Publications

Found 109 results
Filters: Author is J. Li  [Clear All Filters]
2012
B. C. Jiang, Yu, D. B., Wang, L. J., Dong, F. L., Kaleri, H. A., Wang, X. G., Ally, N., Li, J., and Liu, H. L., Doxycycline-regulated growth hormone gene expression system for swine, vol. 11, pp. 2946-2957, 2012.
Barton JS, Cullen S, Hindmarsh PC, Brook CG, et al. (1992). Growth hormone treatment in idiopathic short stature: a preliminary analysis of cardiovascular effects. Acta Pediatr. Suppl. 383: 35-38.   Bockamp E, Sprengel R, Eshkind L, Lehmann T, et al. (2008). Conditional transgenic mouse models: from the basics to genome-wide sets of knockouts and current studies of tissue regeneration. Regen. Med. 3: 217-235. http://dx.doi.org/10.2217/17460751.3.2.217 PMid:18307405   Dick E, Matsa E, Young L, Darling D, et al. (2011). Accelerating the generation of human induced pluripotent stem cells by coupling high titre lentivirus and column-based positive selection of hiPSCs. Nat. Protoc. 6: 701-714. http://dx.doi.org/10.1038/nprot.2011.320 PMid:21637193   Dull T, Zufferey R, Kelly M, Mandel RJ, et al. (1998). A third-generation lentivirus vector with a conditional packaging system. J. Virol. 72: 8463-8471. PMid:9765382 PMCid:110254   Hens JR, Amstutz MD, Schanbacher FL and Mather IH (2000). Introduction of the human growth hormone gene into the guinea pig mammary gland by in vivo transfection promotes sustained expression of human growth hormone in the milk throughout lactation. Biochim. Biophys. Acta 1523: 161-171. http://dx.doi.org/10.1016/S0304-4165(00)00117-3   Johansen J, Rosenblad C, Andsberg K, Moller A, et al. (2002). Evaluation of Tet-on system to avoid transgene down-regulation in ex vivo gene transfer to the CNS. Gene Ther. 9: 1291-1301. http://dx.doi.org/10.1038/sj.gt.3301778 PMid:12224012   Kolb E (1977). Recent findings relating to the importance of growth hormone to both regulation of metabolism and production performance of ruminants (author's transl). Monatsh. Veterinarmed. 32: 230-235. PMid:327288   Krasnov A, Agren JJ, Pitaknen TI and Molsa H (1999). Transfer of growth hormone (GH) transgenes into Arctic charr. (Salvelinus alpinus L.) II. Nutrient partitioning in rapidly growing fish. Genet. Anal. 15: 99-105. http://dx.doi.org/10.1016/S1050-3862(99)00026-1   Lipinski D, Jura J, Kalak R, Plawski A, et al. (2003). Transgenic rabbit producing human growth hormone in milk. J. Appl. Genet. 44: 165-174. PMid:12773794   Madsen K, Friberg U, Roos P, Eden S, et al. (1983). Growth hormone stimulates the proliferation of cultured chondrocytes from rabbit ear and rat rib growth cartilage. Nature 304: 545-547. http://dx.doi.org/10.1038/304545a0 PMid:6877376   Mayo KE, Vale W, Rivier J, Rosenfeld MG, et al. (1983). Expression-cloning and sequence of a cDNA encoding human growth hormone-releasing factor. Nature 306: 86-88. http://dx.doi.org/10.1038/306086a0 PMid:6415488   Naldini L, Blomer U, Gallay P, Ory D, et al. (1996). In vivo gene delivery and stable transduction of nondividing cells by a lentiviral vector. Science 272: 263-267. http://dx.doi.org/10.1126/science.272.5259.263 PMid:8602510   Orian JM, Lee CS, Weiss LM and Brandon MR (1989). The expression of a metallothionein-ovine growth hormone fusion gene in transgenic mice does not impair fertility but results in pathological lesions in the liver. Endocrinology 124: 455-463. http://dx.doi.org/10.1210/endo-124-1-455 PMid:2642419   Palmiter RD, Brinster RL, Hammer RE, Trumbauer ME, et al. (1982). Dramatic growth of mice that develop from eggs microinjected with metallothionein-growth hormone fusion genes. Nature 300: 611-616. http://dx.doi.org/10.1038/300611a0 PMid:6958982   Takiguchi M, James C, Josefsson EC, Carmichael CL, et al. (2010). Transgenic, inducible RNAi in megakaryocytes and platelets in mice. J. Thromb. Haemost. 8: 2751-2756. http://dx.doi.org/10.1111/j.1538-7836.2010.04077.x PMid:21138522 PMCid:3285240   Wiederschain D, Wee S, Chen L, Loo A, et al. (2009). Single-vector inducible lentiviral RNAi system for oncology target validation. Cell Cycle 8: 498-504. http://dx.doi.org/10.4161/cc.8.3.7701 PMid:19177017
F. L. Dong, Kaleri, H. A., Lu, Y. D., Song, C. L., Jiang, B. C., Zhang, B. L., Wang, L. J., Wang, X. G., Ma, X. S., Wu, B. J., Song, H., Li, J., and Liu, H. L., Generation of induced pluripotent mouse stem cells in an indirect co-culture system, vol. 11, pp. 4179-4186, 2012.
