Fast and sensitive silver staining of DNA in polyacrylamide gels. Anal. Biochem. 196: 80-83.
http://dx.doi.org/10.1016/0003-2697(91)90120-I
Benchimol LL, de Souza CL and de Souza AP (2005). Microsatellite assisted backcross selection in maize. Genet. Mol. Biol. 28: 789-797.
http://dx.doi.org/10.1590/S1415-47572005000500022
Brouwer DJ, Duke SH and Osborn TC (2000). Mapping genetic factors associated with winter hardiness, fail growth, and freezing injury in autotetraploid alfalfa. Crop Sci. 40: 1387-1396.
http://dx.doi.org/10.2135/cropsci2000.4051387x
Busbice TH (1968). Effects of inbreeding on fertility in Medicago sativa L. 8: 231-234.
Doyle JF and Doyle JL (1990). A rapid DNA isolation procedure for small quantities of fresh leaf tissue. Focus 12: 13-15.
Fang M, Qinghua Y, Derong S and Jianming G (2008). Selection and validation of ISSR markers of common leaf spot disease resistance-related gene in tetraploid alfalfa. Plant Protection 34: 46-50.
Goodwin SB, Hu X and Shaner G (1998). An AFLP Marker Linked to a Gene for Resistance to Septoria tritici Blotch in Wheat. Proc. 9th Int. Wheat Genet. Symp. University Extension Press, University of Saskatchewan, Saskatoon, 108-110.
Hanson CH, Loper GM, Kohler GD and Bickoff EM (1965). Variation in Coumestrol Content of Alfalfa as Related to Location, Variety, Cutting, Year, Stage of Growth and Disease. U.S. Dep. Agric. Tech. Bull. No. 1333.
Hartl L, Mohler V, Zeller FJ and Hsam SLK (1999). Identification of AFLP markers closely linked to the powdery mildew resistance genes Pm1c and Pm4a in common wheat (Triticum aestivum L.). Genome 42: 322-329.
Irwin JAG, Aitken KS, Mackie JM and Musial JM (2006). Genetic improvement of lucerne for anthracnose (Colletotrichum trifolii) resistance. Australas. Plant Path. 35: 573-579.
http://dx.doi.org/10.1071/AP06059
Konieczny A and Ausubel FM (1993). A procedure for mapping Arabidopsis mutations using co-dominant ecotype-specific PCR-based markers. Plant J. 4: 403-410.
http://dx.doi.org/10.1046/j.1365-313X.1993.04020403.x
PMid:8106085
Mackie JM, Musial JM, Armour DJ, Phan HT, et al. (2007). Identification of QTL for reaction to three races of Colletotrichum trifolii and further analysis of inheritance of resistance in autotetraploid lucerne. Theor. Appl. Genet. 114: 1417-1426.
http://dx.doi.org/10.1007/s00122-007-0527-z
PMid:17356866
Michelmore RW, Paran I and Kesseli RV (1991). Identification of markers linked to disease-resistance genes by bulked segregant analysis: a rapid method to detect markers in specific genomic regions by using segregating populations. Proc. Natl. Acad. Sci. U. S. A. 88: 9828-9832.
http://dx.doi.org/10.1073/pnas.88.21.9828
Morgan WC and Parbery DG (1977). Effects of Pseudopeziza leaf spot disease on growth and yield in lucerne. Aust. J. Agric. Res. 28: 1029-1040.
http://dx.doi.org/10.1071/AR9771029
Morgan WC and Parbery DG (1980). Depressed fodder quality and increased oestrogenic activity of lucerne infected with Pseudopeziza medicaginis. Aust. J. Agric. Res. 31: 1103-1110.
http://dx.doi.org/10.1071/AR9801103
Musial JM, Aitken KS, Mackie JM and Irwin JAG (2005). A genetic linkage map in autotetraploid lucern adapted to northern Australia, and use of the map to identify DNA markers linked to resistance to Phytophthora medicaginis. Aust. J. Agric. Res. 56: 333-344.
http://dx.doi.org/10.1071/AR04317
Musial JM, Lowe KF, Mackie JM and Aitken KS (2006). DNA markers linked to yield, yield components, and morphological traits in autotetraploid lucerne (Medicago sativa L.). Aust. J. Agric. Res. 57: 801-810.
http://dx.doi.org/10.1071/AR05390
Musial JM, Mackie JM, Armour DJ, Phan HT, et al. (2007). Identification of QTL for resistance and susceptibility to Stagonospora meliloti in autotetraploid lucerne. Theor. Appl. Genet. 114: 1427-1435.
http://dx.doi.org/10.1007/s00122-007-0528-y
PMid:17356865
Nocente F, Gazza L and Pasquini M (2007). Evaluation of leaf rust resistance genes Lr1, Lr9, Lr24, Lr47 and their introgression into common wheat cultivars by marker-assisted selection. Euphytica 155: 329-336.
http://dx.doi.org/10.1007/s10681-006-9334-x
Obert DE, Skinner DZ and Stuteville DL (2000). Association of AFLP markers with downy mildew resistance in autotetraploid alfalfa. Mol. Breed. 6: 287-294.
http://dx.doi.org/10.1023/A:1009672008702
Paran I and Michelmore RW (1993). Development of reliable PCR-based markers linked to downey mildew resistance genes in lettuce. Theor. Appl. Genet. 85: 985-993.
http://dx.doi.org/10.1007/BF00215038
Park S, Yoon MK, Lee SS and Kim KT (2007). Development of uniform double-crossed varieties using nearisogenic lines produced by marker-assisted selection in radish (Raphanus sativus L.). HortScience 42: 856-885.
Pedersen MW and Barnes DK (1965). Inheritance of downy mildew resistance in alfalfa. Crop Sci. 5: 4-5.
http://dx.doi.org/10.2135/cropsci1965.0011183X000500010002x
Yuan QH and Zhang WS (2000). Screening for resistance to common leaf spot in alfalfa germplasms. Acta Pratacul Turae Sin. 12: 52-58.
Yuan QH and Zhang WS (2003). Screening for genetic resistance of alfalfa to Pseudopeziza medicaginis by inoculation of leaf tissue and field evaluation of the plants. Acta Agrestia Sin. 11: 206-209.
Yuan QH, Zhang WS and Min L (2001). Study on excised leaf tissue inoculation of common leaf spot in alfalfa. Acta Agrestia Sin. 9: 21-24.
Raymond WF (1969). The nutritive value of forage crops. Adv. Agron. 21: 1-108.
http://dx.doi.org/10.1016/S0065-2113(08)60095-4
Skinner DZ and Stuteville DL (1985). Genetics of host-parasite interactions between alfalfa and Peronospora trifoliorum. Phytopathology 75: 119-121.
http://dx.doi.org/10.1094/Phyto-75-119
Skinner DZ, Loughin T and Obert DE (2000). Segregation and conditional probability association of molecular markers with traits in autotetraploid alfalfa. Mol. Breed. 6: 295-306.
http://dx.doi.org/10.1023/A:1009617725541
Vos Pieter, Hogers R, Bleeker M, Reijans M, et al. (1995). AFLP: a new technique for DNA fingerprinting. Nucleic Acids Res. 23: 4407-4414.
http://dx.doi.org/10.1093/nar/23.21.4407
PMid:7501463 PMCid:307397
Zhang J, Li X, Jiang G, Xu Y, et al. (2006). Pyramiding of Xa7 and Xa21 for the improvement of disease resistance to bacterial blight in hybrid rice. Plant Breed. 125: 600-605.
http://dx.doi.org/10.1111/j.1439-0523.2006.01281.x
“Association of the CD36 gene with impaired glucose tolerance, impaired fasting glucose, type-2 diabetes, and lipid metabolism in essential hypertensive patients”, vol. 11, pp. 2163-2170, 2012.
,
Aitman TJ, Glazier AM, Wallace CA, Cooper LD, et al. (1999). Identification of Cd36 (Fat) as an insulin-resistance gene causing defective fatty acid and glucose metabolism in hypertensive rats. Nat. Genet. 21: 76-83.
http://dx.doi.org/10.1038/5013
PMid:9916795
Almgren T, Wilhelmsen L, Samuelsson O, Himmelmann A, et al. (2007). Diabetes in treated hypertension is common and carries a high cardiovascular risk: results from a 28-year follow-up. J. Hypertens. 25: 1311-1317.
http://dx.doi.org/10.1097/HJH.0b013e328122dd58
PMid:17563546
Bokor S, Legry V, Meirhaeghe A, Ruiz JR, et al. (2010). Single-nucleotide polymorphism of CD36 locus and obesity in European adolescents. Obesity 18: 1398-1403.
http://dx.doi.org/10.1038/oby.2009.412
PMid:19893500
Coburn CT, Knapp FF Jr, Febbraio M, Beets AL, et al. (2000). Defective uptake and utilization of long chain fatty acids in muscle and adipose tissues of CD36 knockout mice. J. Biol. Chem. 275: 32523-32529.
http://dx.doi.org/10.1074/jbc.M003826200
PMid:10913136
Gurnell M, Savage DB, Chatterjee VK and O'Rahilly S (2003). The metabolic syndrome: peroxisome proliferator-activated receptor gamma and its therapeutic modulation. J. Clin. Endocrinol. Metab. 88: 2412-2421.
http://dx.doi.org/10.1210/jc.2003-030435
PMid:12788836
Hajri T and Abumrad NA (2002). Fatty acid transport across membranes: relevance to nutrition and metabolic pathology. Annu. Rev. Nutr. 22: 383-415.
http://dx.doi.org/10.1146/annurev.nutr.22.020402.130846
PMid:12055351
Han XX, Chabowski A, Tandon NN, Calles-Escandon J, et al. (2007). Metabolic challenges reveal impaired fatty acid metabolism and translocation of FAT/CD36 but not FABPpm in obese Zucker rat muscle. Am. J. Physiol. Endocrinol. Metab. 293: E566-E575.
http://dx.doi.org/10.1152/ajpendo.00106.2007
PMid:17519284
Harasim E, Kalinowska A, Chabowski A and Stepek T (2008). The role of fatty-acid transport proteins (FAT/CD36, FABPpm, FATP) in lipid metabolism in skeletal muscles. Postepy Hig. Med. Dosw. 62: 433-441.
Lepretre F, Vasseur F, Vaxillaire M, Scherer PE, et al. (2004). A CD36 nonsense mutation associated with insulin resistance and familial type 2 diabetes. Hum. Mutat. 24: 104.
http://dx.doi.org/10.1002/humu.9256
PMid:15221799
Love-Gregory L, Sherva R, Sun L, Wasson J, et al. (2008). Variants in the CD36 gene associate with the metabolic syndrome and high-density lipoprotein cholesterol. Hum. Mol. Genet. 17: 1695-1704.
http://dx.doi.org/10.1093/hmg/ddn060
PMid:18305138 PMCid:2655228
Ma X, Bacci S, Mlynarski W, Gottardo L, et al. (2004). A common haplotype at the CD36 locus is associated with high free fatty acid levels and increased cardiovascular risk in Caucasians. Hum. Mol. Genet. 13: 2197-2205.
http://dx.doi.org/10.1093/hmg/ddh233
PMid:15282206
Noel SE, Lai CQ, Mattei J, Parnell LD, et al. (2010). Variants of the CD36 gene and metabolic syndrome in Boston Puerto Rican adults. Atherosclerosis 211: 210-215.
http://dx.doi.org/10.1016/j.atherosclerosis.2010.02.009
PMid:20223461 PMCid:2923842
Osei K, Rhinesmith S, Gaillard T and Schuster D (2004). Impaired insulin sensitivity, insulin secretion, and glucose effectiveness predict future development of impaired glucose tolerance and type 2 diabetes in pre-diabetic African Americans: implications for primary diabetes prevention. Diabetes Care 27: 1439-1446.
http://dx.doi.org/10.2337/diacare.27.6.1439
PMid:15161801
Pontiroli AE, Pizzocri P, Caumo A, Perseghin G, et al. (2004). Evaluation of insulin release and insulin sensitivity through oral glucose tolerance test: differences between NGT, IFG, IGT, and type 2 diabetes mellitus. A cross-sectional and follow-up study. Acta Diabetol. 41: 70-76.
http://dx.doi.org/10.1007/s00592-004-0147-x
PMid:15224208
Pravenec M and Kurtz TW (2002). Genetics of Cd36 and the hypertension metabolic syndrome. Semin. Nephrol. 22: 148-153.
http://dx.doi.org/10.1053/snep.2002.2002.30218
PMid:11891508
Susztak K, Ciccone E, McCue P, Sharma K, et al. (2005). Multiple metabolic hits converge on CD36 as novel mediator of tubular epithelial apoptosis in diabetic nephropathy. PLoS Med. 2: e45.
http://dx.doi.org/10.1371/journal.pmed.0020045
PMid:15737001 PMCid:549593
Wang X and Snieder H (2010). Genome-wide association studies and beyond: what's next in blood pressure genetics? Hypertension 56: 1035-1037.
http://dx.doi.org/10.1161/HYPERTENSIONAHA.110.157214
PMid:21060002
Yamauchi T, Hara K, Maeda S, Yasuda K, et al. (2010). A genome-wide association study in the Japanese population identifies susceptibility loci for type 2 diabetes at UBE2E2 and C2CD4A-C2CD4B. Nat. Genet. 42: 864-868.
http://dx.doi.org/10.1038/ng.660
PMid:20818381
Zhou X, Wang Y, Zhang Y, Gao P, et al. (2010). Association of CAPN10 gene with insulin sensitivity, glucose tolerance and renal function in essential hypertensive patients. Clin. Chim. Acta 411: 1126-1131.
http://dx.doi.org/10.1016/j.cca.2010.04.012
PMid:20406624
“Genetic diversity and phylogeny of rhizobia isolated from Caragana microphylla growing in desert soil in Ningxia, China”, vol. 11, pp. 2683-2693, 2012.
,
Acinas SG, Klepac-Ceraj V, Hunt DE, Pharino C, et al. (2004). Fine-scale phylogenetic architecture of a complex bacterial community. Nature 430: 551-554.
http://dx.doi.org/10.1038/nature02649
PMid:15282603
Allen EK (1981). The Leguminosae, A Source Book of Characteristics, Uses, and Nodulation. University of Wisconsin Press.
