Publications

Found 11 results
Filters: Author is Y.F. Li  [Clear All Filters]
2016
Y. F. Li, Su, N., Chen, S. Y., Hu, W. X., Li, F. F., Jiang, Z. P., Yu, X. Q., Li, Y. F., Su, N., Chen, S. Y., Hu, W. X., Li, F. F., Jiang, Z. P., Yu, X. Q., Li, Y. F., Su, N., Chen, S. Y., Hu, W. X., Li, F. F., Jiang, Z. P., and Yu, X. Q., Genetic background of Escherichia coli isolates from peritoneal dialysis patients with peritonitis and uninfected control subjects, vol. 15, p. -, 2016.
Y. F. Li, Su, N., Chen, S. Y., Hu, W. X., Li, F. F., Jiang, Z. P., Yu, X. Q., Li, Y. F., Su, N., Chen, S. Y., Hu, W. X., Li, F. F., Jiang, Z. P., Yu, X. Q., Li, Y. F., Su, N., Chen, S. Y., Hu, W. X., Li, F. F., Jiang, Z. P., and Yu, X. Q., Genetic background of Escherichia coli isolates from peritoneal dialysis patients with peritonitis and uninfected control subjects, vol. 15, p. -, 2016.
Y. F. Li, Su, N., Chen, S. Y., Hu, W. X., Li, F. F., Jiang, Z. P., Yu, X. Q., Li, Y. F., Su, N., Chen, S. Y., Hu, W. X., Li, F. F., Jiang, Z. P., Yu, X. Q., Li, Y. F., Su, N., Chen, S. Y., Hu, W. X., Li, F. F., Jiang, Z. P., and Yu, X. Q., Genetic background of Escherichia coli isolates from peritoneal dialysis patients with peritonitis and uninfected control subjects, vol. 15, p. -, 2016.
Y. F. Xu, Liang, X., Chen, Y. R., Li, Y. F., Yang, J. L., Xu, Y. F., Liang, X., Chen, Y. R., Li, Y. F., and Yang, J. L., Wnt7b gene expression and functional analysis in the mussel Mytilus coruscus, vol. 15, no. 4, p. -, 2016.
Conflicts of interest The authors declare no conflicts of interest. ACKNOWLEDGMENTS Research supported by the National Natural Science Foundation of China (#31101885 and #41476131), the Peak Discipline Program for Fisheries from the Shanghai Municipal Government, and the Shanghai Ocean University Doctoral Research Foundation (#A2-0203-00-100320). REFERENCES Beretta CA, Brinkmann I, Carl M, et al (2011). All four zebrafish Wnt7 genes are expressed during early brain development. Gene Expr. Patterns 11: 277-284.http://dx.doi.org/10.1016/j.gep.2011.01.004 Cadigan KM, Nusse R, et al (1997). Wnt signaling: a common theme in animal development. Genes Dev. 11: 3286-3305.http://dx.doi.org/10.1101/gad.11.24.3286 Chandramouli KH, Sun J, Mok FS, Liu L, et al (2013). Transcriptome and quantitative proteome analysis reveals molecular processes associated with larval metamorphosis in the polychaete Pseudopolydora vexillosa. J. Proteome Res. 12: 1344-1358.http://dx.doi.org/10.1021/pr3010088 Chang KM, Wu JF, et al (2007). Study on artificial propagation of Mytilus coruscus. South. Chin. Fish. 3: 26-30. Chen XG, Jiang X, Gu J, Xu M, et al (2015). Genome sequence of the Asian Tiger mosquito, Aedes albopictus, reveals insights into its biology, genetics, and evolution. Proc. Natl. Acad. Sci. USA 112: E5907-E5915.http://dx.doi.org/10.1073/pnas.1516410112 Daneman R, Agalliu D, Zhou L, Kuhnert F, et al (2009). Wnt/β-catenin signaling is required for CNS, but not non-CNS, angiogenesis. Proc. Natl. Acad. Sci. USA 106: 641-646.http://dx.doi.org/10.1073/pnas.0805165106 Gao J, Liu J, Yang Y, Liang J, et al (2016). Identification and expression characterization of three Wnt signaling genes in pearl oyster (Pinctada fucata). Comp. Biochem. Physiol. B Biochem. Mol. Biol. 196-197: 92-101.http://dx.doi.org/10.1016/j.cbpb.2016.03.003 Grzeschik KH, Bornholdt D, Oeffner F, König A, et al (2007). Deficiency of PORCN, a regulator of Wnt signaling, is associated with focal dermal hypoplasia. Nat. Genet. 39: 833-835.http://dx.doi.org/10.1038/ng2052 Johnson ML, Rajamannan N, et al (2006). Diseases of Wnt signaling. Rev. Endocr. Metab. Disord. 7: 41-49.http://dx.doi.org/10.1007/s11154-006-9003-3 Kubota T, Michigami T, Ozono K, et al (2009). Wnt signaling in bone metabolism. J. Bone Miner. Metab. 