Abraham S, Sheridan SD, Laurent LC, Albert K, et al. (2010). Propagation of human embryonic and induced pluripotent stem cells in an indirect co-culture system. Biochem. Biophys. Res. Commun. 393: 211-216. http://dx.doi.org/10.1016/j.bbrc.2010.01.101 PMid:20117095 PMCid:2834855   Chen J, Liu J, Han Q, Qin D, et al. (2010). Towards an optimized culture medium for the generation of mouse induced pluripotent stem cells. J. Biol. Chem. 285: 31066-31072. http://dx.doi.org/10.1074/jbc.M110.139436 PMid:20595395 PMCid:2945597   Chen M, Sun X, Jiang R, Shen W, et al. (2009). Role of MEF feeder cells in direct reprogramming of mousetail-tip fibroblasts. Cell Biol. Int. 33: 1268-1273. http://dx.doi.org/10.1016/j.cellbi.2009.06.004 PMid:19524692   Eiselleova L, Peterkova I, Neradil J, Slaninova I, et al. (2008). Comparative study of mouse and human feeder cells for human embryonic stem cells. Int. J. Dev. Biol. 52: 353-363. http://dx.doi.org/10.1387/ijdb.082590le PMid:18415935   Esteban MA, Xu J, Yang J, Peng M, et al. (2009). Generation of induced pluripotent stem cell lines from Tibetan miniature pig. J. Biol. Chem. 284: 17634-17640. http://dx.doi.org/10.1074/jbc.M109.008938 PMid:19376775 PMCid:2719402   Esteban MA, Wang T, Qin B, Yang J, et al. (2010). Vitamin C enhances the generation of mouse and human induced pluripotent stem cells. Cell Stem. Cell 6: 71-79. http://dx.doi.org/10.1016/j.stem.2009.12.001 PMid:20036631   Hanna J, Wernig M, Markoulaki S, Sun CW, et al. (2007). Treatment of sickle cell anemia mouse model with iPS cells generated from autologous skin. Science 318: 1920-1923. http://dx.doi.org/10.1126/science.1152092 PMid:18063756   Kim S, Ahn SE, Lee JH, Lim DS, et al. (2007). A novel culture technique for human embryonic stem cells using porous membranes. Stem. Cells 25: 2601-2609. http://dx.doi.org/10.1634/stemcells.2006-0814 PMid:17628020   Lim JW and Bodnar A (2002). Proteome analysis of conditioned medium from mouse embryonic fibroblast feeder layers which support the growth of human embryonic stem cells. Proteomics 2: 1187-1203. http://dx.doi.org/10.1002/1615-9861(200209)2:9<1187::AID-PROT1187>3.0.CO;2-T   Maherali N, Ahfeldt T, Rigamonti A, Utikal J, et al. (2008). A high-efficiency system for the generation and study of human induced pluripotent stem cells. Cell Stem. Cell 3: 340-345. http://dx.doi.org/10.1016/j.stem.2008.08.003 PMid:18786420   Okita K, Ichisaka T and Yamanaka S (2007). Generation of germline-competent induced pluripotent stem cells. Nature 448: 313-317. http://dx.doi.org/10.1038/nature05934 PMid:17554338   Soh BS, Song CM, Vallier L, Li P, et al. (2007). Pleiotrophin enhances clonal growth and long-term expansion of human embryonic stem cells. Stem. Cells 25: 3029-3037. http://dx.doi.org/10.1634/stemcells.2007-0372 PMid:17823238   Sun N, Panetta NJ, Gupta DM, Wilson KD, et al. (2009). Feeder-free derivation of induced pluripotent stem cells from adult human adipose stem cells. Proc. Natl. Acad. Sci. U. S. A. 106: 15720-15725. http://dx.doi.org/10.1073/pnas.0908450106 PMid:19805220 PMCid:2739869   Takahashi K and Yamanaka S (2006). Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 126: 663-676. http://dx.doi.org/10.1016/j.cell.2006.07.024 PMid:16904174   Takahashi K, Okita K, Nakagawa M and Yamanaka S (2007). Induction of pluripotent stem cells from fibroblast cultures. Nat. Protoc. 2: 3081-3089. http://dx.doi.org/10.1038/nprot.2007.418 PMid:18079707
Y. Wang, Tang, Y., Zhang, M., Cai, F., Qin, J., Wang, Q., Liu, C., Wang, G., Xu, L., Yang, L., Li, J., Wang, Z., and Li, X., Molecular cloning and functional characterization of a glutathione S-transferase involved in both anthocyanin and proanthocyanidin accumulation in Camelina sativa (Brassicaceae), vol. 11, pp. 4711-4719, 2012.