Binde DR, Menna P, Bangel EV, Barcellos FG, et al. (2009). rep-PCR fingerprinting and taxonomy based on the sequencing of the 16S rRNA gene of 54 elite commercial rhizobial strains. Appl. Microbiol. Biotechnol. 83: 897-908.
http://dx.doi.org/10.1007/s00253-009-1927-6
PMid:19290521
Chen WF, Guan SH, Zhao CT, Yan XR, et al. (2008). Different Mesorhizobium species associated with Caragana carry similar symbiotic genes and have common host ranges. FEMS Microbiol. Lett. 283: 203-209.
http://dx.doi.org/10.1111/j.1574-6968.2008.01167.x
PMid:18422620
Chen WM, Moulin L, Bontemps C, Vandamme P, et al. (2003). Legume symbiotic nitrogen fixation by beta-proteobacteria is widespread in nature. J. Bacteriol. 185: 7266-7272.
http://dx.doi.org/10.1128/JB.185.24.7266-7272.2003
PMid:14645288 PMCid:296247
Cox MM (2003). The bacterial RecA protein as a motor protein. Annu. Rev. Microbiol. 57: 551-577.
http://dx.doi.org/10.1146/annurev.micro.57.030502.090953
PMid:14527291
Duzan HM, Zhou X, Souleimanov A and Smith DL (2004). Perception of Bradyrhizobium japonicum Nod factor by soybean [Glycine max (L.) Merr.] root hairs under abiotic stress conditions. J. Exp. Bot. 55: 2641-2646.
http://dx.doi.org/10.1093/jxb/erh265
PMid:15361528
Eardly BD, Wang F-S and Berkum P (1996). Corresponding 16S rRNA gene segments in Rhizobiaceae and Aeromonas yield discordant phylogenies. Plant Soil 186: 69-74.
http://dx.doi.org/10.1007/BF00035057
Gao JL, Turner SL and Kan FL (2004). Mesorhizobium septentrionale sp. nov. and Mesorhizobium temperatum sp. nov., isolated from Astragalus adsurgens growing in the northern regions of China. Int. J. Syst. Evol. Microbiol. 54: 2003- 2012.
http://dx.doi.org/10.1099/ijs.0.02840-0
PMid:15545425
Gao LF, Hu ZA and Wang HX (2002). Genetic diversity of rhizobia isolated from Caragana intermedia in Maowusu sandland, north of China. Lett. Appl. Microbiol. 35: 347-352.
http://dx.doi.org/10.1046/j.1472-765X.2002.01192.x
PMid:12358701
Gaunt MW, Turner SL, Rigottier-Gois L, Lloyd-Macgilp SA, et al. (2001). Phylogenies of atpD and recA support the small subunit rRNA-based classification of rhizobia. Int. J. Syst. Evol. Microbiol. 51: 2037-2048.
http://dx.doi.org/10.1099/00207713-51-6-2037
PMid:11760945
Ghosh W and Roy P (2006). Mesorhizobium thiogangeticum sp. nov., a novel sulfur-oxidizing chemolithoautotroph from rhizosphere soil of an Indian tropical leguminous plant. Int. J. Syst. Evol. Microbiol. 56: 91-97.
http://dx.doi.org/10.1099/ijs.0.63967-0
PMid:16403872
Laguerre G, Allard MR, Revoy F and Amarger N (1994). Rapid identification of rhizobia by restriction fragment length polymorphism analysis of PCR-amplified 16S rRNA genes. Appl. Environ. Microbiol. 60: 56-63.
PMid:16349165 PMCid:201269
Lloyd AT and Sharp PM (1993). Evolution of the recA gene and the molecular phylogeny of bacteria. J. Mol. Evol. 37: 399-407.
http://dx.doi.org/10.1007/BF00178869
PMid:8308907
Lu YL, Chen WF, Wang ET, Guan SH, et al. (2009). Genetic diversity and biogeography of rhizobia associated with Caragana species in three ecological regions of China. Syst. Appl. Microbiol. 32: 351-361.
http://dx.doi.org/10.1016/j.syapm.2008.10.004
PMid:19195810
Martens M, Delaere M, Coopman R, De Vos P, et al. (2007). Multilocus sequence analysis of Ensifer and related taxa. Int. J. Syst. Evol. Microbiol. 57: 489-503.
http://dx.doi.org/10.1099/ijs.0.64344-0
PMid:17329774
Martens M, Dawyndt P, Coopman R, Gillis M, et al. (2008). Advantages of multilocus sequence analysis for taxonomic studies: a case study using 10 housekeeping genes in the genus Ensifer (including former Sinorhizobium). Int. J. Syst. Evol. Microbiol. 58: 200-214.
http://dx.doi.org/10.1099/ijs.0.65392-0
PMid:18175710
Menna P, Hungria M, Barcellos FG, Bangel EV, et al. (2006). Molecular phylogeny based on the 16S rRNA gene of elite rhizobial strains used in Brazilian commercial inoculants. Syst. Appl. Microbiol. 29: 315-332.
http://dx.doi.org/10.1016/j.syapm.2005.12.002
PMid:16442259
Mnasri B, Mrabet M, Laguerre G, Aouani ME, et al. (2007). Salt-tolerant rhizobia isolated from a Tunisian oasis that are highly effective for symbiotic N2-fixation with Phaseolus vulgaris constitute a novel biovar (bv. mediterranense) of Sinorhizobium meliloti. Arch. Microbiol. 187: 79-85.
http://dx.doi.org/10.1007/s00203-006-0173-x
PMid:17019605
Muresu R, Polone E, Sulas L, Baldan B, et al. (2008). Coexistence of predominantly nonculturable rhizobia with diverse, endophytic bacterial taxa within nodules of wild legumes. FEMS Microbiol. Ecol. 63: 383-400.
http://dx.doi.org/10.1111/j.1574-6941.2007.00424.x
PMid:18194345
Naser SM, Thompson FL, Hoste B, Gevers D, et al. (2005). Application of multilocus sequence analysis (MLSA) for rapid identification of Enterococcus species based on rpoA and pheS genes. Microbiology 151: 2141-2150.
http://dx.doi.org/10.1099/mic.0.27840-0
PMid:16000705
Qian J, Kwon SW and Parker MA (2003). rRNA and nifD phylogeny of Bradyrhizobium from sites across the Pacific Basin. FEMS Microbiol. Lett. 219: 159-165.
http://dx.doi.org/10.1016/S0378-1097(03)00043-0
Stackebrandt E and Goebel BM (1994). Taxonomic note: a place for DNA-DNA reassociation and 16S rRNA sequence analysis in the present species definition in bacteriology. Int. J. Syst. Bacteriol. 44: 846-849.
http://dx.doi.org/10.1099/00207713-44-4-846
Szeto WW, Zimmerman JL, Sundaresan V and Ausubel FM (1984). A Rhizobium meliloti symbiotic regulatory gene. Cell 36: 1035-1043.
http://dx.doi.org/10.1016/0092-8674(84)90053-9
Tamura K, Dudley J, Nei M and Kumar S (2007). MEGA4: Molecular Evolutionary Genetics Analysis (MEGA) software version 4.0. Mol. Biol. Evol. 24: 1596-1599.
http://dx.doi.org/10.1093/molbev/msm092
PMid:17488738
Tan ZY, Wang ET, Peng GX, Zhu ME, et al. (1999). Characterization of bacteria isolated from wild legumes in the north-western regions of China. Int. J. Syst. Bacteriol. 49 Pt 4: 1457-1469.
http://dx.doi.org/10.1099/00207713-49-4-1457
PMid:10555327
Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, et al. (1997). The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res. 25: 4876-4882.
http://dx.doi.org/10.1093/nar/25.24.4876
PMid:9396791 PMCid:147148
van Berkum P, Terefework Z, Paulin L, Suomalainen S, et al. (2003). Discordant phylogenies within the rrn loci of Rhizobia. J. Bacteriol. 185: 2988-2998.
http://dx.doi.org/10.1128/JB.185.10.2988-2998.2003
PMid:12730157 PMCid:154066
Vauterin L and Vauterin P (1992). Computer-aided objective comparison of electrophoresis patterns for grouping and identification of microorganisms. Eur. Microbiol. 1: 37-41.
Vincent J (1970). A Manual for the Practical Study of the Root-Nodule Bacteria. International Biological Programme, Londres.
Vinuesa P, Silva C, Lorite MJ, Izaguirre-Mayoral ML, et al. (2005). Molecular systematics of rhizobia based on maximum likelihood and Bayesian phylogenies inferred from rrs, atpD, recA and nifH sequences, and their use in the classification of Sesbania microsymbionts from Venezuelan wetlands. Syst. Appl. Microbiol. 28: 702-716.
http://dx.doi.org/10.1016/j.syapm.2005.05.007
PMid:16261860
Wang FQ, Wang ET, Liu J, Chen Q, et al. (2007). Mesorhizobium albiziae sp. nov., a novel bacterium that nodulates Albizia kalkora in a subtropical region of China. Int. J. Syst. Evol. Microbiol. 57: 1192-1199.
http://dx.doi.org/10.1099/ijs.0.64363-0
PMid:17551028
Wang LL, Wang ET, Liu J, Li Y, et al. (2006). Endophytic occupation of root nodules and roots of Melilotus dentatus by Agrobacterium tumefaciens. Microb. Ecol. 52: 436-443.
http://dx.doi.org/10.1007/s00248-006-9116-y
PMid:16897296
Wei GH, Zhang ZX, Chen C, Chen WM, et al. (2008). Phenotypic and genetic diversity of rhizobia isolated from nodules of the legume genera Astragalus, Lespedeza and Hedysarum in northwestern China. Microbiol. Res. 163: 651-662.
http://dx.doi.org/10.1016/j.micres.2006.09.005
PMid:17207980
Weisburg WG, Barns SM, Pelletier DA and Lane DJ (1991). 16S ribosomal DNA amplification for phylogenetic study. J. Bacteriol. 173: 697-703.
PMid:1987160 PMCid:207061
Willems A (2006). The taxonomy of rhizobia: an overview. Plant Soil 287: 3-14.
http://dx.doi.org/10.1007/s11104-006-9058-7
Yan XR, Chen WF, Fu JF, Lu YL, et al. (2007). Mesorhizobium spp. are the main microsymbionts of Caragana spp. grown in Liaoning Province of China. FEMS Microbiol. Lett. 271: 265-273.
http://dx.doi.org/10.1111/j.1574-6968.2007.00727.x
PMid:17451445
Yang SS, Bellogin RA, Buendia A, Camacho M, et al. (2001). Effect of pH and soybean cultivars on the quantitative analyses of soybean rhizobia populations. J. Biotechnol. 91: 243-255.
http://dx.doi.org/10.1016/S0168-1656(01)00340-6
“Genetic effect of the prolactin receptor gene on egg production traits in chickens”, vol. 11, pp. 4307-4315, 2012.
, Bole-Feysot C, Goffin V, Edery M, Binart N, et al. (1998). Prolactin (PRL) and its receptor: actions, signal transduction pathways and phenotypes observed in PRL receptor knockout mice. Endocr. Rev. 19: 225-268.
http://dx.doi.org/10.1210/er.19.3.225
PMid:9626554
Cogburn LA, Wang X, Carre W, Rejto L, et al. (2003). Systems-wide chicken DNA microarrays, gene expression profiling, and discovery of functional genes. Poult. Sci. 82: 939-951.
PMid:12817449
Dunn IC, McEwan G, Okhubo T, Sharp PJ, et al. (1998). Genetic mapping of the chicken prolactin receptor gene: a candidate gene for the control of broodiness. Br. Poult. Sci. (39 Suppl): S23-S24.
http://dx.doi.org/10.1080/00071669888160
PMid:10188027
Elkins PA, Christinger HW, Sandowski Y, Sakal E, et al. (2000). Ternary complex between placental lactogen and the extracellular domain of the prolactin receptor. Nat. Struct. Biol. 7: 808-815.
http://dx.doi.org/10.1038/79047
PMid:10966654
Emsley A (1997). Integration of classical and molecular approaches of genetic selection: egg production. Poult. Sci. 76: 1127-1130.
PMid:9251140
Fleenor D, Arumugam R and Freemark M (2006). Growth hormone and prolactin receptors in adipogenesis: STAT-5 activation, suppressors of cytokine signaling, and regulation of insulin-like growth factor I. Horm. Res. 66: 101-110.
http://dx.doi.org/10.1159/000093667
PMid:16735796
Huang HY, Li SF, Zhao ZH, Liang Z, et al. (2011). Association of polymorphisms for nuclear receptor coactivator 1 gene with egg production traits in the maternal line of Shaobo hens. Br. Poult. Sci. 52: 328-332.
http://dx.doi.org/10.1080/00071668.2011.577057
PMid:21732878
Huang Q, Fu YX and Boerwinkle E (2003). Comparison of strategies for selecting single nucleotide polymorphisms for case/control association studies. Hum. Genet. 113: 253-257.
http://dx.doi.org/10.1007/s00439-003-0965-x
PMid:12811538
Kanehisa M, Goto S, Kawashima S and Nakaya A (2002). The KEGG databases at GenomeNet. Nucleic Acids Res. 30: 42-46.
http://dx.doi.org/10.1093/nar/30.1.42
PMid:11752249 PMCid:99091
Kelly PA, Binart N, Lucas B, Bouchard B, et al. (2001). Implications of multiple phenotypes observed in prolactin receptor knockout mice. Front. Neuroendocrinol. 22: 140-145.
http://dx.doi.org/10.1006/frne.2001.0212
PMid:11259135
Kim MH, Seo DS and Ko Y (2004). Relationship between egg productivity and insulin-like growth factor-I genotypes in Korean native Ogol chickens. Poult. Sci. 83: 1203-1208.
PMid:15285513
Kmiec M and Terman A (2006). Associations between the prolactin receptor gene polymorphism and reproductive traits of boars. J. Appl. Genet. 47: 139-141.
http://dx.doi.org/10.1007/BF03194613
PMid:16682755
Kuhn M, von Mering C, Campillos M, Jensen LJ, et al. (2008). STITCH: interaction networks of chemicals and proteins. Nucleic Acids Res. 36: D684-D688.
http://dx.doi.org/10.1093/nar/gkm795
PMid:18084021 PMCid:2238848
Lewis PD and Gous RM (2006). Effect of final photoperiod and twenty-week body weight on sexual maturity and early egg production in broiler breeders. Poult. Sci. 85: 377-383.
PMid:16553263
Linville RC, Pomp D, Johnson RK and Rothschild MF (2001). Candidate gene analysis for loci affecting litter size and ovulation rate in swine. J. Anim. Sci. 79: 60-67.
PMid:11204716
Lu A, Hu X, Chen H, Dong Y, et al. (2011). Novel SNPs of the bovine PRLR gene associated with milk production traits. Biochem. Genet. 49: 177-189.
http://dx.doi.org/10.1007/s10528-010-9397-1
PMid:21165768
Luo PT, Yang RQ and Yang N (2007). Estimation of genetic parameters for cumulative egg numbers in a broiler dam line by using a random regression model. Poult. Sci. 86: 30-36.
PMid:17179412
Nicoll CS, Mayer GL and Russell SM (1986). Structural features of prolactins and growth hormones that can be related to their biological properties. Endocr. Rev. 7: 169-203.
http://dx.doi.org/10.1210/edrv-7-2-169
PMid:3013605
Orita M, Suzuki Y, Sekiya T and Hayashi K (1989). Rapid and sensitive detection of point mutations and DNA polymorphisms using the polymerase chain reaction. Genomics 5: 874-879.
http://dx.doi.org/10.1016/0888-7543(89)90129-8
Ou JT, Tang SQ, Sun DX and Zhang Y (2009). Polymorphisms of three neuroendocrine-correlated genes associated with growth and reproductive traits in the chicken. Poult. Sci. 88: 722-727.
http://dx.doi.org/10.3382/ps.2008-00497
PMid:19276414
Rothschild MF and Soller M (1997). Candidate gene analysis to detect genes controlling traits of economic importance in domestic livestock. Probe 8: 13-20.
Sambrook J, Fritsch E and Maniatis T (1989). Molecular Cloning: A Laboratory Manual. Cold Spring Harbor Laboratory Press, New York, 931-957.
Serrano AB, Haro JGH, Hori-Oshima S, Espinosa AG, et al. (2009). Prolactin receptor (Prlr) gen polymorphism and associations with reproductive traits in pigs. J. Anim. Vet. Adv. 8: 469-475.
Sinha YN (1995). Structural variants of prolactin: occurrence and physiological significance. Endocr. Rev. 16: 354-369.
PMid:7671851
Stephens JC, Schneider JA, Tanguay DA, Choi J, et al. (2001). Haplotype variation and linkage disequilibrium in 313 human genes. Science 293: 489-493.
http://dx.doi.org/10.1126/science.1059431
PMid:11452081
Thompson DL Jr, Hoffman R and DePew CL (1997). Prolactin administration to seasonally anestrous mares: reproductive, metabolic, and hair-shedding responses. J. Anim. Sci. 75: 1092-1099.