27: 265-271.http://dx.doi.org/10.1007/s00774-009-0064-8 Li YF, Chen YR, Yang JL, Bao WY, et al (2014a). Effects of substratum type on bacterial community structure in biofilms in relation to settlement of plantigrades of the mussel Mytilus coruscus. Int. Biodeter. Biodegr 96: 41-49. http://dx.doi.org/10.1016/j.ibiod.2014.08.012 Li YF, Guo XP, Yang JL, Liang X, et al (2014b). Effects of bacterial biofilms on settlement of plantigrades of the mussel Mytilus coruscus. Aquaculture 433: 434-441. http://dx.doi.org/10.1016/j.aquaculture.2014.06.031 Lippmann ES, Azarin SM, Kay JE, Nessler RA, et al (2012). Derivation of blood-brain barrier endothelial cells from human pluripotent stem cells. Nat. Biotechnol. 30: 783-791.http://dx.doi.org/10.1038/nbt.2247 Livak KJ, Schmittgen TD, et al (2001). Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Δ Δ C(T)) Method. Methods 25: 402-408.http://dx.doi.org/10.1006/meth.2001.1262 Luis TC, Weerkamp F, Naber BAE, Baert MRM, et al (2009). Wnt3a deficiency irreversibly impairs hematopoietic stem cell self-renewal and leads to defects in progenitor cell differentiation. Blood 113: 546-554.http://dx.doi.org/10.1182/blood-2008-06-163774 McMahon AP, et al (1992). The Wnt family of developmental regulators. Trends Genet. 8: 236-242. http://dx.doi.org/10.1016/0168-9525(92)90393-I Meyer E, Aglyamova GV, Wang S, Buchanan-Carter J, et al (2009). Sequencing and de novo analysis of a coral larval transcriptome using 454 GSFlx. BMC Genomics 10: 219.http://dx.doi.org/10.1186/1471-2164-10-219 Miyake M, Yamashiro K, Tabara Y, Suda K, Nagahama Study Groupet al (2015). Identification of myopia-associated WNT7B polymorphisms provides insights into the mechanism underlying the development of myopia. Nat. Commun. 6: 6689.http://dx.doi.org/10.1038/ncomms7689 Moon RT, et al (1993). In pursuit of the functions of the Wnt family of developmental regulators: insights from Xenopus laevis. BioEssays 15: 91-97.http://dx.doi.org/10.1002/bies.950150204 Nicol B, Guiguen Y, et al (2011). Expression profiling of Wnt signaling genes during gonadal differentiation and gametogenesis in rainbow trout. Sex Dev. 5: 318-329.http://dx.doi.org/10.1159/000334515 Nusse R, Varmus HE, et al (1992). Wnt genes. Cell 69: 1073-1087.http://dx.doi.org/10.1016/0092-8674(92)90630-U Parr BA, Cornish VA, Cybulsky MI, McMahon AP, et al (2001). Wnt7b regulates placental development in mice. Dev. Biol. 237: 324-332.http://dx.doi.org/10.1006/dbio.2001.0373 Peltoketo H, Rivero-Müller A, Ahtiainen P, Poutanen M, et al (2010). Consequences of genetic manipulations of gonadotrophins and gonadotrophin receptors in mice. Ann. Endocrinol. (Paris) 71: 170-176.http://dx.doi.org/10.1016/j.ando.2010.02.022 Prud’homme B, Lartillot N, Balavoine G, Adoutte A, et al (2002). Phylogenetic analysis of the Wnt gene family. Insights from lophotrochozoan members. Curr. Biol. 12: 1395-1400.http://dx.doi.org/10.1016/S0960-9822(02)01068-0 Reya T, Clevers H, et al (2005). Wnt signalling in stem cells and cancer. Nature 434: 843-850.http://dx.doi.org/10.1038/nature03319 Schubert M, Holland LZ, Holland ND, et al (2000). Characterization of two amphioxus Wnt genes (AmphiWnt4 and AmphiWnt7b) with early expression in the developing central nervous system. Dev. Dyn. 217: 205-215.http://dx.doi.org/10.1002/(SICI)1097-0177(200002)217:2<205::AID-DVDY7>3.0.CO;2-F Shu W, Jiang YQ, Lu MM, Morrisey EE, et al (2002). Wnt7b regulates mesenchymal proliferation and vascular development in the lung. Development 129: 4831-4842. Sidow A, et al (1992). Diversification of the Wnt gene family on the ancestral lineage of vertebrates. Proc. Natl. Acad. Sci. USA 89: 5098-5102.http://dx.doi.org/10.1073/pnas.89.11.5098 Siegfried E, Perrimon N, et al (1994). Drosophila wingless: a paradigm for the function and mechanism of Wnt signaling. BioEssays 16: 395-404.http://dx.doi.org/10.1002/bies.950160607 Sullivan JC, Ryan JF, Mullikin JC, Finnerty JR, et al (2007). Conserved and novel Wnt clusters