Baxter IR, Young JC, Armstrong G, Foster N, et al. (2005). A plasma membrane H+-ATPase is required for the formation of proanthocyanidins in the seed coat endothelium of Arabidopsis thaliana. Proc. Natl. Acad. Sci. U. S. A. 102: 2649-2654. http://dx.doi.org/10.1073/pnas.0406377102 PMid:15695592 PMCid:548969   Clough SJ and Bent AF (1998). Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant J. 16: 735-743. http://dx.doi.org/10.1046/j.1365-313x.1998.00343.x PMid:10069079   Davis PB, Menalled FD, Peterson RKD and Maxwell BD (2011). Refinement of weed risk assessments for biofuels using Camelina sativa as a model species. J. Appl. Ecol. 48: 989-997. http://dx.doi.org/10.1111/j.1365-2664.2011.01991.x   Debeaujon I, Peeters AJ, Leon-Kloosterziel KM and Koornneef M (2001). The TRANSPARENT TESTA12 gene of Arabidopsis encodes a multidrug secondary transporter-like protein required for flavonoid sequestration in vacuoles of the seed coat endothelium. Plant Cell 13: 853-871. PMid:11283341 PMCid:135529   Fröhlich A and Rice B (2005). Evaluation of Camelina sativa oil as a feedstock for biodiesel production. Ind. Crops Prod. 21: 25-31. http://dx.doi.org/10.1016/j.indcrop.2003.12.004   Gao MJ, Lydiate DJ, Li X, Lui H, et al. (2009). Repression of seed maturation genes by a trihelix transcriptional repressor in Arabidopsis seedlings. Plant Cell 21: 54-71. http://dx.doi.org/10.1105/tpc.108.061309 PMid:19155348 PMCid:2648069   Ghamkhar K, Croser J, Aryamanesh N, Campbell M, et al. (2010). Camelina (Camelina sativa (L.) Crantz) as an alternative oilseed: molecular and ecogeographic analyses. Genome 53: 558-567. http://dx.doi.org/10.1139/G10-034 PMid:20616877   Imbrea F, Jurcoane S, Hălmăjan HV, Duda M, et al. (2011). Camelina sativa: a new source of vegetal oils. Rom. Biotech. Lett. 16: 6263-6270.   Lepiniec L, Debeaujon I, Routaboul JM, Baudry A, et al. (2006). Genetics and biochemistry of seed flavonoids. Annu. Rev. Plant Biol. 57: 405-430. http://dx.doi.org/10.1146/annurev.arplant.57.032905.105252 PMid:16669768   Li X, Gao P, Cui D, Wu L, et al. (2011). The Arabidopsis tt19-4 mutant differentially accumulates proanthocyanidin and anthocyanin through a 3' amino acid substitution in glutathione S-transferase. Plant Cell Environ. 34: 374-388. http://dx.doi.org/10.1111/j.1365-3040.2010.02249.x PMid:21054438   Marles MA, Ray H and Gruber MY (2003). New perspectives on proanthocyanidin biochemistry and molecular regulation. Phytochemistry 64: 367-383. http://dx.doi.org/10.1016/S0031-9422(03)00377-7   Onyilagha J, Bala A, Hallett R, Gruber M, et al. (2003). Leaf flavonoids of the cruciferous species, Camelina sativa, Crambe spp., Thlaspi arvense and several other genera of the family Brassicaceae. Biochem. Syst. Ecol. 31: 1309-1322. http://dx.doi.org/10.1016/S0305-1978(03)00074-7   Saghai-Maroof MA, Soliman KM, Jorgensen RA and Allard RW (1984). Ribosomal DNA spacer-length polymorphisms in barley: mendelian inheritance, chromosomal location, and population dynamics. Proc. Natl. Acad. Sci. U. S. A. 81: 8014-8018. http://dx.doi.org/10.1073/pnas.81.24.8014 PMid:6096873 PMCid:392284   Southern EM (1975). Detection of specific sequences among DNA fragments separated by gel electrophoresis. J. Mol. Biol. 98: 503-517. http://dx.doi.org/10.1016/S0022-2836(75)80083-0   Tian L, Pang Y and Dixon RA (2008). Biosynthesis and genetic engineering of proanthocyanidins and (iso)flavonoids. Phytochem. Rev. 7: 445-465. http://dx.doi.org/10.1007/s11101-007-9076-y   Xie DY, Sharma SB, Paiva NL, Ferreira D, et al. (2003). Role of anthocyanidin reductase, encoded by BANYULS in plant flavonoid biosynthesis. Science 299: 396-399. http://dx.doi.org/10.1126/science.1078540 PMid:12532018
2011
J. Li, Cun, Y., Tang, W. R., Wang, Y., Li, S. N., Ouyang, H. R., Wu, Y. R., Yu, H. J., and Xiao, C. J., Association of eNOS gene polymorphisms with essential hypertension in the Han population in southwestern China, vol. 10, pp. 2202-2212, 2011.