PMid:9110225
Xiao L-H, Chen S-Y, Zhao X-L, Zhu Q, et al. (2011). Association of cellular retinol-binding protein 2 (Crbp2) gene polymorphism with egg production in erlang mountainous chicken. J. Poult. Sci. 48: 162-167.
http://dx.doi.org/10.2141/jpsa.010099
Xu HP, Shen X, Zhou M, Fang MX, et al. (2010). The genetic effects of the dopamine D1 receptor gene on chicken egg production and broodiness traits. BMC Genet. 11: 17.
http://dx.doi.org/10.1186/1471-2156-11-17
PMid:20199684 PMCid:2848132
Xu HP, Zeng H, Zhang DX, Jia XL, et al. (2011). Polymorphisms associated with egg number at 300 days of age in chickens. Genet. Mol. Res. 10: 2279-2289.
http://dx.doi.org/10.4238/2011.October.3.5
PMid:22002122
Zhang W, Collins A and Morton NE (2004). Does haplotype diversity predict power for association mapping of disease susceptibility? Hum. Genet. 115: 157-164.
http://dx.doi.org/10.1007/s00439-004-1122-x
PMid:15221450
Zhu M and Zhao S (2007). Candidate gene identification approach: progress and challenges. Int. J. Biol. Sci. 3: 420-427.
http://dx.doi.org/10.7150/ijbs.3.420
PMid:17998950 PMCid:2043166
“Lack of an association between TSC gene Arg904Gln polymorphisms and essential hypertension risk based on a meta-analysis”, vol. 11, pp. 3511-3517, 2012.
,
Capewell S, Ford ES, Croft JB, Critchley JA, et al. (2010). Cardiovascular risk factor trends and potential for reducing coronary heart disease mortality in the United States of America. Bull. World Health Organ. 88: 120-130.
http://dx.doi.org/10.2471/BLT.08.057885
PMid:20428369 PMCid:2814476
Chang PY, Zhao LG and Su XL (2011). Association of TSC gene variants and hypertension in Mongolian and Han populations. Genet. Mol. Res. 10: 902-909.
http://dx.doi.org/10.4238/vol10-2gmr1227
PMid:21644207
Fu L, Zhao Y, Wu X, Liu H, et al. (2011). CYP7A1 genotypes and haplotypes associated with hypertension in an obese Han Chinese population. Hypertens. Res. 34: 722-727.
http://dx.doi.org/10.1038/hr.2011.18
PMid:21346769
Glorioso N, Filigheddu F, Troffa C, Soro A, et al. (2001). Interaction of a(1)-Na,K-ATPase and Na,K,2Cl-cotransporter genes in human essential hypertension. Hypertension 38: 204-209.
http://dx.doi.org/10.1161/01.HYP.38.2.204
PMid:11509477
Hasi T, Hao L, Yang L and Su XL (2011). Acetaldehyde dehydrogenase 2 SNP rs671 and susceptibility to essential hypertension in Mongolians: a case control study. Genet. Mol. Res. 10: 537-543.
http://dx.doi.org/10.4238/vol10-1gmr1056
PMid:21476199
Johnson AD, Newton-Cheh C, Chasman DI, Ehret GB, et al. (2011). Association of hypertension drug target genes with blood pressure and hypertension in 86,588 individuals. Hypertension 57: 903-910.
http://dx.doi.org/10.1161/HYPERTENSIONAHA.110.158667
PMid:21444836 PMCid:3099407
Little J, Bradley L, Bray MS, Clyne M, et al. (2002). Reporting, appraising, and integrating data on genotype prevalence and gene-disease associations. Am. J. Epidemiol. 156: 300-310.
http://dx.doi.org/10.1093/oxfordjournals.aje.a000179
PMid:12181099
Luo F, Wang Y, Wang X, Sun K, et al. (2009). A functional variant of NEDD4L is associated with hypertension, antihypertensive response, and orthostatic hypotension. Hypertension 54: 796-801.
http://dx.doi.org/10.1161/HYPERTENSIONAHA.109.135103
PMid:19635985
Matsuo A, Katsuya T, Ishikawa K, Sugimoto K, et al. (2004). G2736A polymorphism of thiazide-sensitive Na-Cl cotransporter gene predisposes to hypertension in young women. J. Hypertens. 22: 2123-2127.
http://dx.doi.org/10.1097/00004872-200411000-00014
PMid:15480096
Melander O, Orho-Melander M, Bengtsson K, Lindblad U, et al. (2000). Genetic variants of thiazide-sensitive NaClcotransporter in gitelman's syndrome and primary hypertension. Hypertension 36: 389-394.
http://dx.doi.org/10.1161/01.HYP.36.3.389
PMid:10988270
Niu W, Wu S, Zhang Y, Li W, et al. (2010). Validation of genetic association in apelin-AGTRL1 system with hypertension in a larger Han Chinese population. J. Hypertens. 28: 1854-1861.
http://dx.doi.org/10.1097/HJH.0b013e32833b1fad
PMid:20485192
Plotkin MD, Kaplan MR, Verlander JW, Lee WS, et al. (1996). Localization of the thiazide sensitive Na-Cl cotransporter, rTSC1 in the rat kidney. Kidney Int. 50: 174-183.
http://dx.doi.org/10.1038/ki.1996.300
PMid:8807586
Shimodaira M, Nakayama T, Sato N, Naganuma T, et al. (2010). Association study of the elastin microfibril interfacer 1 (EMILIN1) gene in essential hypertension. Am. J. Hypertens. 23: 547-555.
http://dx.doi.org/10.1038/ajh.2010.16
PMid:20186130
Song Y, Herrera VL, Filigheddu F, Troffa C, et al. (2001). Non-association of the thiazide-sensitive Na,Cl-cotransporter gene with polygenic hypertension in both rats and humans. J. Hypertens. 19: 1547-1551.
http://dx.doi.org/10.1097/00004872-200109000-00005
PMid:11564973
Stanton JL, Braitman LE, Riley AM Jr, Khoo CS, et al. (1982). Demographic, dietary, life style, and anthropometric correlates of blood pressure. Hypertension 4: III135-III142.
PMid:7106943
Tabara Y, Kohara K, Kita Y, Hirawa N, et al. (2010). Common variants in the ATP2B1 gene are associated with susceptibility to hypertension: the Japanese Millennium Genome Project. Hypertension 56: 973-980.
http://dx.doi.org/10.1161/HYPERTENSIONAHA.110.153429
PMid:20921432
Wang XF, Lin RY, Wang SZ, Zhang LP, et al. (2008). Association study of variants in two ion-channel genes (TSC and CLCNKB) and hypertension in two ethnic groups in Northwest China. Clin. Chim. Acta 388: 95-98.
http://dx.doi.org/10.1016/j.cca.2007.10.017
PMid:17997379
Ward NC, Tsai IJ, Barden A, van Bockxmeer FM, et al. (2008). A single nucleotide polymorphism in the CYP4F2 but not CYP4A11 gene is associated with increased 20-HETE excretion and blood pressure. Hypertension 51: 1393-1398.
http://dx.doi.org/10.1161/HYPERTENSIONAHA.107.104463
PMid:18391101
Zhan YY, Jiang X, Lin G, Li J, et al. (2007). Association of thiazide-sensitive Na+-Cl* cotransporter gene polymorphisms with the risk of essential hypertension. Zhonghua Yi Xue Yi Chuan Xue Za Zhi 24: 703-705.
PMid:18067089
“Meta analysis of angiotensin-converting enzyme I/D polymorphism as a risk factor for preeclampsia in Chinese women”, vol. 11, pp. 2268-2276, 2012.
,
Admiraal PJ, Derkx FH, Danser AH, Pieterman H, et al. (1990). Metabolism and production of angiotensin I in different vascular beds in subjects with hypertension. Hypertension 15: 44-55.
http://dx.doi.org/10.1161/01.HYP.15.1.44
PMid:2403979
Bai H, Liu X, Liu R, Liu Y, et al. (2002). Angiotensinogen and angiotensin-I converting enzyme gene variations in Chinese pregnancy induced hypertension. Hua Xi Yi Ke Da Xue Xue Bao 33: 233-237.
PMid:12575194
Bouba I, Makrydimas G, Kalaitzidis R, Lolis DE, et al. (2003). Interaction between the polymorphisms of the renin-angiotensin system in preeclampsia. Eur. J. Obstet. Gynecol. Reprod. Biol. 110: 8-11.
http://dx.doi.org/10.1016/S0301-2115(03)00046-0
Chen B, Zhuo J and Zhou L (2006). Study on the polymorphism of angiotensin I-converting enzyme gene in pregnancy•induced hypertension syndrome. Iian Yan Yi Xue 21: 39-41.
Deng W, Shi B, He X, Zhang Z, et al. (2004). Evolution and migration history of the Chinese population inferred from Chinese Y-chromosome evidence. J. Hum. Genet. 49: 339-348.
http://dx.doi.org/10.1007/s10038-004-0154-3
PMid:15173934
Esplin MS, Fausett MB, Fraser A, Kerber R, et al. (2001). Paternal and maternal components of the predisposition to preeclampsia. N. Engl. J. Med. 344: 867-872.
http://dx.doi.org/10.1056/NEJM200103223441201
PMid:11259719
Galao AO, de Souza LH, da Costa BE, Scheibe RM, et al. (2004). Angiotensin-converting enzyme gene polymorphism in preeclampsia and normal pregnancy. Am. J. Obstet. Gynecol. 191: 821-824.
http://dx.doi.org/10.1016/j.ajog.2004.01.047
PMid:15467548
Gao Y, Qiu X, Ye F, Chen L, et al. (2002). Research on the deletion/insertion polymorphism of angiotensin converting enzyme gene in pregnancy induced hypertension women. Zhong Guo Fu You Bao Jian 17: 738-740.
He G, Liu X, Fan P, Liu R, et al. (2009). The C825T polymorphism in the G-protein beta 3 subunit gene in Chinese patients with preeclampsia. Hypertens. Pregnancy 28: 156-167.
http://dx.doi.org/10.1080/10641950802366245
PMid:19437226
Huang Y, Liao B and Sun X (2001). Study on the relation between the angiotensin converting enzyme gene and pregnancy induced hypertension. Zhonghua Fu Chan Ke Za Zhi 36: 15-17.
PMid:11778536
Kaur R, Jain V, Khuller M, Gupta I, et al. (2005). Association of angiotensin-converting enzyme gene polymorphism with pregnancy-induced hypertension. Acta Obstet. Gynecol. Scand. 84: 929-933.
PMid:16167906
Mao W, Li K and Zhao Y (2004). Study on MTHFR gene and ACE gene polymorphisms in pregnancy-induced hypertension. Chin. J. Perinat. Med. 7: 24.
Niu W and Qi Y (2011). Association of alpha-adducin and G-protein beta3 genetic polymorphisms with hypertension: a meta-analysis of Chinese populations. PLoS One 6: e17052.
http://dx.doi.org/10.1371/journal.pone.0017052
PMid:21364877 PMCid:3045422
Rohacs T, Nagy G and Spat A (1997). Cytoplasmic Ca2+ signalling and reduction of mitochondrial pyridine nucleotides in adrenal glomerulosa cells in response to K+, angiotensin II and vasopressin. Biochem. J. 322 (Pt 3): 785-792.
PMid:9148750 PMCid:1218256
Salimi S, Mokhtari M, Yaghmaei M, Jamshidi M, et al. (2011). Association of angiotensin-converting enzyme intron 16 insertion/deletion and angiotensin II type 1 receptor A1166C gene polymorphisms with preeclampsia in South East of Iran. J. Biomed. Biotechnol. 2011: 941515.
http://dx.doi.org/10.1155/2011/941515
PMid:21808598 PMCid:3144719
Schmieder RE, Hilgers KF, Schlaich MP and Schmidt BM (2007). Renin-angiotensin system and cardiovascular risk. Lancet 369: 1208-1219.
http://dx.doi.org/10.1016/S0140-6736(07)60242-6
Serrano NC, Diaz LA, Paez MC, Mesa CM, et al. (2006). Angiotensin-converting enzyme I/D polymorphism and preeclampsia risk: evidence of small-study bias. PLoS Med. 3: e520.
http://dx.doi.org/10.1371/journal.pmed.0030520
PMid:17194198 PMCid:1716194
Shang T, Wang Y, Sun W and Sun F (2003). Relationship of ACE and AT1R and pregnancy induced hypertension. Chin. J. Obstet. Gynecol. 33: 102-103.
Tan CY, Chong YS, Loganath A, Chan YH, et al. (2009). Possible gene-gene interaction of KIR2DL4 with its cognate ligand HLA-G in modulating risk for preeclampsia. Reprod. Sci. 16: 1135-1143.
http://dx.doi.org/10.1177/1933719109342280
PMid:19700612
Tiret L, Rigat B, Visvikis S, Breda C, et al. (1992). Evidence, from combined segregation and linkage analysis, that a variant of the angiotensin I-converting enzyme (ACE) gene controls plasma ACE levels. Am. J. Hum. Genet. 51: 197-205.
PMid:1319114 PMCid:1682892
Vefring HK, Wee L, Jugessur A, Gjessing HK, et al. (2010). Maternal angiotensinogen (AGT) haplotypes, fetal renin (REN) haplotypes and risk of preeclampsia; estimation of gene-gene interaction from family-triad data. BMC Med. Genet. 11: 90.
http://dx.doi.org/10.1186/1471-2350-11-90
PMid:20537141 PMCid:2901215
Wang J, Bu T, Wang Y and Cheng P (2004). Relationship between insertion/deletion polymorphism of angiotensin converting enzyme gene and pregnancy-induced hypertension syndrome. Tian Jin Yi Yao 32: 339-341.
WHO (2005). World Health Report: Make Every Mother, and Child Count. World Health Organization, Geneva.
Wu Y, Cheng K, Su H, Cheng X, et al. (2002). Association of angiotensin converting enzyme polymorphism and preeclampsia. Zhonghua Fu Chan Ke Za Zhi 37: 301.
Yan W, Kulane A, Xiang P, Li Z, et al. (2011). Maternal and fetal angiotensin-converting enzyme gene insertion/deletion polymorphism not associated with pregnancy-induced hypertension in Chinese women. J. Matern. Fetal Neonatal Med. 24: 1119-1123.
http://dx.doi.org/10.3109/14767058.2010.546452
PMid:21250908
Zhou N, Yu P, Chen J, Huang H, et al. (1999). Detection of insertion/deletion polymorphism of angiotensin converting enzyme gene in preeclampsia. Zhonghua Yi Xue Yi Chuan Xue Za Zhi 16: 29-31.
PMid:9949238
Zhu M, Xia Y and Cheng W (1998). Study on a deletion polymorphism of the angiotensin converting enzyme gene in pregnancy induced hypertension. Zhonghua Fu Chan Ke Za Zhi 33: 83-85.
PMid:10682425
“Molecular cloning and functional characterization of a glutathione S-transferase involved in both anthocyanin and proanthocyanidin accumulation in Camelina sativa (Brassicaceae)”, vol. 11, pp. 4711-4719, 2012.
, Baxter IR, Young JC, Armstrong G, Foster N, et al. (2005). A plasma membrane H+-ATPase is required for the formation of proanthocyanidins in the seed coat endothelium of Arabidopsis thaliana. Proc. Natl. Acad. Sci. U. S. A. 102: 2649-2654.
http://dx.doi.org/10.1073/pnas.0406377102
PMid:15695592 PMCid:548969
Clough SJ and Bent AF (1998). Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant J. 16: 735-743.
http://dx.doi.org/10.1046/j.1365-313x.1998.00343.x
PMid:10069079
Davis PB, Menalled FD, Peterson RKD and Maxwell BD (2011). Refinement of weed risk assessments for biofuels using Camelina sativa as a model species. J. Appl. Ecol. 48: 989-997.
http://dx.doi.org/10.1111/j.1365-2664.2011.01991.x
Debeaujon I, Peeters AJ, Leon-Kloosterziel KM and Koornneef M (2001). The TRANSPARENT TESTA12 gene of Arabidopsis encodes a multidrug secondary transporter-like protein required for flavonoid sequestration in vacuoles of the seed coat endothelium. Plant Cell 13: 853-871.