in the basal eumetazoan Nematostella vectensis. Dev. Genes Evol. 217: 235-239.http://dx.doi.org/10.1007/s00427-007-0136-5 Vainio S, Heikkilä M, Kispert A, Chin N, et al (1999). Female development in mammals is regulated by Wnt-4 signalling. Nature 397: 405-409.http://dx.doi.org/10.1038/17068 Van Camp JK, Beckers S, Zegers D, Van Hul W, et al (2014). Wnt signaling and the control of human stem cell fate. Stem Cell Rev. 10: 207-229.http://dx.doi.org/10.1007/s12015-013-9486-8 Wong YH, Wang H, Ravasi T, Qian PY, et al (2012). Involvement of Wnt signaling pathways in the metamorphosis of the bryozoan Bugula neritina. PLoS One 7: e33323.http://dx.doi.org/10.1371/journal.pone.0033323 Yang JL, Satuito CG, Bao WY, Kitamura H, et al (2007). Larval settlement and metamorphosis of the mussel Mytilus galloprovincialis on different macroalgae. Mar. Biol. 152: 1121-1132. http://dx.doi.org/10.1007/s00227-007-0759-0 Yang JL, Li SH, Li YF, Liu ZW, et al (2013a). Effects of neuroactive compounds, ions and organic solvents on larval metamorphosis of the mussel Mytilus coruscus. Aquaculture 396-399: 106-112. http://dx.doi.org/10.1016/j.aquaculture.2013.02.039 Yang JL, Li SH, Liu ZW, Li WS, et al (2013b). Primary study on neuronal development of the embryo and early larvae of the mussel Mytilus coruscus. J. Fish. Chin. 37: 512-519. http://dx.doi.org/10.3724/SP.J.1231.2013.38433 Yang JL, Shen PJ, Liang X, Li YF, et al (2013c). Larval settlement and metamorphosis of the mussel Mytilus coruscus in response to monospecific bacterial biofilms. Biofouling 29: 247-259.http://dx.doi.org/10.1080/08927014.2013.764412 Yang JL, Li WS, Liang X, Li YF, et al (2014). Effects of adrenoceptor compounds on larval metamorphosis of the mussel Mytilus coruscus. Aquaculture 426-427: 282-287. http://dx.doi.org/10.1016/j.aquaculture.2014.02.019 Yeo EJ, Cassetta L, Qian BZ, Lewkowich I, et al (2014). Myeloid WNT7b mediates the angiogenic switch and metastasis in breast cancer. Cancer Res. 74: 2962-2973.http://dx.doi.org/10.1158/0008-5472.CAN-13-2421 Yokoi H, Nishimatsu A, Ozato K, Yoda K, et al (2003). Cloning and embryonic expression of six wnt genes in the medaka (Oryzias latipes) with special reference to expression of wnt5a in the pectoral fin buds. Dev. Growth Differ. 45: 51-61.http://dx.doi.org/10.1046/j.1440-169X.2003.00674.x
Y. F. Xu, Liang, X., Chen, Y. R., Li, Y. F., Yang, J. L., Xu, Y. F., Liang, X., Chen, Y. R., Li, Y. F., and Yang, J. L., Wnt7b gene expression and functional analysis in the mussel Mytilus coruscus, vol. 15, no. 4, p. -, 2016.
Conflicts of interest The authors declare no conflicts of interest. ACKNOWLEDGMENTS Research supported by the National Natural Science Foundation of China (#31101885 and #41476131), the Peak Discipline Program for Fisheries from the Shanghai Municipal Government, and the Shanghai Ocean University Doctoral Research Foundation (#A2-0203-00-100320). REFERENCES Beretta CA, Brinkmann I, Carl M, et al (2011). All four zebrafish Wnt7 genes are expressed during early brain development. Gene Expr. Patterns 11: 277-284.http://dx.doi.org/10.1016/j.gep.2011.01.004 Cadigan KM, Nusse R, et al (1997). Wnt signaling: a common theme in animal development. Genes Dev. 11: 3286-3305.http://dx.doi.org/10.1101/gad.11.24.3286 Chandramouli KH, Sun J, Mok FS, Liu L, et al (2013). Transcriptome and quantitative proteome analysis reveals molecular processes associated with larval metamorphosis in the polychaete Pseudopolydora vexillosa. J. Proteome Res. 12: 1344-1358.http://dx.doi.org/10.1021/pr3010088 Chang KM, Wu JF, et al (2007). Study on artificial propagation of Mytilus coruscus. South. Chin. Fish. 3: 26-30. Chen XG, Jiang X, Gu J, Xu M, et al (2015). Genome sequence of the Asian Tiger mosquito, Aedes albopictus, reveals insights into its biology, genetics, and evolution. Proc. Natl. Acad. Sci. USA 112: E5907-E5915.http://dx.doi.org/10.1073/pnas.1516410112 Daneman R, Agalliu D, Zhou L, Kuhnert F, et al (2009). Wnt/β-catenin signaling is required for CNS, but not non-CNS, angiogenesis. Proc. Natl. Acad. Sci. USA 106: 641-646.http://dx.doi.org/10.1073/pnas.0805165106 Gao J, Liu J, Yang Y, Liang J, et al (2016). Identification and expression characterization of three Wnt signaling genes in pearl oyster (Pinctada fucata). Comp. Biochem. Physiol. B Biochem. Mol. Biol. 196-197: 92-101.http://dx.doi.org/10.1016/j.cbpb.2016.03.003 Grzeschik KH, Bornholdt D, Oeffner F, König A, et al (2007). Deficiency of PORCN, a regulator of Wnt signaling, is associated with focal dermal hypoplasia. Nat. Genet. 39: 833-835.http://dx.doi.org/10.1038/ng2052 Johnson ML, Rajamannan N, et al (2006). Diseases of Wnt signaling. Rev. Endocr. Metab. Disord. 7: 41-49.http://dx.doi.org/10.1007/s11154-006-9003-3 Kubota T, Michigami T, Ozono K, et al (2009). Wnt signaling in bone metabolism. J. Bone Miner. Metab. 27: 265-271.http://dx.doi.org/10.1007/s00774-009-0064-8 Li YF, Chen YR, Yang JL, Bao WY, et al (2014a). Effects of substratum type on bacterial community structure in biofilms in relation to settlement of plantigrades of the mussel Mytilus coruscus. Int. Biodeter. Biodegr 96: 41-49. http://dx.doi.org/10.1016/j.ibiod.2014.08.012 Li YF, Guo XP, Yang JL, Liang X, et al (2014b). Effects of bacterial biofilms on settlement of plantigrades of the mussel Mytilus coruscus. Aquaculture 433: 434-441. http://dx.doi.org/10.1016/j.aquaculture.2014.06.031 Lippmann ES, Azarin SM, Kay JE, Nessler RA, et al (2012). Derivation of blood-brain barrier endothelial cells from human pluripotent stem cells. Nat. Biotechnol. 30: 783-791.http://dx.doi.org/10.1038/nbt.2247 Livak KJ, Schmittgen TD, et al (2001). Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Δ Δ C(T)) Method. Methods 25: 402-408.http://dx.doi.org/10.1006/meth.2001.1262 Luis TC, Weerkamp F, Naber BAE, Baert MRM, et al (2009). Wnt3a deficiency irreversibly impairs hematopoietic stem cell self-renewal and leads to defects in progenitor cell differentiation. Blood 113: 546-554.http://dx.doi.org/10.1182/blood-2008-06-163774 McMahon AP, et al (1992). The Wnt family of developmental regulators. Trends Genet. 8: 236-242. http://dx.doi.org/10.1016/0168-9525(92)90393-I Meyer E, Aglyamova GV, Wang S, Buchanan-Carter J, et al (2009). Sequencing and de novo analysis of a coral larval transcriptome using 454 GSFlx. BMC Genomics 10: 219.http://dx.doi.org/10.1186/1471-2164-10-219 Miyake M, Yamashiro K, Tabara Y, Suda K, Nagahama Study Groupet al (2015). Identification of myopia-associated WNT7B polymorphisms provides insights into the mechanism underlying the development of myopia. Nat. Commun. 6: 6689.http://dx.doi.org/10.1038/ncomms7689 Moon RT, et al (1993). In pursuit of the functions of the Wnt family of developmental regulators: insights from Xenopus laevis. BioEssays 15: 91-97.http://dx.doi.org/10.1002/bies.950150204 Nicol B, Guiguen Y, et al (2011). Expression profiling of Wnt signaling genes during gonadal differentiation and gametogenesis in rainbow trout. Sex Dev. 5: 318-329.http://dx.doi.org/10.1159/000334515 Nusse R, Varmus HE, et al (1992). Wnt genes. Cell 69: 1073-1087.http://dx.doi.org/10.1016/0092-8674(92)90630-U Parr BA, Cornish VA, Cybulsky MI, McMahon AP, et al (2001). Wnt7b regulates placental development in mice. Dev. Biol. 237: 324-332.http://dx.doi.org/10.1006/dbio.2001.0373 Peltoketo H, Rivero-Müller A, Ahtiainen P, Poutanen M, et al (2010). Consequences of genetic manipulations of gonadotrophins and gonadotrophin receptors in mice. Ann. Endocrinol. (Paris) 71: 170-176.http://dx.doi.org/10.1016/j.ando.2010.02.022 Prud’homme B, Lartillot N, Balavoine G, Adoutte A, et al (2002). Phylogenetic analysis of the Wnt gene family. Insights from lophotrochozoan members. Curr. Biol. 12: 1395-1400.http://dx.doi.org/10.1016/S0960-9822(02)01068-0 