Bonnardeaux A, Nadaud S, Charru A, Jeunemaitre X, et al. (1995). Lack of evidence for linkage of the endothelial cell nitric oxide synthase gene to essential hypertension. Circulation 91: 96-102. PMid:7528648 Chen W, Srinivasan SR, Li S, Boerwinkle E, et al. (2004). Gender-specific influence of NO synthase gene on blood pressure since childhood: the Bogalusa Heart Study. Hypertension 44: 668-673. http://dx.doi.org/10.1161/01.HYP.0000145474.23750.2b PMid:15466663 Derebecka N, Holysz M, Dankowski R, Wierzchowiecki M, et al. (2002). Polymorphism in intron 23 of the endothelial nitric oxide synthase gene (NOS3) is not associated with hypertension. Acta Biochim. Pol. 49: 263-268. PMid:12136949 Dhangadamajhi G, Mohapatra BN, Kar SK and Ranjit M (2009). Endothelial nitric oxide synthase gene polymorphisms and Plasmodium falciparum infection in Indian adults. Infect. Immun. 77: 2943-2947. http://dx.doi.org/10.1128/IAI.00083-09 PMid:19364839    PMCid:2708579 Fairchild TA, Fulton D, Fontana JT, Gratton JP, et al. (2001). Acidic hydrolysis as a mechanism for the cleavage of the Glu(298)→Asp variant of human endothelial nitric-oxide synthase. J. Biol. Chem. 276: 26674-26679. http://dx.doi.org/10.1074/jbc.M103647200 PMid:11331296 Fischmann TO, Hruza A, Niu XD, Fossetta JD, et al. (1999). Structural characterization of nitric oxide synthase isoforms reveals striking active-site conservation. Nat. Struct. Biol. 6: 233-242. http://dx.doi.org/10.1038/6675 PMid:10074942 Forstermann U, Nakane M, Tracey WR and Pollock JS (1993). Isoforms of nitric oxide synthase: functions in the cardiovascular system. Eur. Heart. J. 14 (Suppl I): 10-15. Forstermann U, Closs EI, Pollock JS, Nakane M, et al. (1994). Nitric oxide synthase isozymes. Characterization, purification, molecular cloning, and functions. Hypertension 23: 1121-1131. PMid:7515853 Forte P, Kneale BJ, Milne E, Chowienczyk PJ, et al. (1998). Evidence for a difference in nitric oxide biosynthesis between healthy women and men. Hypertension 32: 730-734. PMid:9774371 Gamboa A, Shibao C, Diedrich A, Choi L, et al. (2007). Contribution of endothelial nitric oxide to blood pressure in humans. Hypertension 49: 170-177. http://dx.doi.org/10.1161/01.HYP.0000252425.06216.26 PMid:17130304 Gluba A, Banach M, Rysz J, Piotrowski G, et al. (2009). Is polymorphism within eNOS gene associated with the late onset of myocardial infarction? A pilot study. Angiology 60: 588-595. http://dx.doi.org/10.1177/0003319709335031 PMid:19505886 Haynes WG, Noon JP, Walker BR and Webb DJ (1993). Inhibition of nitric oxide synthesis increases blood pressure in healthy humans. J. Hypertens. 11: 1375-1380. http://dx.doi.org/10.1097/00004872-199312000-00009 PMid:7510736 Hingorani AD (2001). Polymorphisms in endothelial nitric oxide synthase and atherogenesis: John French Lecture 2000. Atherosclerosis 154: 521-527. http://dx.doi.org/10.1016/S0021-9150(00)00699-7 Huang PL, Huang Z, Mashimo H, Bloch KD, et al. (1995). Hypertension in mice lacking the gene for endothelial nitric oxide synthase. Nature 377: 239-242. http://dx.doi.org/10.1038/377239a0 PMid:7545787 Jia CQ, Zhao ZT, Wang LH, Hao FR, et al. (2003). Relationship between mutation of exon G894 T of endothelial nitric oxide synthase gene and overweight to essential hypertension. Zhonghua Yu Fang Yi Xue Za Zhi 37: 365-367. PMid:14680603 Kajiyama N, Saito Y, Miyamoto Y, Yoshimura M, et al. (2000). Lack of association between T-786→C mutation in the 5’-flanking region of the endothelial nitric oxide synthase gene and essential hypertension. Hypertens. Res. 23: 561-565. http://dx.doi.org/10.1291/hypres.23.561 PMid:11131266 Karantzoulis-Fegaras F, Antoniou H, Lai SL, Kulkarni G, et al. (1999). Characterization of the human endothelial nitric-oxide synthase promoter. J. Biol. Chem. 274: 3076-3093. http://dx.doi.org/10.1074/jbc.274.5.3076 PMid:9915847 Kato N, Sugiyama T, Morita H, Nabika T, et al. (1999). Lack of evidence for association between the endothelial nitric oxide synthase gene and hypertension. Hypertension 33: 933-936. PMid:10205226 Khawaja MR, Taj F, Ahmad U, Saleheen D, et al. (2007). Association of endothelial nitric oxide synthase gene G894T polymorphism with essential hypertension in an adult Pakistani Pathan population. Int. J. Cardiol. 