PMid:11283341 PMCid:135529
Fröhlich A and Rice B (2005). Evaluation of Camelina sativa oil as a feedstock for biodiesel production. Ind. Crops Prod. 21: 25-31.
http://dx.doi.org/10.1016/j.indcrop.2003.12.004
Gao MJ, Lydiate DJ, Li X, Lui H, et al. (2009). Repression of seed maturation genes by a trihelix transcriptional repressor in Arabidopsis seedlings. Plant Cell 21: 54-71.
http://dx.doi.org/10.1105/tpc.108.061309
PMid:19155348 PMCid:2648069
Ghamkhar K, Croser J, Aryamanesh N, Campbell M, et al. (2010). Camelina (Camelina sativa (L.) Crantz) as an alternative oilseed: molecular and ecogeographic analyses. Genome 53: 558-567.
http://dx.doi.org/10.1139/G10-034
PMid:20616877
Imbrea F, Jurcoane S, Hălmăjan HV, Duda M, et al. (2011). Camelina sativa: a new source of vegetal oils. Rom. Biotech. Lett. 16: 6263-6270.
Lepiniec L, Debeaujon I, Routaboul JM, Baudry A, et al. (2006). Genetics and biochemistry of seed flavonoids. Annu. Rev. Plant Biol. 57: 405-430.
http://dx.doi.org/10.1146/annurev.arplant.57.032905.105252
PMid:16669768
Li X, Gao P, Cui D, Wu L, et al. (2011). The Arabidopsis tt19-4 mutant differentially accumulates proanthocyanidin and anthocyanin through a 3' amino acid substitution in glutathione S-transferase. Plant Cell Environ. 34: 374-388.
http://dx.doi.org/10.1111/j.1365-3040.2010.02249.x
PMid:21054438
Marles MA, Ray H and Gruber MY (2003). New perspectives on proanthocyanidin biochemistry and molecular regulation. Phytochemistry 64: 367-383.
http://dx.doi.org/10.1016/S0031-9422(03)00377-7
Onyilagha J, Bala A, Hallett R, Gruber M, et al. (2003). Leaf flavonoids of the cruciferous species, Camelina sativa, Crambe spp., Thlaspi arvense and several other genera of the family Brassicaceae. Biochem. Syst. Ecol. 31: 1309-1322.
http://dx.doi.org/10.1016/S0305-1978(03)00074-7
Saghai-Maroof MA, Soliman KM, Jorgensen RA and Allard RW (1984). Ribosomal DNA spacer-length polymorphisms in barley: mendelian inheritance, chromosomal location, and population dynamics. Proc. Natl. Acad. Sci. U. S. A. 81: 8014-8018.
http://dx.doi.org/10.1073/pnas.81.24.8014
PMid:6096873 PMCid:392284
Southern EM (1975). Detection of specific sequences among DNA fragments separated by gel electrophoresis. J. Mol. Biol. 98: 503-517.
http://dx.doi.org/10.1016/S0022-2836(75)80083-0
Tian L, Pang Y and Dixon RA (2008). Biosynthesis and genetic engineering of proanthocyanidins and (iso)flavonoids. Phytochem. Rev. 7: 445-465.
http://dx.doi.org/10.1007/s11101-007-9076-y
Xie DY, Sharma SB, Paiva NL, Ferreira D, et al. (2003). Role of anthocyanidin reductase, encoded by BANYULS in plant flavonoid biosynthesis. Science 299: 396-399.
http://dx.doi.org/10.1126/science.1078540
PMid:12532018
“mRNA expression profiles of calmodulin and liver receptor homolog-1 genes in chickens”, vol. 11, pp. 3482-3489, 2012.
,
Boerboom D, Pilon N, Behdjani R, Silversides DW, et al. (2000). Expression and regulation of transcripts encoding two members of the NR5A nuclear receptor subfamily of orphan nuclear receptors, steroidogenic factor-1 and NR5A2, in equine ovarian cells during the ovulatory process. Endocrinology 141: 4647-4656.
http://dx.doi.org/10.1210/en.141.12.4647
PMid:11108279
Brännström M, Lind AK and Dahm-Kähler P (2010). Ovulation: A molecular view. Reprod. Endocrinol. Infertil. 119-132.
Burger LL, Haisenleder DJ, Aylor KW and Marshall JC (2008). Regulation of intracellular signaling cascades by GNRH pulse frequency in the rat pituitary: roles for CaMK II, ERK, and JNK activation. Biol. Reprod. 79: 947-953.
http://dx.doi.org/10.1095/biolreprod.108.070987
PMid:18716286 PMCid:2574636
Cheung VG and Spielman RS (2002). The genetics of variation in gene expression. Nat. Genet. 32: 522-525.
http://dx.doi.org/10.1038/ng1036
PMid:12454648
Contijoch AM, Malamed S, McDonald JK and Advis JP (1993). Neuropeptide Y regulation of LHRH release in the median eminence: immunocytochemical and physiological evidence in hens. Neuroendocrinology 57: 135-145.
http://dx.doi.org/10.1159/000126353
PMid:8479609
Crawford JL, Heath DA, Haydon LJ, Thomson BP, et al. (2009). Gene expression and secretion of LH and FSH in relation to gene expression of GnRH receptors in the brushtail possum (Trichosurus vulpecula) demonstrates highly conserved mechanisms. Reproduction 137: 129-140.
http://dx.doi.org/10.1530/REP-08-0347
PMid:18818271
Dunn IC, Lewis PD, Wilson PW and Sharp PJ (2003). Acceleration of maturation of FSH and LH responses to photostimulation in prepubertal domestic hens by oestrogen. Reproduction 126: 217-225.
http://dx.doi.org/10.1530/rep.0.1260217
PMid:12887278
Fayard E, Auwerx J and Schoonjans K (2004). LRH-1: an orphan nuclear receptor involved in development, metabolism and steroidogenesis. Trends Cell Biol. 14: 250-260.
http://dx.doi.org/10.1016/j.tcb.2004.03.008
PMid:15130581
Fisher CR, Graves KH, Parlow AF and Simpson ER (1998). Characterization of mice deficient in aromatase (ArKO) because of targeted disruption of the cyp19 gene. Proc. Natl. Acad. Sci. U. S. A. 95: 6965-6970.
http://dx.doi.org/10.1073/pnas.95.12.6965
PMid:9618522 PMCid:22703
Gershon E, Hourvitz A, Reikhav S, Maman E, et al. (2007). Low expression of COX-2, reduced cumulus expansion, and impaired ovulation in SULT1E1-deficient mice. FASEB J. 21: 1893-1901.
http://dx.doi.org/10.1096/fj.06-7688com
PMid:17341680
Haisenleder DJ, Ferris HA and Shupnik MA (2003a). The calcium component of gonadotropin-releasing hormone-stimulated luteinizing hormone subunit gene transcription is mediated by calcium/calmodulin-dependent protein kinase type II. Endocrinology 144: 2409-2416.
http://dx.doi.org/10.1210/en.2002-0013
PMid:12746302
Haisenleder DJ, Burger LL, Aylor KW, Dalkin AC, et al. (2003b). Gonadotropin-releasing hormone stimulation of gonadotropin subunit transcription: evidence for the involvement of calcium/calmodulin-dependent kinase II (Ca/ CAMK II) activation in rat pituitaries. Endocrinology 144: 2768-2774.
http://dx.doi.org/10.1210/en.2002-0168
PMid:12810529
Kahl CR and Means AR (2003). Regulation of cell cycle progression by calcium/calmodulin-dependent pathways. Endocr. Rev. 24: 719-736.
http://dx.doi.org/10.1210/er.2003-0008
PMid:14671000
Kudo T and Sutou S (2006). Chicken LRH-1 gene is transcribed from multiple promoters in steroidogenic organs. Gene 367: 38-45.
http://dx.doi.org/10.1016/j.gene.2005.08.026
PMid:16403608
Linville RC, Pomp D, Johnson RK and Rothschild MF (2001). Candidate gene analysis for loci affecting litter size and ovulation rate in swine. J. Anim. Sci. 79: 60-67.
PMid:11204716
Livak KJ and Schmittgen TD (2001). Analysis of relative gene expression data using real-time quantitative PCR and the 2-ΔΔCt Method. Methods 25: 402-408.
http://dx.doi.org/10.1006/meth.2001.1262
PMid:11846609
Mueller M, Cima I, Noti M, Fuhrer A, et al. (2006). The nuclear receptor LRH-1 critically regulates extra-adrenal glucocorticoid synthesis in the intestine. J. Exp. Med. 203: 2057-2062.
http://dx.doi.org/10.1084/jem.20060357
PMid:16923850 PMCid:2118403
Patsoula E, Loutradis D, Drakakis P, Kallianidis K, et al. (2001). Expression of mRNA for the LH and FSH receptors in mouse oocytes and preimplantation embryos. Reproduction 121: 455-461.
http://dx.doi.org/10.1530/rep.0.1210455
PMid:11226072
Roberson MS, Bliss SP, Xie J, Navratil AM, et al. (2005). Gonadotropin-releasing hormone induction of extracellular-signal regulated kinase is blocked by inhibition of calmodulin. Mol. Endocrinol. 19: 2412-2423.
http://dx.doi.org/10.1210/me.2005-0094
PMid:15890671
Semiz O and Evirgen O (2009). The effect of growth hormone on ovarian follicular response and oocyte nuclear maturation in young and aged mice. Acta Histochem. 111: 104-111.
http://dx.doi.org/10.1016/j.acthis.2008.04.007
PMid:18674800
Sharp PJ, Dunn IC and Cerolini S (1992). Neuroendocrine control of reduced persistence of egg-laying in domestic hens: evidence for the development of photorefractoriness. J. Reprod. Fertil. 94: 221-235.
http://dx.doi.org/10.1530/jrf.0.0940221
PMid:1552483
Sun YM, Dunn IC, Baines E, Talbot RT, et al. (2001). Distribution and regulation by oestrogen of fully processed and variant transcripts of gonadotropin releasing hormone I and gonadotropin releasing hormone receptor mRNAs in the male chicken. J. Neuroendocrinol. 13: 37-49.
http://dx.doi.org/10.1046/j.1365-2826.2001.00587.x
PMid:11123514
Weng G, Bhalla US and Iyengar R (1999). Complexity in biological signaling systems. Science 284: 92-96.
http://dx.doi.org/10.1126/science.284.5411.92
PMid:10102825
Zhu M and Zhao S (2007). Candidate gene identification approach: progress and challenges. Int. J. Biol. Sci. 3: 420-427.
http://dx.doi.org/10.7150/ijbs.3.420
PMid:17998950 PMCid:2043166
“QTL analysis of percentage of grains with chalkiness in Japonica rice (Oryza sativa)”, vol. 11, pp. 717-724, 2012.
, Chen X, Temnykh S, Xu Y, Cho YG, et al. (1997). Development of a microsatellite framework map providing genome-wide coverage in rice (Oryza sativa L.). Theor. Appl. Genet. 95: 553-567.
http://dx.doi.org/10.1007/s001220050596
Del Rosario AR, Briones VP, Vidal AJ and Juliano BO (1968). Composition and endosperm structure of developing and mature rice kernel. Cereal Chem. 45: 225-235.
Doyle JJ (1991). DNA Protocols for Plants-CTAB Total DNA Isolation. In: Molecular Techniques in Taxonomy (Hewitt GM, ed.). Springer, Berlin Heidelberg, New York, 283-293.
http://dx.doi.org/10.1007/978-3-642-83962-7_18
Fujita N, Yoshida M, Kondo T, Saito K, et al. (2007). Characterization of SSIIIa-deficient mutants of rice: the function of SSIIIa and pleiotropic effects by SSIIIa deficiency in the rice endosperm. Plant Physiol. 144: 2009-2023.
http://dx.doi.org/10.1104/pp.107.102533
PMid:17586688 PMCid:1949899
He P, Li SG, Qian Q, Ma YQ, et al. (1999). Genetic analysis of rice grain quality. Theor. Appl. Genet. 98: 502-508.
http://dx.doi.org/10.1007/s001220051098
Huang JX (2006). Genetic Analysis and QTL Mapping Research of Appearance Quality Traits in Indica Rice. Master’s thesis, Xiamen University, Xiamen.
Kang HG, Park S, Matsuoka M and An G (2005). White-core endosperm floury endosperm-4 in rice is generated by knockout mutations in the C-type pyruvate orthophosphate dikinase gene (OsPPDKB). Plant J. 42: 901-911.
http://dx.doi.org/10.1111/j.1365-313X.2005.02423.x
PMid:15941402
Koh HJ, Son YH, Heu MH, Lee HS, et al. (1999). Molecular mapping of a new genic male-sterility gene causing chalky endosperm in rice (Oryza sativa L.). Euphytica 106: 57-62.
http://dx.doi.org/10.1023/A:1003575016035
Lander ES, Green P, Abrahamson J, Barlaw A, et al. (1987). Mapmarker: an interactive computer package for maps of experimental and nutural populations. Genomics 1: 174-181.
http://dx.doi.org/10.1016/0888-7543(87)90010-3
Li J, Xiao J, Grandillo S, Jiang L, et al. (2004). QTL detection for rice grain quality traits using an interspecific backcross population derived from cultivated Asian (O. sativa L.) and African (O. glaberrima S.) rice. Genome 47: 697-704.
http://dx.doi.org/10.1139/g04-029
PMid:15284874
Lincoln S, Daly M and Lander ES (1992). Construction Genetic Maps with MAPMARKER/EXP 3.0. Whitehead Institute Technical Report. 2nd edn. Whitehead Institute for Biomedical Research, Cambridge.
Lisle AJ, Martin M and Fitzgerald MA (2000). Chalky and translucent rice grains differ in starch composition and structure and cooking properties. Cereal Chem. 77: 627-632.
http://dx.doi.org/10.1094/CCHEM.2000.77.5.627
Mo HD (1995). Identification of genetic control for endosperm traits in cereals. Acta Genet. Sin. 22: 126-132.
Nagato K and Ebata M (1959). Studies on white-core rice kernel II. On the physical properties of the kernel. Proc. Crop Sci. Soc. Jpn. 28: 46-50.
http://dx.doi.org/10.1626/jcs.28.46
NSPRC (1999). National Standard of People Republic of China High Quality Paddy, GB/T 17891-1999. Standards Press of China, Zhejiang.
Pooni HS, Kumar I and Khush GS (1992). A comprehensive model for disomically inherited metrical traits expressed in triploid tissues. Heredity 69: 166-174.
http://dx.doi.org/10.1038/hdy.1992.110
Ryoo N, Yu C, Park CS, Baik MY, et al. (2007). Knockout of a starch synthase gene OsSSIIIa/Flo5 causes white-core floury endosperm in rice (Oryza sativa L.). Plant Cell Rep. 26: 1083-1095.
http://dx.doi.org/10.1007/s00299-007-0309-8
PMid:17297616
Shi CH, Wu JG, Lou XB, Zhu J, et al. (2002). Genetic analysis of transparency and chalkiness area at different filling stages of rice (Oryza sativa L.). Field Crops Res. 76: 1-9.
http://dx.doi.org/10.1016/S0378-4290(02)00011-4
Tan YF, Xing YZ, Li JX, Yu SB, et al. (2000). Genetic bases of appearance quality of rice grains in Shanyou 63, an elite rice hybrid. Theor. Appl. Genet. 101: 823-829.
http://dx.doi.org/10.1007/s001220051549
Tashiro T and Wardlaw IF (1991). The effect of high temperature on kernel dimensions and the type and occurrence of kernel damage in rice. Aust. J. Agric. Res. 42: 485-496.
http://dx.doi.org/10.1071/AR9910485
Wan XY, Wan JM, Weng JF, Jiang L, et al. (2005). Stability of QTLs for rice grain dimension and endosperm chalkiness characteristics across eight environments. Theor. Appl. Genet. 110: 1334-1346.
http://dx.doi.org/10.1007/s00122-005-1976-x
PMid:15809851
Yano M and Sasaki T (1997). Genetic and molecular dissection of quantitative traits in rice. Plant Mol. Biol. 35: 145-153.
http://dx.doi.org/10.1023/A:1005764209331
PMid:9291968
Zeng ZB (1994). Precision mapping of quantitative trait loci. Genetics 136: 1457-1468.