Reya T, Clevers H, et al (2005). Wnt signalling in stem cells and cancer. Nature 434: 843-850.http://dx.doi.org/10.1038/nature03319 Schubert M, Holland LZ, Holland ND, et al (2000). Characterization of two amphioxus Wnt genes (AmphiWnt4 and AmphiWnt7b) with early expression in the developing central nervous system. Dev. Dyn. 217: 205-215.http://dx.doi.org/10.1002/(SICI)1097-0177(200002)217:2<205::AID-DVDY7>3.0.CO;2-F Shu W, Jiang YQ, Lu MM, Morrisey EE, et al (2002). Wnt7b regulates mesenchymal proliferation and vascular development in the lung. Development 129: 4831-4842. Sidow A, et al (1992). Diversification of the Wnt gene family on the ancestral lineage of vertebrates. Proc. Natl. Acad. Sci. USA 89: 5098-5102.http://dx.doi.org/10.1073/pnas.89.11.5098 Siegfried E, Perrimon N, et al (1994). Drosophila wingless: a paradigm for the function and mechanism of Wnt signaling. BioEssays 16: 395-404.http://dx.doi.org/10.1002/bies.950160607 Sullivan JC, Ryan JF, Mullikin JC, Finnerty JR, et al (2007). Conserved and novel Wnt clusters in the basal eumetazoan Nematostella vectensis. Dev. Genes Evol. 217: 235-239.http://dx.doi.org/10.1007/s00427-007-0136-5 Vainio S, Heikkilä M, Kispert A, Chin N, et al (1999). Female development in mammals is regulated by Wnt-4 signalling. Nature 397: 405-409.http://dx.doi.org/10.1038/17068 Van Camp JK, Beckers S, Zegers D, Van Hul W, et al (2014). Wnt signaling and the control of human stem cell fate. Stem Cell Rev. 10: 207-229.http://dx.doi.org/10.1007/s12015-013-9486-8 Wong YH, Wang H, Ravasi T, Qian PY, et al (2012). Involvement of Wnt signaling pathways in the metamorphosis of the bryozoan Bugula neritina. PLoS One 7: e33323.http://dx.doi.org/10.1371/journal.pone.0033323 Yang JL, Satuito CG, Bao WY, Kitamura H, et al (2007). Larval settlement and metamorphosis of the mussel Mytilus galloprovincialis on different macroalgae. Mar. Biol. 152: 1121-1132. http://dx.doi.org/10.1007/s00227-007-0759-0 Yang JL, Li SH, Li YF, Liu ZW, et al (2013a). Effects of neuroactive compounds, ions and organic solvents on larval metamorphosis of the mussel Mytilus coruscus. Aquaculture 396-399: 106-112. http://dx.doi.org/10.1016/j.aquaculture.2013.02.039 Yang JL, Li SH, Liu ZW, Li WS, et al (2013b). Primary study on neuronal development of the embryo and early larvae of the mussel Mytilus coruscus. J. Fish. Chin. 37: 512-519. http://dx.doi.org/10.3724/SP.J.1231.2013.38433 Yang JL, Shen PJ, Liang X, Li YF, et al (2013c). Larval settlement and metamorphosis of the mussel Mytilus coruscus in response to monospecific bacterial biofilms. Biofouling 29: 247-259.http://dx.doi.org/10.1080/08927014.2013.764412 Yang JL, Li WS, Liang X, Li YF, et al (2014). Effects of adrenoceptor compounds on larval metamorphosis of the mussel Mytilus coruscus. Aquaculture 426-427: 282-287. http://dx.doi.org/10.1016/j.aquaculture.2014.02.019 Yeo EJ, Cassetta L, Qian BZ, Lewkowich I, et al (2014). Myeloid WNT7b mediates the angiogenic switch and metastasis in breast cancer. Cancer Res. 74: 2962-2973.http://dx.doi.org/10.1158/0008-5472.CAN-13-2421 Yokoi H, Nishimatsu A, Ozato K, Yoda K, et al (2003). Cloning and embryonic expression of six wnt genes in the medaka (Oryzias latipes) with special reference to expression of wnt5a in the pectoral fin buds. Dev. Growth Differ. 45: 51-61.http://dx.doi.org/10.1046/j.1440-169X.2003.00674.x
2013
C. Q. Yuan, Li, Y. F., Wang, L., Zhao, K. Q., Hu, R. Y., Sun, P., Sun, Y. H., Li, Y., Gu, W. X., and Zhou, Z. Y., Evidence for inbreeding depression in the tree Robinia pseudoacacia L. (Fabaceae), vol. 12, pp. 6249-6256, 2013.
Y. S. Wang, Liu, Z. Y., Li, Y. F., Zhang, Y., Yang, X. F., and Feng, H., Identification of sequence-related amplified polymorphism markers linked to the red leaf trait in ornamental kale (Brassica oleracea L. var. acephala), vol. 12, pp. 870-877, 2013.