116: 113-115. http://dx.doi.org/10.1016/j.ijcard.2006.04.019 PMid:16765468 Kishimoto T, Misawa Y, Kaetu A, Nagai M, et al. (2004). eNOS Glu298Asp polymorphism and hypertension in a cohort study in Japanese. Prev. Med. 39: 927-931. http://dx.doi.org/10.1016/j.ypmed.2004.03.030 PMid:15475025 Kone BC (2000). Protein-protein interactions controlling nitric oxide synthases. Acta Physiol. Scand. 168: 27-31. http://dx.doi.org/10.1046/j.1365-201x.2000.00629.x PMid:10691776 Lacolley P, Gautier S, Poirier O, Pannier B, et al. (1998). Nitric oxide synthase gene polymorphisms, blood pressure and aortic stiffness in normotensive and hypertensive subjects. J. Hypertens. 16: 31-35. http://dx.doi.org/10.1097/00004872-199816010-00006 PMid:9533414 Li DB, Hua Q and Pi L (2006). The relationship of T786C polymorphism of endothelial nitric oxide synthase gene to essential hypertension. J. Cap. Univ. Med. Sci. 27: 226-229. Li DJ, Wu WF, Xu YL, Jiang XB, et al. (2009). Effect of G894T mutation in the endothelial nitric oxide synthase gene and abnormality of waist-to-hip ratio on essential hypertension. Chin. Gen. Pract. 12: 1173-1178. Li R, Lyn D, Lapu-Bula R, Oduwole A, et al. (2004). Relation of endothelial nitric oxide synthase gene to plasma nitric oxide level, endothelial function, and blood pressure in African Americans. Am. J. Hypertens. 17: 560-567. http://dx.doi.org/10.1016/j.amjhyper.2004.02.013 PMid:15233974 Liang Q, Yang XL, Yang G and Cui JH (2006). The relationship of angiotensin-converting enzyme and endothelial nitric oxide synthase gene polymorphisms In predisposition to essential hypertension.) J. Clin. Exp. Med. 5: 861-862. Lifton RP, Gharavi AG and Geller DS (2001). Molecular mechanisms of human hypertension. Cell 104: 545-556. http://dx.doi.org/10.1016/S0092-8674(01)00241-0 Liu HZ (2009). The association between endothelial nitric oxide synthase gene polymorphism and essential hypertension in the elderly. J. Math. Med. 22: 37-39. Liu HZ and Ha DW (2002). Relationship between 894G? T polymorphism of endothelial nitric oxide synthase gene and essential hypertension. Chin. Circ. J. 17: 42-44. Miyamoto Y, Saito Y, Kajiyama N, Yoshimura M, et al. (1998). Endothelial nitric oxide synthase gene is positively associated with essential hypertension. Hypertension 32: 3-8. PMid:9674630 Miyamoto Y, Saito Y, Nakayama M, Shimasaki Y, et al. (2000). Replication protein A1 reduces transcription of the endothelial nitric oxide synthase gene containing a -786T→C mutation associated with coronary spastic angina. Hum. Mol. Genet. 9: 2629-2637. http://dx.doi.org/10.1093/hmg/9.18.2629 PMid:11063722 Nakayama M, Yasue H, Yoshimura M, Shimasaki Y, et al. (1999). T-786→C mutation in the 5'-flanking region of the endothelial nitric oxide synthase gene is associated with coronary spasm. Circulation 99: 2864-2870. PMid:10359729 Sandrim VC, Coelho EB, Nobre F, Arado GM, et al. (2006). Susceptible and protective eNOS haplotypes in hypertensive black and white subjects. Atherosclerosis 186: 428-432. http://dx.doi.org/10.1016/j.atherosclerosis.2005.08.003 PMid:16168996 Serrano NC, Diaz LA, Casas JP, Hingorani AD, et al. (2010). Frequency of eNOS polymorphisms in the Colombian general population. BMC Genet. 11: 54. http://dx.doi.org/10.1186/1471-2156-11-54 PMid:20565909    PMCid:2910657 Shoji M, Tsutaya S, Saito R, Takamatu H, et al. (2000). Positive association of endothelial nitric oxide synthase gene polymorphism with hypertension in northern Japan. Life Sci. 66: 2557-2562. http://dx.doi.org/10.1016/S0024-3205(00)00589-0 Srivastava K, Narang R, Sreenivas V, Das S, et al. (2008). Association of eNOS Glu298Asp gene polymorphism with essential hypertension in Asian Indians. Clin. Chim. Acta 387: 80-83. http://dx.doi.org/10.1016/j.cca.2007.09.007 PMid:17935708 Tan JC, Zhu ZM, Zhu SJ, Yu CQ, et al. (2004). Study on the relationship between nitric oxide synthase gene G894T polymorphism and hypertension related risk factors in patients with essential hypertension in Chongqing city. Zhonghua Liu Xing Bing Xue Za Zhi 25: 158-161. PMid:15132873 Tang W, Yang Y, Wang B and Xiao C (2008). Association between a G894T polymorphism of eNOS gene and essential hypertension in Hani and Yi minority groups of China. Arch. Med. Res. 39: 222-225. http://dx.doi.org/10.1016/j.arcmed.2007.08.002 PMid:18164968 Tesauro M, Thompson WC, Rogliani P, Qi L, et al. (2000). Intracellular processing of endothelial nitric oxide synthase isoforms associated with differences in severity of cardiopulmonary diseases: cleavage of proteins with aspartate vs glutamate at position 298. Proc. Natl. Acad. Sci. U.S.A. 97: 2832-2835. http://dx.doi.org/10.1073/pnas.97.6.2832 Tsang KW, Ip SK, Leung R, Tipoe GL, et al. (2001). Exhaled nitric oxide: the effects of age, gender and body size. Lung 179: 83-91. http://dx.doi.org/10.1007/s004080000050 PMid:11733851 Tsujita Y, Baba S, Yamauchi R, Mannami T, et al. (2001). Association analyses between genetic polymorphisms of endothelial nitric oxide synthase gene and hypertension in Japanese: the suita study. J. Hypertens. 