PMid:8013918 PMCid:1205924
Zhou L, Chen L, Jiang L, Zhang W, et al. (2009). Fine mapping of the grain chalkiness QTL qPGWC-7 in rice (Oryza sativa L.). Theor. Appl. Genet. 118: 581-590.
http://dx.doi.org/10.1007/s00122-008-0922-0
PMid:19020855
Zhu J and Weir BS (1994). Analysis of cytoplasmic and maternal effects II. Genetic models for triploid endosperm. Theor. Appl. Genet. 89: 160-166.
“Association of eNOS gene polymorphisms with essential hypertension in the Han population in southwestern China”, vol. 10, pp. 2202-2212, 2011.
, Bonnardeaux A, Nadaud S, Charru A, Jeunemaitre X, et al. (1995). Lack of evidence for linkage of the endothelial cell nitric oxide synthase gene to essential hypertension. Circulation 91: 96-102.
PMid:7528648
Chen W, Srinivasan SR, Li S, Boerwinkle E, et al. (2004). Gender-specific influence of NO synthase gene on blood pressure since childhood: the Bogalusa Heart Study. Hypertension 44: 668-673.
http://dx.doi.org/10.1161/01.HYP.0000145474.23750.2b
PMid:15466663
Derebecka N, Holysz M, Dankowski R, Wierzchowiecki M, et al. (2002). Polymorphism in intron 23 of the endothelial nitric oxide synthase gene (NOS3) is not associated with hypertension. Acta Biochim. Pol. 49: 263-268.
PMid:12136949
Dhangadamajhi G, Mohapatra BN, Kar SK and Ranjit M (2009). Endothelial nitric oxide synthase gene polymorphisms and Plasmodium falciparum infection in Indian adults. Infect. Immun. 77: 2943-2947.
http://dx.doi.org/10.1128/IAI.00083-09
PMid:19364839 PMCid:2708579
Fairchild TA, Fulton D, Fontana JT, Gratton JP, et al. (2001). Acidic hydrolysis as a mechanism for the cleavage of the Glu(298)→Asp variant of human endothelial nitric-oxide synthase. J. Biol. Chem. 276: 26674-26679.
http://dx.doi.org/10.1074/jbc.M103647200
PMid:11331296
Fischmann TO, Hruza A, Niu XD, Fossetta JD, et al. (1999). Structural characterization of nitric oxide synthase isoforms reveals striking active-site conservation. Nat. Struct. Biol. 6: 233-242.
http://dx.doi.org/10.1038/6675
PMid:10074942
Forstermann U, Nakane M, Tracey WR and Pollock JS (1993). Isoforms of nitric oxide synthase: functions in the cardiovascular system. Eur. Heart. J. 14 (Suppl I): 10-15.
Forstermann U, Closs EI, Pollock JS, Nakane M, et al. (1994). Nitric oxide synthase isozymes. Characterization, purification, molecular cloning, and functions. Hypertension 23: 1121-1131.
PMid:7515853
Forte P, Kneale BJ, Milne E, Chowienczyk PJ, et al. (1998). Evidence for a difference in nitric oxide biosynthesis between healthy women and men. Hypertension 32: 730-734.
PMid:9774371
Gamboa A, Shibao C, Diedrich A, Choi L, et al. (2007). Contribution of endothelial nitric oxide to blood pressure in humans. Hypertension 49: 170-177.
http://dx.doi.org/10.1161/01.HYP.0000252425.06216.26
PMid:17130304
Gluba A, Banach M, Rysz J, Piotrowski G, et al. (2009). Is polymorphism within eNOS gene associated with the late onset of myocardial infarction? A pilot study. Angiology 60: 588-595.
http://dx.doi.org/10.1177/0003319709335031
PMid:19505886
Haynes WG, Noon JP, Walker BR and Webb DJ (1993). Inhibition of nitric oxide synthesis increases blood pressure in healthy humans. J. Hypertens. 11: 1375-1380.
http://dx.doi.org/10.1097/00004872-199312000-00009
PMid:7510736
Hingorani AD (2001). Polymorphisms in endothelial nitric oxide synthase and atherogenesis: John French Lecture 2000. Atherosclerosis 154: 521-527.
http://dx.doi.org/10.1016/S0021-9150(00)00699-7
Huang PL, Huang Z, Mashimo H, Bloch KD, et al. (1995). Hypertension in mice lacking the gene for endothelial nitric oxide synthase. Nature 377: 239-242.
http://dx.doi.org/10.1038/377239a0
PMid:7545787
Jia CQ, Zhao ZT, Wang LH, Hao FR, et al. (2003). Relationship between mutation of exon G894 T of endothelial nitric oxide synthase gene and overweight to essential hypertension. Zhonghua Yu Fang Yi Xue Za Zhi 37: 365-367.
PMid:14680603
Kajiyama N, Saito Y, Miyamoto Y, Yoshimura M, et al. (2000). Lack of association between T-786→C mutation in the 5’-flanking region of the endothelial nitric oxide synthase gene and essential hypertension. Hypertens. Res. 23: 561-565.
http://dx.doi.org/10.1291/hypres.23.561
PMid:11131266
Karantzoulis-Fegaras F, Antoniou H, Lai SL, Kulkarni G, et al. (1999). Characterization of the human endothelial nitric-oxide synthase promoter. J. Biol. Chem. 274: 3076-3093.
http://dx.doi.org/10.1074/jbc.274.5.3076
PMid:9915847
Kato N, Sugiyama T, Morita H, Nabika T, et al. (1999). Lack of evidence for association between the endothelial nitric oxide synthase gene and hypertension. Hypertension 33: 933-936.
PMid:10205226
Khawaja MR, Taj F, Ahmad U, Saleheen D, et al. (2007). Association of endothelial nitric oxide synthase gene G894T polymorphism with essential hypertension in an adult Pakistani Pathan population. Int. J. Cardiol. 116: 113-115.
http://dx.doi.org/10.1016/j.ijcard.2006.04.019
PMid:16765468
Kishimoto T, Misawa Y, Kaetu A, Nagai M, et al. (2004). eNOS Glu298Asp polymorphism and hypertension in a cohort study in Japanese. Prev. Med. 39: 927-931.
http://dx.doi.org/10.1016/j.ypmed.2004.03.030
PMid:15475025
Kone BC (2000). Protein-protein interactions controlling nitric oxide synthases. Acta Physiol. Scand. 168: 27-31.
http://dx.doi.org/10.1046/j.1365-201x.2000.00629.x
PMid:10691776
Lacolley P, Gautier S, Poirier O, Pannier B, et al. (1998). Nitric oxide synthase gene polymorphisms, blood pressure and aortic stiffness in normotensive and hypertensive subjects. J. Hypertens. 16: 31-35.
http://dx.doi.org/10.1097/00004872-199816010-00006
PMid:9533414
Li DB, Hua Q and Pi L (2006). The relationship of T786C polymorphism of endothelial nitric oxide synthase gene to essential hypertension. J. Cap. Univ. Med. Sci. 27: 226-229.
Li DJ, Wu WF, Xu YL, Jiang XB, et al. (2009). Effect of G894T mutation in the endothelial nitric oxide synthase gene and abnormality of waist-to-hip ratio on essential hypertension. Chin. Gen. Pract. 12: 1173-1178.
Li R, Lyn D, Lapu-Bula R, Oduwole A, et al. (2004). Relation of endothelial nitric oxide synthase gene to plasma nitric oxide level, endothelial function, and blood pressure in African Americans. Am. J. Hypertens. 17: 560-567.
http://dx.doi.org/10.1016/j.amjhyper.2004.02.013
PMid:15233974
Liang Q, Yang XL, Yang G and Cui JH (2006). The relationship of angiotensin-converting enzyme and endothelial nitric oxide synthase gene polymorphisms In predisposition to essential hypertension.) J. Clin. Exp. Med. 5: 861-862.
Lifton RP, Gharavi AG and Geller DS (2001). Molecular mechanisms of human hypertension. Cell 104: 545-556.
http://dx.doi.org/10.1016/S0092-8674(01)00241-0
Liu HZ (2009). The association between endothelial nitric oxide synthase gene polymorphism and essential hypertension in the elderly. J. Math. Med. 22: 37-39.
Liu HZ and Ha DW (2002). Relationship between 894G? T polymorphism of endothelial nitric oxide synthase gene and essential hypertension. Chin. Circ. J. 17: 42-44.
Miyamoto Y, Saito Y, Kajiyama N, Yoshimura M, et al. (1998). Endothelial nitric oxide synthase gene is positively associated with essential hypertension. Hypertension 32: 3-8.
PMid:9674630
Miyamoto Y, Saito Y, Nakayama M, Shimasaki Y, et al. (2000). Replication protein A1 reduces transcription of the endothelial nitric oxide synthase gene containing a -786T→C mutation associated with coronary spastic angina. Hum. Mol. Genet. 9: 2629-2637.
http://dx.doi.org/10.1093/hmg/9.18.2629
PMid:11063722
Nakayama M, Yasue H, Yoshimura M, Shimasaki Y, et al. (1999). T-786→C mutation in the 5'-flanking region of the endothelial nitric oxide synthase gene is associated with coronary spasm. Circulation 99: 2864-2870.
PMid:10359729
Sandrim VC, Coelho EB, Nobre F, Arado GM, et al. (2006). Susceptible and protective eNOS haplotypes in hypertensive black and white subjects. Atherosclerosis 186: 428-432.
http://dx.doi.org/10.1016/j.atherosclerosis.2005.08.003
PMid:16168996
Serrano NC, Diaz LA, Casas JP, Hingorani AD, et al. (2010). Frequency of eNOS polymorphisms in the Colombian general population. BMC Genet. 11: 54.
http://dx.doi.org/10.1186/1471-2156-11-54
PMid:20565909 PMCid:2910657
Shoji M, Tsutaya S, Saito R, Takamatu H, et al. (2000). Positive association of endothelial nitric oxide synthase gene polymorphism with hypertension in northern Japan. Life Sci. 66: 2557-2562.
http://dx.doi.org/10.1016/S0024-3205(00)00589-0
Srivastava K, Narang R, Sreenivas V, Das S, et al. (2008). Association of eNOS Glu298Asp gene polymorphism with essential hypertension in Asian Indians. Clin. Chim. Acta 387: 80-83.
http://dx.doi.org/10.1016/j.cca.2007.09.007
PMid:17935708
Tan JC, Zhu ZM, Zhu SJ, Yu CQ, et al. (2004). Study on the relationship between nitric oxide synthase gene G894T polymorphism and hypertension related risk factors in patients with essential hypertension in Chongqing city. Zhonghua Liu Xing Bing Xue Za Zhi 25: 158-161.
PMid:15132873
Tang W, Yang Y, Wang B and Xiao C (2008). Association between a G894T polymorphism of eNOS gene and essential hypertension in Hani and Yi minority groups of China. Arch. Med. Res. 39: 222-225.
http://dx.doi.org/10.1016/j.arcmed.2007.08.002
PMid:18164968
Tesauro M, Thompson WC, Rogliani P, Qi L, et al. (2000). Intracellular processing of endothelial nitric oxide synthase isoforms associated with differences in severity of cardiopulmonary diseases: cleavage of proteins with aspartate vs glutamate at position 298. Proc. Natl. Acad. Sci. U.S.A. 97: 2832-2835.
http://dx.doi.org/10.1073/pnas.97.6.2832
Tsang KW, Ip SK, Leung R, Tipoe GL, et al. (2001). Exhaled nitric oxide: the effects of age, gender and body size. Lung 179: 83-91.
http://dx.doi.org/10.1007/s004080000050
PMid:11733851
Tsujita Y, Baba S, Yamauchi R, Mannami T, et al. (2001). Association analyses between genetic polymorphisms of endothelial nitric oxide synthase gene and hypertension in Japanese: the suita study. J. Hypertens. 19: 1941-1948.
http://dx.doi.org/10.1097/00004872-200111000-00003
PMid:11677358
Wang CJ, Zhao JB, Xu JL, Xiang ZL, et al. (2009). Meta-analysis on the association of G894T polymorphism in endothelial nitric oxide synthase gene and essential hypertension in Chinese population. Zhonghua Liu Xing Bing Xue Za Zhi 30: 845-849.
PMid:20193212
Wang XL and Wang J (2000). Endothelial nitric oxide synthase gene sequence variations and vascular disease. Mol. Genet. Metab. 70: 241-251.
http://dx.doi.org/10.1006/mgme.2000.3033
PMid:10993711
Wu H, Tang W, Li H, Zhou X, et al. (2006). Association of the beta2-adrenergic receptor gene with essential hypertension in the non-Han Chinese Yi minority human population. J. Hypertens. 24: 1041-1047.
http://dx.doi.org/10.1097/01.hjh.0000226193.21311.e1
PMid:16685203
Zhao Q, Su SY, Chen SF, Li B, et al. (2006). Association study of the endothelial nitric oxide synthase gene polymorphisms with essential hypertension in northern Han Chinese. Chin. Med. J. (Engl.) 119: 1065-1071.
Zhou JZ, Chen Y, Zhou Y and Zhong WB (2010). Association of endothelial nitric oxide synthase gene polymorphism with essential hypertension in Hans in Xinjiang. Clin. J. Med. Offic. 38: 391-393.
Zintzaras E, Kitsios G and Stefanidis I (2006). Endothelial NO synthase gene polymorphisms and hypertension: a meta-analysis. Hypertension 48: 700-710.
http://dx.doi.org/10.1161/01.HYP.0000238124.91161.02
PMid:16940230
“Association of KCNJ11 with impaired glucose regulation in essential hypertension”, vol. 10, pp. 1111-1119, 2011.