Bassam BJ, Caetano-Anolles G and Gresshoff PM (1991). Fast and sensitive silver staining of DNA in polyacrylamide gels. Anal. Biochem. 196: 80-83. http://dx.doi.org/10.1016/0003-2697(91)90120-I   Chen F, Zhang JF, Chen S, Gu H, et al. (2007). SRAP markers linked to recessive genic male sterile gene in rapeseed (Brassica napus L.). Jiangsu J. Agric. Sci. 23: 283-284.   Clark MS (1997). Plant Molecular Biology: A Laboratory Manual. Springer, Berlin.   Fang DQ and Roose ML (1997). Identification of closely related citrus cultivars with inter-simple sequence repeat markers. Theor. Appl. Genet. 95: 408-471. http://dx.doi.org/10.1007/s001220050577   Feng H, Jiang FY, Feng JY and Wang CN (2007). Establishment and application of the system for isolated microspore culture in Kale (Brassica oleracea L. var. acephala DC.). Acta. Hort. 34: 1019-1022.   Ferriol M, Pico B and Nuez F (2003). Genetic diversity of a germplasm collection of Cucurbita pepo using SRAP and AFLP markers. Theor. Appl. Genet. 107: 271-282. http://dx.doi.org/10.1007/s00122-003-1242-z PMid:12845442   Gu WH, Zheng HJ, Zhang Y and Liu ZY (2002). A preliminary study on selection and breeding of new lines and main genetic characteristics of ornamental kale. J. Shanghai Jiaotong Univ. 20: 129-132.   Isaacson T, Ronen G, Zamir D and Hirschberg J (2002). Cloning of tangerine from tomato reveals a carotenoid isomerase essential for the production of beta-carotene and xanthophylls in plants. Plant Cell 14: 333-342. http://dx.doi.org/10.1105/tpc.010303 PMid:11884678 PMCid:152916   Kosambi DD (1944). The estimation of map distance from recombination values. Ann. Eugen. 12: 172-175.   Lands R and Thompson R (1990). Efficiency of marker-assisted selection in the improvement of quantitative traits. Genetics 124: 743-756.   Li G and Quiros CF (2001). Sequence-related amplified polymorphism (SRAP), a new marker system based on a simple PCR reaction: its application to mapping and gene tagging in Brassica. Theor. Appl. Genet. 103: 455-461. http://dx.doi.org/10.1007/s001220100570   Li G, Gao M, Yang B and Quiros CF (2003). Gene for gene alignment between the Brassica and Arabidopsis genomes by direct transcriptome mapping. Theor. Appl. Genet. 107: 168-180. PMid:12835942   Lichter R (1989). Efficient yield of embryods by culture of isolated microspores of different Brassicaceae species. Plant Breed. 103: 119-123. http://dx.doi.org/10.1111/j.1439-0523.1989.tb00359.x   Lin ZX, Zhang XL and Nie YC (2004). Evaluation of application of a new molecular marker SRAP on analysis of F2 segregation population and genetic diversity in cotton. Yi Chuan Xue Bao 31: 622-626. PMid:15490882   Liu LJ, Liu ZC, Chen HR and Luo LJ (2009). SRAP marker technique and its application in genetic diversity analyses of vegetable crops. Chin. Agric. Sci. Bull. 25: 43-48.   Liu LW, Gong YQ, Huang H and Zhu XW (2004). Novel molecular marker systems - SRAP and TRAP and their application. Yi Chuan 26: 777-781. PMid:15640101   Michelmore RW, Paran I and Kesseli RV (1991). Identification of markers linked to disease-resistance genes by bulked segregant analysis: a rapid method to detect markers in specific genomic regions by using segregating populations. Proc. Natl. Acad. Sci. U. S. A. 88: 9828-9832. http://dx.doi.org/10.1073/pnas.88.21.9828 PMid:1682921 PMCid:52814   Rahman M, McVetty PB and Li G (2007). Development of SRAP, SNP and multiplexed SCAR molecular markers for the major seed coat color gene in Brassica rapa L. Theor. Appl. Genet. 115: 1101-1107. http://dx.doi.org/10.1007/s00122-007-0636-8 PMid:17846742   Riaz A, Li G, Quresh Z, Swati MS, et al. (2001). Genetic diversity of oil seed Brassica napus inbred lines based on sequence-related amplified polymorphism and its relation to hybrid performance. Plant Breed. 120: 411-415. http://dx.doi.org/10.1046/j.1439-0523.2001.00636.x   Ronen G, Carmel-Goren L, Zamir D and Hirschberg J (2000). An alternative pathway to β-carotene formation in plant chromoplasts discovered by map-based cloning of Beta and old-gold color mutations in tomato. Proc. Natl. Acad. Sci. U. S. A. 97: 11102-11107. http://dx.doi.org/10.1073/pnas.190177497 PMid:10995464 PMCid:27155   Tanksley SD, Ganal MW and Martin GB (1995). Chromosome landing: a paradigm for map-based gene cloning in plants with large genomes. Trends Genet. 