19: 1941-1948. http://dx.doi.org/10.1097/00004872-200111000-00003 PMid:11677358 Wang CJ, Zhao JB, Xu JL, Xiang ZL, et al. (2009). Meta-analysis on the association of G894T polymorphism in endothelial nitric oxide synthase gene and essential hypertension in Chinese population. Zhonghua Liu Xing Bing Xue Za Zhi 30: 845-849. PMid:20193212 Wang XL and Wang J (2000). Endothelial nitric oxide synthase gene sequence variations and vascular disease. Mol. Genet. Metab. 70: 241-251. http://dx.doi.org/10.1006/mgme.2000.3033 PMid:10993711 Wu H, Tang W, Li H, Zhou X, et al. (2006). Association of the beta2-adrenergic receptor gene with essential hypertension in the non-Han Chinese Yi minority human population. J. Hypertens. 24: 1041-1047. http://dx.doi.org/10.1097/01.hjh.0000226193.21311.e1 PMid:16685203 Zhao Q, Su SY, Chen SF, Li B, et al. (2006). Association study of the endothelial nitric oxide synthase gene polymorphisms with essential hypertension in northern Han Chinese. Chin. Med. J. (Engl.) 119: 1065-1071. Zhou JZ, Chen Y, Zhou Y and Zhong WB (2010). Association of endothelial nitric oxide synthase gene polymorphism with essential hypertension in Hans in Xinjiang. Clin. J. Med. Offic. 38: 391-393. Zintzaras E, Kitsios G and Stefanidis I (2006). Endothelial NO synthase gene polymorphisms and hypertension: a meta-analysis. Hypertension 48: 700-710. http://dx.doi.org/10.1161/01.HYP.0000238124.91161.02 PMid:16940230
W. R. Hou, Hou, Y. L., Wu, G. F., Song, Y., Su, X. L., Sun, B., and Li, J., cDNA, genomic sequence cloning and overexpression of ribosomal protein gene L9 (rpL9) of the giant panda (Ailuropoda melanoleuca), vol. 10, pp. 1576-1588, 2011.
Adamski FM, Atkins JF and Gesteland RF (1996). Ribosomal protein L9 interactions with 23 S rRNA: the use of a translational bypass assay to study the effect of amino acid substitutions. J. Mol. Biol. 261: 357-371. http://dx.doi.org/10.1006/jmbi.1996.0469 PMid:8780779 Agafonov DE, Kolb VA and Spirin AS (1997). Proteins on ribosome surface: measurements of protein exposure by hot tritium bombardment technique. Proc. Natl. Acad. Sci. U. S. A. 94: 12892-12897. http://dx.doi.org/10.1073/pnas.94.24.12892 Babu YS, Bugg CE and Cook WJ (1988). Structure of calmodulin refined at 2.2 A resolution. J. Mol. Biol. 204: 191-204. http://dx.doi.org/10.1016/0022-2836(88)90608-0 Biou V, Shu F and Ramakrishnan V (1995). X-ray crystallography shows that translational initiation factor IF3 consists of two compact alpha/beta domains linked by an alpha-helix. EMBO J. 14: 4056-4064. PMid:7664745    PMCid:394484 Brimacombe R, Gornicki P, Greuer B, Mitchell P, et al. (1990). The three-dimensional structure and function of Escherichia coli ribosomal RNA, as studied by cross-linking techniques. Biochim. Biophys. Acta 1050: 8-13. PMid:2207172 Cho JH, Sato S and Raleigh DP (2004). Thermodynamics and kinetics of non-native interactions in protein folding: a single point mutant significantly stabilizes the N-terminal domain of L9 by modulating non-native interactions in the denatured state. J. Mol. Biol. 338: 827-837. http://dx.doi.org/10.1016/j.jmb.2004.02.073 PMid:15099748 Chou PY and Fasman GD (1978). Empirical predictions of protein conformation. Annu. Rev. Biochem. 