, Cederholm J and Wibell L (1990). Insulin release and peripheral sensitivity at the oral glucose tolerance test. Diabetes Res. Clin. Pract. 10: 167-175.
doi:10.1016/0168-8227(90)90040-Z
De Marco M, de Simone G, Roman MJ, Chinali M, et al. (2009). Cardiovascular and metabolic predictors of progression of prehypertension into hypertension: the strong heart study. Hypertension 54: 974-980.
doi:10.1161/HYPERTENSIONAHA.109.129031
PMid:19720957 PMCid:2776057
Dudbridge F (2003). Pedigree disequilibrium tests for multilocus haplotypes. Genet. Epidemiol. 25: 115-121.
doi:10.1002/gepi.10252
PMid:12916020
Florez JC, Jablonski KA, Kahn SE, Franks PW, et al. (2007). Type 2 diabetes-associated missense polymorphisms KCNJ11 E23K and ABCC8 A1369S influence progression to diabetes and response to interventions in the Diabetes Prevention Program. Diabetes 56: 531-536.
doi:10.2337/db06-0966
PMid:17259403 PMCid:2267937
Gloyn AL, Pearson ER, Antcliff JF, Proks P, et al. (2004). Activating mutations in the gene encoding the ATP-sensitive potassium-channel subunit Kir6.2 and permanent neonatal diabetes. N. Engl. J. Med. 350: 1838-1849.
doi:10.1056/NEJMoa032922
PMid:15115830
Hackam DG, Khan NA, Hemmelgarn BR, Rabkin SW, et al. (2010). The 2010 Canadian Hypertension Education Program recommendations for the management of hypertension: part 2 - therapy. Can. J. Cardiol. 26: 249-258.
doi:10.1016/S0828-282X(10)70379-2
Lin YW, Bushman JD, Yan FF, Haidar S, et al. (2008). Destabilization of ATP-sensitive potassium channel activity by novel KCNJ11 mutations identified in congenital hyperinsulinism. J. Biol. Chem. 283: 9146-9156.
doi:10.1074/jbc.M708798200
PMid:18250167 PMCid:2431039
Matthews DR, Hosker JP, Rudenski AS, Naylor BA, et al. (1985). Homeostasis model assessment: insulin resistance and beta-cell function from fasting plasma glucose and insulin concentrations in man. Diabetologia 28: 412-419.
doi:10.1007/BF00280883
PMid:3899825
Nielsen EM, Hansen L, Carstensen B, Echwald SM, et al. (2003). The E23K variant of Kir6.2 associates with impaired post-OGTT serum insulin response and increased risk of type 2 diabetes. Diabetes 52: 573-577.
doi:10.2337/diabetes.52.2.573
Ryder E, Gomez ME, Fernandez V, Campos G, et al. (2003). Presence of impaired insulin secretion and insulin resistance in normoglycemic male subjects with family history of type 2 diabetes. Diabetes Res. Clin. Pract. 60: 95-103.
doi:10.1016/S0168-8227(02)00282-6
Saxena R, Voight BF, Lyssenko V, Burtt NP, et al. (2007). Genome-wide association analysis identifies loci for type 2 diabetes and triglyceride levels. Science 316: 1331-1336.
doi:10.1126/science.1142358
PMid:17463246
Schaid DJ, Rowland CM, Tines DE, Jacobson RM, et al. (2002). Score tests for association between traits and haplotypes when linkage phase is ambiguous. Am. J. Hum. Genet. 70: 425-434.
doi:10.1086/338688
PMid:11791212
Scott LJ, Mohlke KL, Bonnycastle LL, Willer CJ, et al. (2007). A genome-wide association study of type 2 diabetes in Finns detects multiple susceptibility variants. Science 316: 1341-1345.
doi:10.1126/science.1142382
PMid:17463248
Seino S, Iwanaga T, Nagashima K and Miki T (2000). Diverse roles of K(ATP) channels learned from Kir6.2 genetically engineered mice. Diabetes 49: 311-318.
doi:10.2337/diabetes.49.3.311
PMid:10868950
Vaxillaire M, Veslot J, Dina C, Proenca C, et al. (2008). Impact of common type 2 diabetes risk polymorphisms in the DESIR prospective study. Diabetes 57: 244-254.
doi:10.2337/db07-0615
PMid:17977958
Villareal DT, Koster JC, Robertson H, Akrouh A, et al. (2009). Kir6.2 variant E23K increases ATP-sensitive K+ channel activity and is associated with impaired insulin release and enhanced insulin sensitivity in adults with normal glucose tolerance. Diabetes 58: 1869-1878.
doi:10.2337/db09-0025
PMid:19491206 PMCid:2712777
Vlasakova Z, Pelikanova T, Karasova L and Skibova J (2004). Insulin secretion, sensitivity, and metabolic profile of young healthy offspring of hypertensive parents. Metabolism 53: 469-475.
doi:10.1016/j.metabol.2003.10.030
PMid:15045694
Yokoi N, Kanamori M, Horikawa Y, Takeda J, et al. (2006). Association studies of variants in the genes involved in pancreatic beta-cell function in type 2 diabetes in Japanese subjects. Diabetes 55: 2379-2386.
doi:10.2337/db05-1203
PMid:16873704
Zeggini E, Weedon MN, Lindgren CM, Frayling TM, et al. (2007). Replication of genome-wide association signals in UK samples reveals risk loci for type 2 diabetes. Science 316: 1336-1341.
doi:10.1126/science.1142364
PMid:17463249
“Development and characterization of 60 microsatellite markers in the abalone Haliotis diversicolor”, vol. 10, pp. 860-866, 2011.
, Baranski M, Rourke M, Loughnan S, Austin C, et al. (2006). Isolation and characterization of 125 microsatellite DNA markers in the blacklip abalone, Haliotis rubra. Mol. Ecol. Notes 6: 740-746.
doi:10.1111/j.1471-8286.2006.01327.x
Carleton KL, Streelman JT, Lee BY, Garnhart N, et al. (2002). Rapid isolation of CA microsatellites from the tilapia genome. Anim. Genet. 33: 140-144.
doi:10.1046/j.1365-2052.2002.00817.x
PMid:12047227
Carlsson J (2008). Effects of microsatellite null alleles on assignment testing. J. Hered. 99: 616-623.
doi:10.1093/jhered/esn048
PMid:18535000
Cruz P, Ibarra AM, Fiore-Amaral G, Galindo-Sánchez CE, et al. (2005). Isolation of microsatellite loci in green abalone (Haliotis fulgens) and cross-species amplification in two other North American red (Haliotis rufescens) and pink (Haliotis corrugata) abalones. Mol. Ecol. Notes 5: 857-859.
doi:10.1111/j.1471-8286.2005.01088.x
Excoffier L, Laval G and Schneider S (2005). Arlequin (version 3.0): an integrated software package for population genetics data analysis. Evol. Bioinform. Online 1: 47-50.
PMid:19325852
Hedgecock D, Li G, Hubert S, Bucklin K, et al. (2004). Widespread null alleles and poor cross-species amplification of microsatellite DNA loci cloned from the Pacific oyster, Crassostrea gigas. J. Shellfish Res. 23: 379-385.
Ke C, Tian Y, Zhou S and Li H (2000). Preliminary studies on hybridization of three species of abalone. Mar. Sci. 24: 39-41.
McGoldrick DJ, Hedgecock D, English LJ, Baoprasertkul P, et al. (2000). The transmission of microsatellite alleles in Australian and North American stocks of the Pacific oyster (Crassostrea gigas): selection and null alleles. J. Shellfish Res. 19: 779-788.
Ren P, Wang Z, Yao C, Liu Y, et al. (2008). Development of 11 polymorphic microsatellite loci in the small abalone (Haliotis diversicolor Reeve). Mol. Ecol. Res. 8: 1390-1392.
doi:10.1111/j.1755-0998.2008.02329.x
Rice WR (1989). Analyzing tables of statistical tests. Evolution 43: 223-225.
doi:10.2307/2409177
Rouvay RW (2007). Abalone ranching: a review on genetic considerations. Aquacul. Res. 38: 1229-1241.
doi:10.1111/j.1365-2109.2007.01801.x
Ruhan S, Nicola RR, Nicol CVDB, Darrell LL, et al. (2008). Isolation and characterization of 63 microsatellite loci for the abalone, Haliotis midae. J. World Aquacult. Soc. 39: 429-435.
doi:10.1111/j.1749-7345.2008.00173.x
Schlotterer C (2004). The evolution of molecular markers-just a matter of fashion? Nat. Rev. Genet. 5: 63-69.
doi:10.1038/nrg1249
PMid:14666112
Shi Y, Wang Y, Qu Y, Ye H, et al. (2007). RAPD analysis on the first generation from inbreeding and crosses of wild and cultured abalone, Haliotis diversicolor Reeve. Mar. Fish. Res. 28: 47-53.
Wang Y and Guo X (2007). Development and characterization of EST-SSR markers in the eastern oyster Crassostrea virginica. Mar. Biotechnol. 9: 500-511.
doi:10.1007/s10126-007-9011-7
PMid:17558533
Wang Y, Wang A and Guo X (2009). Development and characterization of 30 polymorphic microsatellite markers for the Atlantic surfclam, Spisula solidissima (Dillwyn, 1817). Mol. Ecol. Res. 9: 1264-1267.
doi:10.1111/j.1755-0998.2009.02660.x
PMid:21564897
Zhan X, Hu HY, Ke CH, Hu SN, et al. (2009). Isolation and characterization of eleven microsatellite loci in small abalone, Haliotis diversicolor Reeve. Conserv. Genet. 10: 1185-1187.
doi:10.1007/s10592-008-9740-9
“Eight polymorphic microsatellite markers for the spotted babylon, Babylonia areolata (Buccinidae)”, vol. 10, pp. 3230-3235, 2011.
, Altena COVR and Gittenberger E (1981). The genus Babylonia (Prosobranchia, Buccinidae). Zool. Verh. 188: 1-57.
Carlsson J (2008). Effects of microsatellite null alleles on assignment testing. J. Hered. 99: 616-623.
http://dx.doi.org/10.1093/jhered/esn048
PMid:18535000
Chaitanawisuti N, Kritsanapuntu S and Natsukari Y (2002). Economic analysis of a pilot commercial production for spotted babylon, Babylonia areolata (Link, 1807), of marketable sizes using a flow-through culture system in Thailand. Aquacult. Res. 33: 1265-1272.
http://dx.doi.org/10.1046/j.1365-2109.2002.00790.x
Chen CY and Chou HN (1998). Transmission of the paralytic shellfish poisoning toxins, from dinoflagellate to gastropod. Toxicon 36: 515-522.
http://dx.doi.org/10.1016/S0041-0101(97)00093-7
Chen F, Ke CH, Wang DX, Chen J, et al. (2009). Isolation and characterization of microsatellite loci in Babylonia areolata and cross-species amplification in Babylonia formosae habei. Mol. Ecol. Resour. 9: 661-663.
http://dx.doi.org/10.1111/j.1755-0998.2008.02505.x
PMid:21564721
Chen F, Luo X, Wang D and Ke C (2011). Population structure of the spotted babylon, Babylonia areolata in three wild populations along the Chinese coastline revealed using AFLP fingerprinting. Biochem. Syst. Ecol. 38: 1103-1110.
http://dx.doi.org/10.1016/j.bse.2010.10.017
Excoffier L, Laval G and Schneider S (2005). Arlequin (version 3.0): an integrated software package for population genetics data analysis. Evol. Bioinform. Online 1: 47-50.
Hualkasin W, Tongchuai W, Chotigeat W and Phongdara A (2008). Phylogeography of Ivory shell (Babylonia areolata) in the Gulf of Thailand revealed by COI gene structure and differentiation of shell color by ITS1 DNA. Songklanakarin J. Sci. Technol. 30: 141-146.
Kritsanapuntu S, Chaitanawisuti N, Santhaweesuk W and Natsukari Y (2006). Growth, production and economic evaluation of earthen ponds for monoculture and polyculture of juveniles spotted babylon (Babylonia areolata) to marketable sizes using large-scale operation. J. Shellfish Res. 25: 913-918.
Liang F, Mao Y, Yu X and Liu H (2005). Experiment on artificial breeding of Babylonia areolata. Trans. Oceanol. Limnol. 1: 79-85.
Panichasuk P (1996). Areola Babylon, Babylonia areolata, Link 1807. Thai. Fish Gaz. 49: 107-117.
Pemberton JM, Slate J, Bancroft DR and Barrett JA (1995). Nonamplifying alleles at microsatellite loci: a caution for parentage and population studies. Mol. Ecol. 4: 249-252.
http://dx.doi.org/10.1111/j.1365-294X.1995.tb00214.x
PMid:7735527
Reece KS, Ribeiro WL, Gaffney PM, Carnegie RB, et al. (2004). Microsatellite marker development and analysis in the eastern oyster (Crassostrea virginica): Confirmation of null alleles and non-Mendelian segregation ratios. J. Hered. 95: 346-352.
http://dx.doi.org/10.1093/jhered/esh058
PMid:15247315
Rice WR (1989). Analyzing tables of statistical tests. Evolution 43: 223-225.
http://dx.doi.org/10.2307/2409177
Schuelke M (2000). An economic method for the fluorescent labeling of PCR fragments. Nat. Biotechnol. 18: 233-234.
http://dx.doi.org/10.1038/72708
PMid:10657137
Supanopas P, Sretarugsa P, Kruatrachue M, Pokethitiyook P, et al. (2005). Acute and subchronic toxicity of lead to the spotted babylon, Babylonia areolata (Neogastropoda, Buccinidae). J. Shellfish Res. 24: 91-98.
van Oosterhout C, William FH, Derek PMW and Peter S (2004). Micro-checker: software for identifying and correcting genotyping errors in microsatellite data. Mol. Ecol. Notes 4: 535-538.
http://dx.doi.org/10.1111/j.1471-8286.2004.00684.x
Wang Y, Liu N, Shi Y, Gu Z, et al. (2009a). Development and characterization of sixteen new microsatellite markers for the white-lipped pearl oyster, Pinctada maxima (Jameson, 1901). Mol. Ecol. Res. 9: 1460-1466.
Wang Y, Wang A and Guo X (2009b). Development and characterization of 30 polymorphic microsatellite markers for the Atlantic surfclam, Spisula solidissima (Dillwyn, 1817). Mol. Ecol. Resour. 9: 1264-1267.
http://dx.doi.org/10.1111/j.1755-0998.2009.02660.x
PMid:21564897
Wang Y, Wang A and Guo X (2010a). Development and characterization of polymorphic microsatellite markers for the northern quahog Mercenaria mercenaria (Linnaeus, 1758). J. Shellfish Res. 29: 77-82.
http://dx.doi.org/10.2983/035.029.0130
Wang Y, Wang X, Wang A and Guo X (2010b). A 16-microsatellite multiplex assay for parentage assignment in the eastern oyster (Crassostrea virginica Gmelin). Aquaculture 308: S28-S33.
http://dx.doi.org/10.1016/j.aquaculture.2010.05.037
Wang Y, Wang F, Shi YH, Gu ZF, et al. (2011). Development and characterization of 60 microsatellite markers in the abalone Haliotis diversicolor. Genet. Mol. Res. 10: 860-866.
http://dx.doi.org/10.4238/vol10-2gmr1182
PMid:21574142
Weetman D, Hauser L, Shaw PW and Bayes M (2005). Microsatellite markers for the whelk Buccinum undatum. Mol. Ecol. Notes 5: 361-362.
http://dx.doi.org/10.1111/j.1471-8286.2005.00926.x
“Mapping, expression and regulation of the TRα gene in porcine adipose tissue”, vol. 10, pp. 1320-1330, 2011.
, Duncan RE, Ahmadian M, Jaworski K, Sarkadi-Nagy E, et al. (2007). Regulation of lipolysis in adipocytes. Annu. Rev. Nutr. 27: 79-101.
doi:10.1146/annurev.nutr.27.061406.093734
PMid:17313320 PMCid:2885771
Faulhaber JD, Klor HU and Ditschuneit H (1972). New device for preparing thin slices of adipose tissue for metabolic studies in vitro. J. Lipid Res. 13: 816-819.
PMid:4565749
Hu ZL, Fritz ER and Reecy JM (2007). Animal QTLdb: a livestock QTL database tool set for positional QTL information mining and beyond. Nucleic Acids Res. 35: D604-D609.
doi:10.1093/nar/gkl946
PMid:17135205 PMCid:1781224
Jiang JP, Zhou J, Chen J and Wei XH (2007). Effect of chicken egg yolk antibody against adipose tissue plasma membranes on carcass composition and lipogenic hormones and enzymes in pigs. Livest. Sci. 107: 235-243.
doi:10.1016/j.livsci.2006.09.020
Jiang W, Miyamoto T, Kakizawa T, Sakuma T, et al. (2004). Expression of thyroid hormone receptor alpha in 3T3- L1 adipocytes; triiodothyronine increases the expression of lipogenic enzyme and triglyceride accumulation. J. Endocrinol. 182: 295-302.
doi:10.1677/joe.0.1820295
PMid:15283690
Levacher C, Sztalryd C, Kinebanyan MF and Picon L (1984). Effects of thyroid hormones on adipose tissue development in Sherman and Zucker rats. Am. J. Physiol. 246: C50-C56.