11: 63-68. http://dx.doi.org/10.1016/S0168-9525(00)88999-4   Van Ooijen JW and Voorrips RE (2001). JoinMap® 3.0, Software for the Calculation of Genetic Linkage Maps. Plant Research International, Wageningen, The Netherlands.   Voorrips RE (2002). MapChart: software for the graphical presentation of linkage maps and QTLs. J. Hered. 93: 77-78. http://dx.doi.org/10.1093/jhered/93.1.77 PMid:12011185   Wang HM, Du GC, Jia CY, Tan XW, et al. (1995). In vitro propagation of ornamental kale (Brassica oleracea var. acephala f. tricolor hort.). Acta. Agric. Boreal.-Sin. 10: 64-69.   Wang YS, Tong Y, Li YF, Zhang Y, et al. (2011). High frequency plant regeneration from microspore-derived embryos of ornamental kale (Brassica oleracea L. var. acephala). Sci. Hortic. 130: 296-302. http://dx.doi.org/10.1016/j.scienta.2011.06.029   Wu J, Tan WF, He JR, Pu ZG, et al. (2005). Construct on of SRAP linkage map and QTL mapping for starch content in sweet potato. Mol. Plant Breed. 3: 841-845.   Xiao JP, Chen LG, Xie M, Liu HL, et al. (2009). Identification of AFLP fragments linked to seedlessness in Ponkan mandarin (Citrus reticulata Blanco) and conversion to SCAR markers. Sci. Hortic. 121: 505-510. http://dx.doi.org/10.1016/j.scienta.2009.03.006   Xie LN (2003). Genetic Analysis of Leaf Color and Shape and Mechanism of Self-Incompatibility of Brassica oleracea var. acephala. Master's thesis, Northeast Forestry University, Harbin.   Xu C and Zhao BH (2009). The development and application of SRAP molecular markers. Life Sci. Instrum. 7: 24-27.   Young ND (1999). A cautiously optimistic vision for marker-assisted breeding. Mol. Breed. 5: 505-510. http://dx.doi.org/10.1023/A:1009684409326   Yu YJ, Zhang YW and Zhang DS (2009). SRAP markers linked to purple trait in Chinese cabbage. Mol. Plant Breed. 7: 573-578. http://dx.doi.org/10.1007/s11032-009-9257-z   Yuan XJ, Pan JS, Cai R, Guan Y, et al. (2008). Genetic mapping and QTL analysis of fruit and flower related traits in cucumber (Cucumis sativus L.) using recombinant inbred lines. Euphytica 164: 473-491. http://dx.doi.org/10.1007/s10681-008-9722-5   Zhao XS, Li MY, Zhang WL and Liu F (2009). Establishment of high adventitious shoot regeneration system of ornamental kale. Genom. Appl. Biol. 28: 141-148.
2012
C. Q. Yuan, Li, Y. F., Sun, P., Sun, Y. H., Zhang, G. J., Yang, M. S., Zhang, Y. Y., Li, Y., and Wang, L., Assessment of genetic diversity and variation of Robinia pseudoacacia seeds induced by short-term spaceflight based on two molecular marker systems and morphological traits, vol. 11, pp. 4268-4277, 2012.
Chen DP, Li L, Shen SH and Yang Q (2009). Optimization of SRAP-PCR system and M1 mutation molecular identification of M1 in Jatropha curcas L. Acta Agric. Nucl. Sin. 23: 209-213.   Gao WY, Fu RZ, Fan L, Zhao SP, et al. (2000). The effects of spaceflight on soluble protein, isoperoxidase, and genomic DNA in Ural Licorice (Glycyrrhiza uralensis Fisch). J. Plant Biol. 43: 94-98. http://dx.doi.org/10.1007/BF03030501   Gao W, Li K, Yan S, Gao X, et al. (2009). Effects of space flight on DNA mutation and secondary metabolites of licorice (Glycyrrhiza uralensis Fisch.). Sci. China C Life Sci. 52: 977-981. http://dx.doi.org/10.1007/s11427-009-0120-6 PMid:19911135   He JJ, Liu FZ, Chen YH, Yang WC, et al. (2010). Effect of space flight mutation on Eggplant and analysis of genetic diversity by SSR molecular marker. J. Nucl. Agric. Sci. 24: 460-465.   Li G and Quiros CF (2001). Sequence-related amplified polymorphism (SRAP), a new marker system based on a simple PCR reaction: its application to mapping and gene tagging in Brassica. Theor. Appl. Genet. 103: 455-461. http://dx.doi.org/10.1007/s001220100570   Li Y, Liu M, Cheng Z and Sun Y (2007). Space environment induced mutations prefer to occur at polymorphic sites of rice genomes. Adv. Space Res. 40: 523-527. http://dx.doi.org/10.1016/j.asr.2007.04.100   Lian C and Hogetsu T (2002). Development of microsatellite markers in black locust (Robinia pseudoacacia) using a dual-suppression-PCR technique. Mol. Ecol. Notes 2: 211-213.   Lian C, Oishi R, Miyashita N and Hogetsu T (2004). High somatic instability of a microsatellite locus in a clonal tree, Robinia pseudoacacia. Theor. Appl. Genet. 