47: 251-276. http://dx.doi.org/10.1146/annurev.bi.47.070178.001343 PMid:354496 Herbst KL, Nichols LM, Gesteland RF and Weiss RB (1994). A mutation in ribosomal protein L9 affects ribosomal hopping during translation of gene 60 from bacteriophage T4. Proc. Natl. Acad. Sci. U. S. A. 91: 12525-12529. http://dx.doi.org/10.1073/pnas.91.26.12525 Hoffman DW, Davies C, Gerchman SE, Kycia JH, et al. (1994). Crystal structure of prokaryotic ribosomal protein L9: a bi-lobed RNA-binding protein. EMBO J. 13: 205-212. PMid:8306963    PMCid:394794 Hoffman DW, Cameron CS, Davies C, White SW, et al. (1996). Ribosomal protein L9: a structure determination by the combined use of X-ray crystallography and NMR spectroscopy. J. Mol. Biol. 264: 1058-1071. http://dx.doi.org/10.1006/jmbi.1996.0696 PMid:9000630 Horng JC, Moroz V, Rigotti DJ, Fairman R, et al. (2002). Characterization of large peptide fragments derived from the N-terminal domain of the ribosomal protein L9: definition of the minimum folding motif and characterization of local electrostatic interactions. Biochemistry 41: 13360-13369. http://dx.doi.org/10.1021/bi026410c PMid:12416980 Li R, Fan W, Tian G, Zhu H, et al. (2010). The sequence and de novo assembly of the giant panda genome. Nature 463: 311-317. http://dx.doi.org/10.1038/nature08696 PMid:20010809 Lieberman KR, Firpo MA, Herr AJ, Nguyenle T, et al. (2000). The 23 S rRNA environment of ribosomal protein L9 in the 50 S ribosomal subunit. J. Mol. Biol. 297: 1129-1143. http://dx.doi.org/10.1006/jmbi.2000.3621 PMid:10764578 Lillemoen J, Cameron CS and Hoffman DW (1997). The stability and dynamics of ribosomal protein L9: investigations of a molecular strut by amide proton exchange and circular dichroism. J. Mol. Biol. 268: 482-493. http://dx.doi.org/10.1006/jmbi.1997.0982 PMid:9159485 MazurukK, Schoen TJ, Chader GJ, Iwata T, et al. (1996). Structural organization and chromosomal localization of the human ribosomal protein L9 gene. Biochim. Biophys. Acta 1305: 151-162. PMid:8597601 Nag B, Akella SS, Cann PA, Tewari DS, et al. (1991). Monoclonal antibodies to Escherichia coli ribosomal proteins L9 and L10. Effects on ribosome function and localization of L9 on the surface of the 50 S ribosomal subunit. J. Biol. Chem. 266: 22129-22135. PMid:1939233 O’Neil KT and DeGrado WF (1990). A thermodynamic scale for the helix-forming tendencies of the commonly occurring amino acids. Science 250: 646-651. Roth HE and Nierhaus KH (1980). Assembly map of the 50-S subunit from Escherichia coli ribosomes, covering the proteins present in the first reconstitution intermediate particle. Eur. J. Biochem. 103: 95-98. http://dx.doi.org/10.1111/j.1432-1033.1980.tb04292.x PMid:6153613 SambrookJ, Fritsch EF and Maniatis T (1989). Molecular Cloning, a Laboratory Manual. Cold Spring Harbor Laboratory Press, Cold Spring Harbor. Sato S and Raleigh DP (2002). pH-dependent stability and folding kinetics of a protein with an unusual alpha-beta topology: the C-terminal domain of the ribosomal protein L9. J. Mol. Biol. 318: 571-582. http://dx.doi.org/10.1016/S0022-2836(02)00015-3 Sato S, Luisi DL and Raleigh DP (2000). pH jump studies of the folding of the multidomain ribosomal protein L9: the structural organization of the N-terminal domain does not affect the anomalously slow folding of the C-terminal domain. Biochemistry 39: 4955-4962. http://dx.doi.org/10.1021/bi992608u PMid:10769155 Sato S, Xiang S and Raleigh DP (2001). On the relationship between protein stability and folding kinetics: a comparative study of the N-terminal domains of RNase HI, E. coli and Bacillus stearothermophilus L9. J. Mol. Biol. 312: 569- 577. http://dx.doi.org/10.1006/jmbi.2001.4968 PMid:11563917 Schmidt A, Hollmann M and Schafer U (1996). A newly identified Minute locus, M(2)32D, encodes the ribosomal protein L9 in Drosophila melanogaster. Mol. Gen. Genet. 251: 381-387. http://dx.doi.org/10.1007/BF02172530 Shan B, Bhattacharya S, Eliezer D and Raleigh DP (2008). The low-pH unfolded state of the C-terminal domain of the ribosomal protein L9 contains significant secondary structure in the absence of denaturant but is no more compact than the low-pH urea unfolded state. Biochemistry 47: 9565-9573. http://dx.doi.org/10.1021/bi8006862 PMid:18707127    PMCid:2730213 Voelz VA, Bowman GR, Beauchamp K and Pande VS (2010). Molecular simulation of ab initio protein folding for a millisecond folder NTL9(1-39). J. Am. Chem. Soc. 132: 1526-1528. http://dx.doi.org/10.1021/ja9090353 PMid:20070076    PMCid:2835335 Walleczek J, Redl B, Stoffler-Meilicke M and Stoffler G (1989). Protein-protein cross-linking of the 50 S ribosomal subunit of Escherichia coli using 2-iminothiolane. Identification of cross-links by immunoblotting techniques. J. Biol. Chem. 264: 4231-4237. PMid:2645289
X. Wan, Li, J., Kim, M. J., Kang, T. H., Jin, B. R., and Kim, I., Population genetic structure of the migratory rice leaf roller, Cnaphalocrocis medinalis (Lepidoptera: Pyralidae), inferred from the mitochondrial A+T-rich region and nuclear ITS2 sequences, vol. 10, pp. 273-294, 2011.