PMid:6364827
Liu YY, Schultz JJ and Brent GA (2003). A thyroid hormone receptor alpha gene mutation (P398H) is associated with visceral adiposity and impaired catecholamine-stimulated lipolysis in mice. J. Biol. Chem. 278: 38913-38920.
doi:10.1074/jbc.M306120200
PMid:12869545
Livak KJ and Schmittgen TD (2001). Analysis of relative gene expression data using real-time quantitative PCR and the 2-ΔΔCt Method. Methods 25: 402-408.
doi:10.1006/meth.2001.1262
PMid:11846609
Mersmann HJ (1998). Overview of the effects of beta-adrenergic receptor agonists on animal growth including mechanisms of action. J. Anim. Sci. 76: 160-172.
PMid:9464897
Miao ZG, Wang LJ, Xu ZR and Huang JF (2008). Age-related changes of serum leptin, insulin, IGF-I and thyroid hormones levels in growing Jinhua and Landrace gilts. J. Anim. Feed Sci. 17: 548-558.
Miao ZG, Wang LJ, Xu ZR and Huang JF (2009). Developmental changes of carcass composition, meat quality and organs in the Jinhua pig and Landrace. Animal 3: 468-473.
doi:10.1017/S1751731108003613
Milan D, Hawken R, Cabau C, Leroux S, et al. (2000). IMpRH server: an RH mapping server available on the Web. Bioinformatics 16: 558-559.
doi:10.1093/bioinformatics/16.6.558
PMid:10980153
Mishra A, Zhu XG, Ge K and Cheng SY (2010). Adipogenesis is differentially impaired by thyroid hormone receptor mutant isoforms. J. Mol. Endocrinol. 44: 247-255.
doi:10.1677/JME-09-0137
PMid:20080985
Mooradian AD and Albert SG (1999). The age-related changes in lipogenic enzymes: the role of dietary factors and thyroid hormone responsiveness. Mech. Ageing Dev. 108: 139-149.
doi:10.1016/S0047-6374(99)00007-X
Munoz A and Bernal J (1997). Biological activities of thyroid hormone receptors. Eur. J. Endocrinol. 137: 433-445.
doi:10.1530/eje.0.1370433
PMid:9405018
Oppenheimer JH, Schwartz HL, Lane JT and Thompson MP (1991). Functional relationship of thyroid hormone-induced lipogenesis, lipolysis, and thermogenesis in the rat. J. Clin. Invest. 87: 125-132.
doi:10.1172/JCI114961
PMid:1985090 PMCid:295007
Ortega FJ, Moreno-Navarrete JM, Ribas V, Esteve E, et al. (2009). Subcutaneous fat shows higher thyroid hormone receptor-alpha1 gene expression than omental fat. Obesity 17: 2134-2141.
doi:10.1038/oby.2009.110
PMid:19360007
Pelletier P, Gauthier K, Sideleva O, Samarut J, et al. (2008). Mice lacking the thyroid hormone receptor-alpha gene spend more energy in thermogenesis, burn more fat, and are less sensitive to high-fat diet-induced obesity. Endocrinology 149: 6471-6486.
doi:10.1210/en.2008-0718
PMid:18719022
Picon L and Levacher C (1979). Thyroid hormones and adipose tissue development. J. Physiol. 75: 539-543.
Ramsay TG and Richards MP (2007). Beta-adrenergic regulation of uncoupling protein expression in swine. Comp. Biochem. Physiol. A. Mol. Integr. Physiol. 147: 395-403.
doi:10.1016/j.cbpa.2007.01.007
Rule DC, Smith SB and Mersmann HJ (1987). Effects of adrenergic agonists and insulin on porcine adipose tissue lipid metabolism in vitro. J. Anim. Sci. 65: 136-149.
PMid:2886485
Tuca A, Giralt M, Villarroya F, Vinas O, et al. (1993). Ontogeny of thyroid hormone receptors and c-erbA expression during brown adipose tissue development: evidence of fetal acquisition of the mature thyroid status. Endocrinology 132: 1913-1920.
doi:10.1210/en.132.5.1913
PMid:8386604
Viguerie N, Millet L, Avizou S, Vidal H, et al. (2002). Regulation of human adipocyte gene expression by thyroid hormone. J. Clin. Endocrinol. Metab. 87: 630-634.
doi:10.1210/jc.87.2.630
Xu QF (2002). Regulation and Expression of Target Genes for Growth Hormone Action in Liver and Muscle of Pigs. DD Dissertation. Nanjing Agricultural University, Nanjing, 47-51.
Yen PM (2001). Physiological and molecular basis of thyroid hormone action. Physiol. Rev. 81: 1097-1142.
PMid:11427693
Yerle M, Pinton P, Robic A, Alfonso A, et al. (1998). Construction of a whole-genome radiation hybrid panel for high-resolution gene mapping in pigs. Cytogenet. Cell Genet. 82: 182-188.
doi:10.1159/000015095
Ying H, Araki O, Furuya F, Kato Y, et al. (2007). Impaired adipogenesis caused by a mutated thyroid hormone alpha1 receptor. Mol. Cell Biol. 27: 2359-2371.
doi:10.1128/MCB.02189-06
PMid:17220280 PMCid:1820484
“A novel DDX5 gene in the freshwater crayfish Cherax quadricarinatus is highly expressed during ontogenesis and spermatogenesis”, vol. 10, pp. 3963-3975, 2011.
, Abdelhaleem M (2005). RNA helicases: regulators of differentiation. Clin. Biochem. 38: 499-503.
http://dx.doi.org/10.1016/j.clinbiochem.2005.01.010
PMid:15885226
Altschul SF, Madden TL, Schaffer AA, Zhang J, et al. (1997). Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res. 25: 3389-3402.
http://dx.doi.org/10.1093/nar/25.17.3389
PMid:9254694 PMCid:146917
Barki A, Levi T, Hulata G and Karplus I (1997). Annual cycle spawning and molting in the red-claw crayfish, Cherax quadricarinatus, under laboratory conditions. Aquaculture 157: 239-249.
http://dx.doi.org/10.1016/S0044-8486(97)00163-4
Bugnot AB and López Greco LS (2009). Sperm production in the red claw crayfish Cherax quadricarinatus (Decapoda Parastacidae). Aquaculture 295: 292-299.
http://dx.doi.org/10.1016/j.aquaculture.2009.07.021
Claerhout T, Bendena W, Tobe SS and Borst DW (1996). Characterization of methyl transferase activity in the mandibular organ of the American lobster Homarus americanus. Biol. Bull. 191: 304-308.
Cordin O, Banroques J, Tanner NK and Linder P (2006). The DEAD-box protein family of RNA helicases. Gene 367: 17-37.
http://dx.doi.org/10.1016/j.gene.2005.10.019
PMid:16337753
Eddy EM (2002). Male germ cell gene expression. Recent Prog. Horm. Res. 57: 103-128.
http://dx.doi.org/10.1210/rp.57.1.103
PMid:12017539
Extavour CG (2005). The fate of isolated blastomeres with respect to germ cell formation in the amphipod crustacean Parhyale hawaiensis. Dev. Biol. 277: 387-402.
http://dx.doi.org/10.1016/j.ydbio.2004.09.030
PMid:15617682
Foulks NB and Hoffman DL (1974). The effects of eyestalk ablation and B-ecdysone on RNA synthesis in the androgenic glands of the protandric shrimp, Pandalus platyceros Brandt. Gen. Comp. Endocrinol. 22: 439-447.
http://dx.doi.org/10.1016/0016-6480(74)90018-5
Gustafson EA and Wessel GM (2010). DEAD-box helicases: posttranslational regulation and function. Biochem. Biophys. Res. Commun. 395: 1-6.
http://dx.doi.org/10.1016/j.bbrc.2010.02.172
PMid:20206133 PMCid:2863303
Heinlein UA (1998). Dead box for the living. J. Pathol. 184: 345-347.
http://dx.doi.org/10.1002/(SICI)1096-9896(199804)184:4<345::AID-PATH1243>3.0.CO;2-6
Iggo RD and Lane DP (1989). Nuclear protein p68 is an RNA-dependent ATPase. EMBO J. 8: 1827-1831.
PMid:2527746 PMCid:401029
Jost JP, Schwarz S, Hess D and Angliker (1999). A chicken embryo protein related to the mammalian DEAD box protein p68 is tightly associated with the highly purified protein-RNA complex of 5-MeC-DNA glycosylase. Nucleic Acids Res. 27: 3245-3252.
http://dx.doi.org/10.1093/nar/27.16.3245
PMid:10454630 PMCid:148556
Karplus I, Gideon H and Barki A (2003). Shifting the natural spring-summer breeding season of Australian freshwater crayfish Cherax quadricarinatus into winter by environmental manipulations. Aquaculture 220: 277-286.
http://dx.doi.org/10.1016/S0044-8486(02)00225-9
Khalaila I, Manor R, Weil S, Granot Y, et al. (2002). The eyestalk-androgenic gland-testis endocrine axis in the crayfish Cherax quadricarinatus. Gen. Comp. Endocrinol. 127: 147-156.
http://dx.doi.org/10.1016/S0016-6480(02)00031-X
Lane DP and Hoeffler WK (1980). SV40 large T shares an antigenic determinant with a cellular protein of molecular weight 68,000. Nature 288: 167-170.
http://dx.doi.org/10.1038/288167a0
PMid:6159551
LeMaire L and Heinlein UA (1993). High-level expression in male germ cells of murine P68 RNA helicase mRNA. Life Sci. 52: 917-926.
http://dx.doi.org/10.1016/0024-3205(93)90526-9
Li S, Wagner CA, Friesen JA and Borst DW (2003). 3-hydroxy-3-methylglutaryl-coenzyme A reductase in the lobster mandibular organ: regulation by the eyestalk. Gen. Comp. Endocrinol. 134: 147-155.
http://dx.doi.org/10.1016/S0016-6480(03)00246-6
Linder P (2006). Dead-box proteins: a family affair--active and passive players in RNP-remodeling. Nucleic Acids Res. 34: 4168-4180.
http://dx.doi.org/10.1093/nar/gkl468
PMid:16936318 PMCid:1616962
Liu ZR (2002). p68 RNA helicase is an essential human splicing factor that acts at the U1 snRNA-5ꞌ splice site duplex. Mol. Cell Biol. 22: 5443-5450.
http://dx.doi.org/10.1128/MCB.22.15.5443-5450.2002
PMid:12101238 PMCid:133941
Livak KJ and Schmittgen TD (2001). Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods 25: 402-408.
López Greco LS and Lo Nostro FL (2008). Structural changes of the spermatophore in the freshwater "red claw" crayfish Cherax quadricarinatus (von Martens 1898) (Decapoda Parastacidae). Acta Zool. 89: 149-155.
http://dx.doi.org/10.1111/j.1463-6395.2007.00303.x
Luo YL, Wu ZX, Chen XX and Shen XH (1999). Histological study on spermary development of Cherax quadricarinatus. J. Huazhong Agric. Univ. 18: 78-79.
Marcelo GG, Michel EH and Humberto V (2003). Description of the embryonic development of Cherax quadricarinatus (von Martens 1868) (Decapoda Parastacidae) based on the staging method. Crustaceana 76: 269-280.
http://dx.doi.org/10.1163/156854003765911676
McCormick S, Curie C, Eyal Y and Muschietti J (1994). Molecular biology of male gametogenesis. Euphytica 79: 245-250.
http://dx.doi.org/10.1007/BF00022525
Meistrich ML, Mohapatra B, Shirley CR and Zhao M (2003). Roles of transition nuclear proteins in spermiogenesis. Chromosoma 111: 483-488.
http://dx.doi.org/10.1007/s00412-002-0227-z
PMid:12743712
Meng FL, Zhao YL, Chen LQ and Gu ZM (2000). The study of embryonic development of Cherax quadricarinatus I. Morphogenesis of external structures of embryo. Zool. Res. 21: 468-472.
Olsen LC, Aasland R and Fjose A (1997). A vasa-like gene in zebrafish identifies putative primordial germ cells. Mech. Dev. 66: 95-105.
http://dx.doi.org/10.1016/S0925-4773(97)00099-3
Parvinen M (2005). The chromatoid body in spermatogenesis. Int. J. Androl 28: 189-201.
http://dx.doi.org/10.1111/j.1365-2605.2005.00542.x
PMid:16048630
Rocak S and Linder P (2004). DEAD-box proteins: the driving forces behind RNA metabolism. Nat. Rev. Mol. Cell Biol. 5: 232-241.
http://dx.doi.org/10.1038/nrm1335
PMid:14991003
Saffman EE and Lasko P (1999). Germline development in vertebrates and invertebrates. Cell Mol. Life Sci. 55: 1141-1163.
http://dx.doi.org/10.1007/s000180050363
PMid:10442094
Sandhu H, LeMaire L and Heinlein UA (1995). Male germ cell extracts contain proteins binding to the conserved 3'-end of mouse p68 RNA helicase mRNA. Biochem. Biophys. Res. Commun. 214: 632-638.
http://dx.doi.org/10.1006/bbrc.1995.2333
PMid:7677776
Schulz RW, de Franca LR, Lareyre JJ, Le GF, et al. (2010). Spermatogenesis in fish. Gen. Comp. Endocrinol. 165: 390-411.
http://dx.doi.org/10.1016/j.ygcen.2009.02.013
PMid:19348807
Sengoku T, Nureki O, Nakamura A, Kobayashi S, et al. (2006). Structural basis for RNA unwinding by the DEAD-box protein Drosophila Vasa. Cell 125: 287-300.
http://dx.doi.org/10.1016/j.cell.2006.01.054
PMid:16630817
Seufert DW, Kos R, Erickson CA and Swalla BJ (2000). p68, a DEAD-box RNA helicase, is expressed in chordate embryo neural and mesodermal tissues. J. Exp. Zool. 288: 193-204.
http://dx.doi.org/10.1002/1097-010X(20001015)288:3<193::AID-JEZ1>3.0.CO;2-V
Seydoux G and Braun RE (2006). Pathway to totipotency: lessons from germ cells. Cell 127: 891-904.
http://dx.doi.org/10.1016/j.cell.2006.11.016
PMid:17129777
Stevenson RJ, Hamilton SJ, MacCallum DE, Hall PA, et al. (1998). Expression of the 'dead box' RNA helicase p68 is developmentally and growth regulated and correlates with organ differentiation/maturation in the fetus. J. Pathol. 184: 351-359.
http://dx.doi.org/10.1002/(SICI)1096-9896(199804)184:4<351::AID-PATH1235>3.0.CO;2-C
Tamura K, Dudley J, Nei M and Kumar S (2007). MEGA4: molecular evolutionary genetics analysis (MEGA) software version 4.0. Mol. Biol. Evol. 24: 1596-1599.
http://dx.doi.org/10.1093/molbev/msm092
PMid:17488738
“Plasmid construction for genetic modification of dicotyledonous plants with a glycolate oxidizing pathway”, vol. 10. pp. 1356-1363, 2011.
, Bari R, Kebeish R, Kalamajka R, Rademacher T, et al. (2004). A glycolate dehydrogenase in the mitochondria of Arabidopsis thaliana. J. Exp. Bot. 55: 623-630.
doi:10.1093/jxb/erh079
PMid:14966218
Bowes G, Ogren WL and Hageman RH (1971). Phosphoglycolate production catalysed by ribulose diphosphate carboxylase. Biochem. Biophys. Res. Commun. 45: 716-722.
doi:10.1016/0006-291X(71)90475-X
Kebeish R, Niessen M, Thiruveedhi K, Bari R, et al. (2007). Chloroplastic photorespiratory bypass increases photosynthesis and biomass production in Arabidopsis thaliana. Nat. Biotechnol. 25: 593-599.
doi:10.1038/nbt1299
PMid:17435746
Keys AJ (1986). Rubisco: its role in photorespiration. Phil. Trans. R. Soc. Lond. 313: 325-336.
doi:10.1098/rstb.1986.0040
Kozaki A and Takeba G (1996). Photorespiration protects C3 plants from photooxidation. Nature 384: 557-560.
doi:10.1038/384557a0
Leegood RC, Lea PJ, Adcock MD and Häusler RE (1995). The regulation and control of photorespiration. J. Exp. Bot. 46: 1397-1414.