108: 836-841. http://dx.doi.org/10.1007/s00122-003-1500-0 PMid:14625672   Liu L, Van Zanten L, Shu QY and Maluszynski M (2004). Officially released mutant varieties in China. Mutat. Breed. Rev. 14: 1-64.   Liu M, Li JG, Wang YL, Zhang Z, et al. (1999). Preliminary study on peroxidase isoenzyme detection and RAPD molecular verification for sweet pepper 87-2 carried by a recoverable satellite. Acta Agric. Nucl. Sin. 13: 291-294.   Lu JY, Zhang WL, Xue H, Pan Y, et al. (2010). Changes in AFLP and SSR DNA polymorphisms induced by short-term space flight of rice seeds. Biol. Plant. 54: 112-116. http://dx.doi.org/10.1007/s10535-010-0016-0   Mashinsky AL and Nechitailo GS (2001). Results and prospects of studying the gravitationally sensitive systems of plants under conditions of space flight. Cosmic Res. 39: 317-327. http://dx.doi.org/10.1023/A:1017993528116   McCouch SR, Teytelman L, Xu Y, Lobos KB, et al. (2002). Development and mapping of 2240 new SSR markers for rice (Oryza sativa L.). DNA Res. 9: 199-207. http://dx.doi.org/10.1093/dnares/9.6.199 PMid:12597276   Mishima K, Hirao T, Urano S, Watanabe A, et al. (2009). Isolation and characterization of microsatellite markers from Robinia pseudoacacia L. Mol. Ecol. Resour. 9: 850-852. http://dx.doi.org/10.1111/j.1755-0998.2008.02306.x PMid:21564766   Nechitailo GS, Lu JY, Xue H, Pan Y, et al. (2005). Influence of long term exposure to space flight on tomato seeds. Adv. Space Res. 36: 1329-1333. http://dx.doi.org/10.1016/j.asr.2005.06.043   Nei M (1973). Analysis of gene diversity in subdivided populations. Proc. Natl. Acad. Sci. U. S. A. 70: 3321-3323. http://dx.doi.org/10.1073/pnas.70.12.3321 PMid:4519626 PMCid:427228   Normile D and Yimin D (2002). Space science. Science emerges from shadows of China's space program. Science 296: 1788-1791. http://dx.doi.org/10.1126/science.296.5574.1788 PMid:12052934   Powell W, Machray GC and Provan J (1996). Polymorphism revealed by simple sequence repeats. Trends Plant Sci. 1: 215-222.   Stringer JW and Carpenter SB (1986). Energy yield of black locust biomass fuel. Forest Sci. 32: 1049-1057.   Sun BJ, Li ZX, Luo SB, Li ZL, et al. (2010). Induced effects of space flight on Eggplant (Solanum melongena L.) and AFLP analysis on mutants. Plant Physiol. Comm. 46: 1205-1210.   Sun F, Yang MS, Zhang J and Gu JT (2009). ISSR analysis of genetic diversity of Robinia pseudoacacia populations. J. Plant Genet. Res. 10: 91-96.   Surles SE, Hamrick JL and Bongarten BC (1989). Allozyme variation in black locust (Robinia pseudoacacia). Can. J. Forest Res. 19: 471-479. http://dx.doi.org/10.1139/x89-073   The People's Republic of China Ministry of Agriculture (2002). New Plant Varieties for Distinctness, Uniformity and Stability Testing Guidelines of China. China Agriculture Press, Beijing.   Wang WT, Chan CG, Ni DP and Wang ZF (2009). Space flight effects analysis of SP2 Salvia miltiorrhiza Bge using SRAP marker. Acta Agric. Nucl. Sin. 23: 758-761.   Wu Y, Yang DY, Tu PF, Tian YZ, et al. (2011). Genetic differentiation induced by spaceflight treatment of Cistanche deserticola and identification of inter-simple sequence repeat markers associated with its medicinal constituent contents. Adv. Space Res. 47: 591-599. http://dx.doi.org/10.1016/j.asr.2010.10.010   Xiao WM, Yang QY, Chen ZQ, Wang H, et al. (2009). Blast-resistance inheritance of space-induced rice lines and their genomic polymorphism by microsatellite markers. Agr. Sci. China 8: 387-393. http://dx.doi.org/10.1016/S1671-2927(08)60223-0   Xie LB, Guo YH, Meng FJ and Liu LX (2010). Molecular detection of genome DNA variation induced by space environment in Sweet Pepper (Capsicum annuum L.). Acta Agric. Nucl. Sin. 24: 254-258.   Yi JC, Zhuang CX, Yao J, Wang H, et al. (2002). DNA polymorphic analysis of rice mutation induced by space flight with molecular markers. Acta Biophys. Sin. 18: 478-483.   Yuan CQ, Li YF, Yang NN, Dai L, et al. (2011). Optimization of SRAP-PCR system and selection of primers for Robinia pseudoacacia L. Mol. Plant Breed. 9: 1182-1188.   Zhou GY, Hong YB, Lin KY, Li SX, et al. (2007). Study on breeding of space mutants in peanut and analysis of genetic diversity based on SSR marker. Chin. J. Oil. Crop Sci. 29: 238-241.