Lord JM (1972). Glycolate oxidoreductase in Escherichia coli. Biochim. Biophys. Acta 267: 227-237.
doi:10.1016/0005-2728(72)90111-9
Maroco JP, Ku MSB and Edwards GE (2000). Utilization of O2 in the metabolic optimization of C4 photosynthesis. Plant Cell Environ. 23: 115-121.
doi:10.1046/j.1365-3040.2000.00531.x
Pellicer MT, Badia J, Aguilar J and Baldoma L (1996). glc locus of Escherichia coli: characterization of genes encoding the subunits of glycolate oxidase and the glc regulator protein. J. Bacteriol. 178: 2051-2059.
PMid:8606183 PMCid:177904
“Lack of association between MD-2 promoter gene variants and tuberculosis”, vol. 9, pp. 1584-1590, 2010.
, Abel B, Thieblemont N, Quesniaux VJ, Brown N, et al. (2002). Toll-like receptor 4 expression is required to control chronic Mycobacterium tuberculosis infection in mice. J. Immunol. 169: 3155-3162.
PMid:12218133
Abreu MT, Arnold ET, Thomas LS, Gonsky R, et al. (2002). TLR4 and MD-2 expression is regulated by immune-mediated signals in human intestinal epithelial cells. J. Biol. Chem. 277: 20431-20437.
http://dx.doi.org/10.1074/jbc.M110333200
PMid:11923281
Branger J, Leemans JC, Florquin S, Weijer S, et al. (2004). Toll-like receptor 4 plays a protective role in pulmonary tuberculosis in mice. Int. Immunol. 16: 509-516.
http://dx.doi.org/10.1093/intimm/dxh052
PMid:14978024
Bulut Y, Michelsen KS, Hayrapetian L, Naiki Y, et al. (2005). Mycobacterium tuberculosis heat shock proteins use diverse Toll-like receptor pathways to activate pro-inflammatory signals. J. Biol. Chem. 280: 20961-20967.
http://dx.doi.org/10.1074/jbc.M411379200
PMid:15809303
Cooke GS and Hill AV (2001). Genetics of susceptibility to human infectious disease. Nat. Rev. Genet. 2: 967-977.
http://dx.doi.org/10.1038/35103577
PMid:11733749
Davila S, Hibberd ML, Hari DR, Wong HE, et al. (2008). Genetic association and expression studies indicate a role of Toll-like receptor 8 in pulmonary tuberculosis. PLoS. Genet. 4: e1000218.
http://dx.doi.org/10.1371/journal.pgen.1000218
PMid:18927625 PMCid:2568981
Drage MG, Pecora ND, Hise AG, Febbraio M, et al. (2009). TLR2 and its co-receptors determine responses of macrophages and dendritic cells to lipoproteins of Mycobacterium tuberculosis. Cell Immunol. 258: 29-37.
http://dx.doi.org/10.1016/j.cellimm.2009.03.008
PMid:19362712 PMCid:2730726
Ferwerda B, Kibiki GS, Netea MG, Dolmans WM, et al. (2007). The Toll-like receptor 4 Asp299Gly variant and tuberculosis susceptibility in HIV-infected patients in Tanzania. AIDS 21: 1375-1377.
http://dx.doi.org/10.1097/QAD.0b013e32814e6b2d
PMid:17545720
Gu W, Shan YA, Zhou J, Jiang DP, et al. (2007). Functional significance of gene polymorphisms in the promoter of myeloid differentiation-2. Ann. Surg. 246: 151-158.
http://dx.doi.org/10.1097/01.sla.0000262788.67171.3f
PMid:17592304 PMCid:1899213
Jo EK, Yang CS, Choi CH and Harding CV (2007). Intracellular signalling cascades regulating innate immune responses to Mycobacteria: branching out from Toll-like receptors. Cell Microbiol. 9: 1087-1098.
http://dx.doi.org/10.1111/j.1462-5822.2007.00914.x
PMid:17359235
Kamath AB, Alt J, Debbabi H and Behar SM (2003). Toll-like receptor 4-defective C3H/HeJ mice are not more susceptible than other C3H substrains to infection with Mycobacterium tuberculosis. Infect. Immun. 71: 4112-4118.
http://dx.doi.org/10.1128/IAI.71.7.4112-4118.2003
PMid:12819102 PMCid:162027
Ma X, Liu Y, Gowen BB, Graviss EA, et al. (2007). Full-exon resequencing reveals Toll-like receptor variants contribute to human susceptibility to tuberculosis disease. PLoS. One 2: e1318.
http://dx.doi.org/10.1371/journal.pone.0001318
PMid:18091991 PMCid:2117342
Means TK, Jones BW, Schromm AB, Shurtleff BA, et al. (2001). Differential effects of a Toll-like receptor antagonist on Mycobacterium tuberculosis-induced macrophage responses. J. Immunol. 166: 4074-4082.
PMid:11238656
Moller M, de Wit E and Hoal EG (2010). Past, present and future directions in human genetic susceptibility to tuberculosis. FEMS Immunol. Med. Microbiol. 58: 3-26.
http://dx.doi.org/10.1111/j.1574-695X.2009.00600.x
PMid:19780822
Nagai Y, Akashi S, Nagafuku M, Ogata M, et al. (2002). Essential role of MD-2 in LPS responsiveness and TLR4 distribution. Nat. Immunol. 3: 667-672.
PMid:12055629
Nishitani C, Takahashi M, Mitsuzawa H, Shimizu T, et al. (2009). Mutational analysis of Cys(88) of Toll-like receptor 4 highlights the critical role of MD-2 in cell surface receptor expression. Int. Immunol. 21: 925-934.
http://dx.doi.org/10.1093/intimm/dxp059
PMid:19556306
Pacheco E, Fonseca C, Montes C, Zabaleta J, et al. (2004). CD14 gene promoter polymorphism in different clinical forms of tuberculosis. FEMS Immunol. Med. Microbiol. 40: 207-213.
http://dx.doi.org/10.1016/S0928-8244(03)00369-9
Rosas-Taraco AG, Revol A, Salinas-Carmona MC, Rendon A, et al. (2007). CD14 C(-159)T polymorphism is a risk factor for development of pulmonary tuberculosis. J. Infect. Dis. 196: 1698-1706.
http://dx.doi.org/10.1086/522147
PMid:18008256
Rosman MD and Oner-Eyupoglu AF (1998). Clinical Presentation and Treatment of Tuberculosis. In: Fishman's Pulmonary Diseases and Disorders (Fishman AP, ed.). McGraw-Hill, New York, 2483-2502.
Rousseau F, Rehel R, Rouillard P, DeGranpre P, et al. (1994). High throughput and economical mutation detection and RFLP analysis using a minimethod for DNA preparation from whole blood and acrylamide gel electrophoresis. Hum. Mutat. 4: 51-54.
http://dx.doi.org/10.1002/humu.1380040107
PMid:7951258
Sandanger O, Ryan L, Bohnhorst J, Iversen AC, et al. (2009). IL-10 enhances MD-2 and CD14 expression in monocytes and the proteins are increased and correlated in HIV-infected patients. J. Immunol. 182: 588-595.
PMid:19109192
Shim TS, Turner OC and Orme IM (2003). Toll-like receptor 4 plays no role in susceptibility of mice to Mycobacterium tuberculosis infection. Tuberculosis 83: 367-371.
http://dx.doi.org/10.1016/S1472-9792(03)00071-4
Tissieres P, Dunn-Siegrist I, Schappi M, Elson G, et al. (2008). Soluble MD-2 is an acute-phase protein and an opsonin for Gram-negative bacteria. Blood 111: 2122-2131.
http://dx.doi.org/10.1182/blood-2007-06-097782
PMid:18056837
Velez DR, Wejse C, Stryjewski ME, Abbate E, et al. (2010). Variants in Toll-like receptors 2 and 9 influence susceptibility to pulmonary tuberculosis in Caucasians, African-Americans, and West Africans. Hum. Genet. 127: 65-73.
http://dx.doi.org/10.1007/s00439-009-0741-7
PMid:19771452 PMCid:2902366
Visintin A, Iliev DB, Monks BG, Halmen KA, et al. (2006). MD-2. Immunobiology 211: 437-447.
http://dx.doi.org/10.1016/j.imbio.2006.05.010
PMid:16920483
Wolfs TG, Dunn-Siegrist I, van't Veer C, Hodin CM, et al. (2008). Increased release of sMD-2 during human endotoxemia and sepsis: a role for endothelial cells. Mol. Immunol. 45: 3268-3277.
http://dx.doi.org/10.1016/j.molimm.2008.02.014
PMid:18384879
“Meta-analysis of epidemiological studies of association of P53 codon 72 polymorphism with bladder cancer”, vol. 9, pp. 1599-1605, 2010.
, Begg CB and Mazumdar M (1994). Operating characteristics of a rank correlation test for publication bias. Biometrics 50: 1088-1101.
http://dx.doi.org/10.2307/2533446
PMid:7786990
Chen WC, Tsai FJ, Wu JY, Wu HC, et al. (2000). Distributions of p53 codon 72 polymorphism in bladder cancer-proline form is prominent in invasive tumor. Urol. Res. 28: 293-296.
http://dx.doi.org/10.1007/s002400000117
PMid:11127705
Dai S, Mao C, Jiang L, Wang G, et al. (2009). p53 polymorphism and lung cancer susceptibility: a pooled analysis of 32 case-control studies. Hum. Genet. 125: 633-638.
http://dx.doi.org/10.1007/s00439-009-0664-3
PMid:19357867
Egger M, Davey SG, Schneider M and Minder C (1997). Bias in meta-analysis detected by a simple, graphical test. BMJ 315: 629-634.
http://dx.doi.org/10.1136/bmj.315.7109.629
PMid:9310563 PMCid:2127453
Hollstein M, Sidransky D, Vogelstein B and Harris CC (1991). p53 mutations in human cancers. Science 253: 49-53.
http://dx.doi.org/10.1126/science.1905840
PMid:1905840
Horikawa Y, Nadaoka J, Saito M, Kumazawa T, et al. (2008). Clinical implications of the MDM2 SNP309 and p53 Arg72Pro polymorphisms in transitional cell carcinoma of the bladder. Oncol. Rep. 20: 49-55.
PMid:18575717
Ioannidis JP, Boffetta P, Little J, O'Brien TR, et al. (2008). Assessment of cumulative evidence on genetic associations: interim guidelines. Int. J. Epidemiol. 37: 120-132.
http://dx.doi.org/10.1093/ije/dym159
PMid:17898028
Jemal A, Siegel R, Ward E, Hao Y, et al. (2008). Cancer statistics, 2008. CA Cancer J. Clin. 58: 71-96.
http://dx.doi.org/10.3322/CA.2007.0010
PMid:18287387
Kaufman DS, Shipley WU and Feldman AS (2009). Bladder cancer. Lancet 374: 239-249.
http://dx.doi.org/10.1016/S0140-6736(09)60491-8
Klug SJ, Ressing M, Koenig J, Abba MC, et al. (2009). TP53 codon 72 polymorphism and cervical cancer: a pooled analysis of individual data from 49 studies. Lancet Oncol. 10: 772-784.
http://dx.doi.org/10.1016/S1470-2045(09)70187-1
Koushik A, Tranah GJ, Ma J, Stampfer MJ, et al. (2006). p53 Arg72Pro polymorphism and risk of colorectal adenoma and cancer. Int. J. Cancer 119: 1863-1868.
http://dx.doi.org/10.1002/ijc.22057
PMid:16721787
Lee JM, Shun CT, Wu MT, Chen YY, et al. (2006). The associations of p53 overexpression with p53 codon 72 genetic polymorphism in esophageal cancer. Mutat. Res. 594: 181-188.
http://dx.doi.org/10.1016/j.mrfmmm.2005.09.003
PMid:16318864
Levine AJ (1997). p53, the cellular gatekeeper for growth and division. Cell 88: 323-331.
http://dx.doi.org/10.1016/S0092-8674(00)81871-1
Lopez-Beltran A, Escudero AL, Vicioso L, Munoz E, et al. (1996). Human papillomavirus DNA as a factor determining the survival of bladder cancer patients. Br. J. Cancer 73: 124-127.
http://dx.doi.org/10.1038/bjc.1996.23
PMid:8554974 PMCid:2074275
Mabrouk I, Baccouche S, El-Abed R, Mokdad-Gargouri R, et al. (2003). No evidence of correlation between p53 codon 72 polymorphism and risk of bladder or breast carcinoma in Tunisian patients. Ann. N. Y. Acad. Sci. 1010: 764-770.
http://dx.doi.org/10.1196/annals.1299.137
PMid:15033824
Maloney KE, Wiener JS and Walther PJ (1994). Oncogenic human papillomaviruses are rarely associated with squamous cell carcinoma of the bladder: evaluation by differential polymerase chain reaction. J. Urol. 151: 360-364.
PMid:8283525
Matakidou A, Eisen T and Houlston RS (2003). TP53 polymorphisms and lung cancer risk: a systematic review and meta-analysis. Mutagenesis 18: 377-385.
http://dx.doi.org/10.1093/mutage/geg008
PMid:12840112
Murgel de Castro Santos LE, Trindade Guilhen AC, Alves de AR, Garcia SL, et al. (2009). The role of TP53 Pro47Ser and Arg72Pro single nucleotide polymorphisms in the susceptibility to bladder cancer. Urol. Oncol. (in press). DOI: 10.1016/j.urolonc.2009.03.026.
http://dx.doi.org/10.1016/j.urolonc.2009.03.026
Rubben H, Lutzeyer W, Fischer N, Deutz F, et al. (1988). Natural history and treatment of low and high risk superficial bladder tumors. J. Urol. 139: 283-285.
PMid:3339726
Simoneau M, LaRue H and Fradet Y (1999). Low frequency of human papillomavirus infection in initial papillary bladder tumors. Urol. Res. 27: 180-184.
http://dx.doi.org/10.1007/s002400050107
PMid:10422819
Soulitzis N, Sourvinos G, Dokianakis DN and Spandidos DA (2002). p53 codon 72 polymorphism and its association with bladder cancer. Cancer Lett. 179: 175-183.
http://dx.doi.org/10.1016/S0304-3835(01)00867-9
Sousa H, Santos AM, Pinto D and Medeiros R (2007). Is the p53 codon 72 polymorphism a key biomarker for cervical cancer development? A meta-analysis review within European populations. Int. J. Mol. Med. 20: 731-741.
PMid:17912468
Tommiska J, Eerola H, Heinonen M, Salonen L, et al. (2005). Breast cancer patients with p53 Pro72 homozygous genotype have a poorer survival. Clin. Cancer Res. 11: 5098-5103.
http://dx.doi.org/10.1158/1078-0432.CCR-05-0173
PMid:16033823
Toruner GA, Ucar A, Tez M, Cetinkaya M, et al. (2001). p53 codon 72 polymorphism in bladder cancer - no evidence of association with increased risk or invasiveness. Urol. Res. 29: 393-395.
http://dx.doi.org/10.1007/s002400100218
PMid:11828992
Zhou Y, Li N, Zhuang W, Liu GJ, et al. (2007). p53 codon 72 polymorphism and gastric cancer: a meta-analysis of the literature. Int. J. Cancer 121: 1481-1486.
http://dx.doi.org/10.1002/ijc.22833
PMid:17546594
“Increased gene coverage and Alu frequency in large linkage disequilibrium blocks of the human genome”, vol. 6, pp. 1131-1141, 2007.
,