Amos W and Harwood J (1998). Factors affecting levels of genetic diversity in natural populations. Philos. Trans. R. Soc. Lond. B Biol. Sci. 353: 177-186. http://dx.doi.org/10.1098/rstb.1998.0200 PMid:9533122 PMCid:1692205   Ballard JW and Whitlock MC (2004). The incomplete natural history of mitochondria. Mol. Ecol. 13: 729-744. http://dx.doi.org/10.1046/j.1365-294X.2003.02063.x PMid:15012752   Birky CW Jr, Maruyama T and Fuerst P (1983). An approach to population and evolutionary genetic theory for genes in mitochondria and chloroplasts, and some results. Genetics 103: 513-527. PMid:6840539 PMCid:1202037   Bohonak AJ (2002). IBD (isolation by distance): a program for analyses of isolation by distance. J. Hered. 93: 153-154. http://dx.doi.org/10.1093/jhered/93.2.153 PMid:12140277   Bravo JP, Felipes J, Zanatta DB, Silva JLC, et al. (2008). Sequence and analysis of the mitochondrial DNA control region in the sugarcane borer Diatraea saccharalis (Lepidoptera: Crambidae). Braz. Arch. Biol. Technol. 51: 471-477. http://dx.doi.org/10.1590/S1516-89132008000400004   Cameron SL and Whiting MF (2008). The complete mitochondrial genome of the tobacco hornworm, Manduca sexta, (Insecta: Lepidoptera: Sphingidae), and an examination of mitochondrial gene variability within butterflies and moths. Gene 408: 112-123. http://dx.doi.org/10.1016/j.gene.2007.10.023 PMid:18065166   Castresana J (2000). Selection of conserved blocks from multiple alignments for their use in phylogenetic analysis. Mol. Biol. Evol. 17: 540-552. http://dx.doi.org/10.1093/oxfordjournals.molbev.a026334 PMid:10742046   Chen W and Guo Y (1996). Observation on the migrant phenomenon of Cnaphalocrocis medinalis Guenee. Nat. Sci. J. Hainan Univ. 14: 37-42.   Denno RE, Roderick GK, Peterson MA, Huberty AE, et al. (1996). Habitat persistence underlies intraspecific variation in the dispersal strategies of planthoppers. Ecol. Monogr. 66: 389-408. http://dx.doi.org/10.2307/2963487   Depaquit J, Lienard E, Verzeaux-Griffon A, Ferte H, et al. (2008). Molecular homogeneity in diverse geographical populations of Phlebotomus papatasi (Diptera, Psychodidae) inferred from ND4 mtDNA and ITS2 rDNA epidemiological consequences. Infect. Genet. Evol. 8: 159-170. http://dx.doi.org/10.1016/j.meegid.2007.12.001 PMid:18243814   Drake VA and Gatehouse AG (1995). Insect Migration: Tracking Resources Through Space and Time. In: Migratory Potential in Insects: Variation in an Uncertain Environment (Gatehouse AG and Zhang XX, eds.). Cambridge University Press, London, 193-229.   Excoffier L, Smouse PE and Quattro JM (1992). Analysis of molecular variance inferred from metric distances among DNA haplotypes: application to human mitochondrial DNA restriction data. Genetics 131: 479-491. PMid:1644282 PMCid:1205020   Excoffier L, Laval G and Schneider S (2005). Arlequin (version 3.0): an integrated software package for population genetics data analysis. Evol. Bioinform. Online 1: 47-50. PMCid:2658868   Fauron CM and Wolstenholme DR (1980). Intraspecific diversity of nucleotide sequences within the adenine + thymine-rich region of mitochondrial DNA molecules of Drosophila mauritiana, Drosophila melanogaster and Drosophila simulans. Nucleic Acids Res. 8: 5391-5410. http://dx.doi.org/10.1093/nar/8.22.5391 PMid:6258143 PMCid:324309   Fitch WM (1971). Toward defining the course of evolution: minimal change for a specific tree topology. Syst. Zool. 20: 406-416. http://dx.doi.org/10.2307/2412116   Hajibabaei M, Janzen DH, Burns JM, Hallwachs W, et al. (2006). DNA barcodes distinguish species of tropical Lepidoptera. Proc. Natl. Acad. Sci. U. S. A. 103: 968-971. http://dx.doi.org/10.1073/pnas.0510466103 PMid:16418261 PMCid:1327734   Hanski I (1996). Metapopulation Ecology. In: Population Dynamics in Ecological Space and Time (Rhodes OEJ, Chesser RK and Smith MH, eds.). Univerity of Chicago Press, Chicago, 13-43.   Ji Y, Zhang D and He L (2003). Evolutionary conservation and versatility of a new set of primers for amplifying the ribosomal internal transcribed spacer regions in insects and other invertebrates. Mol. Ecol. Notes 3: 581-585. http://dx.doi.org/10.1046/j.1471-8286.2003.00519.x   Katoh K, Misawa K, Kuma K and Miyata T (2002). MAFFT: a novel method for rapid multiple sequence alignment based on fast Fourier transform. Nucleic Acids Res. 30: 3059-3066. http://dx.doi.org/10.1093/nar/gkf436 PMid:12136088 PMCid:135756   Keller A, Schleicher T, Schultz J, Muller T, et al. (2009). 5.8S-28S rRNA interaction and HMM-based ITS2 annotation. Gene 430: 50-57. http://dx.doi.org/10.1016/j.gene.2008.10.012 PMid:19026726   Kim KC and Choi CS (1984). Studies on the bionomies and analysis of damage of the rice leaf folder, Cnaphalocrocis medinalis G. in South region of Korea. Rural Dev. Rev. 19: 25-32.   Kim MI, Baek JY, Kim MJ, Jeong HC, et al. (2009). Complete nucleotide sequence and organization of the mitogenome of the red-spotted apollo butterfly, Parnassius bremeri (Lepidoptera: Papilionidae) and comparison with other lepidopteran insects. Mol. Cells 28: 347-363. http://dx.doi.org/10.1007/s10059-009-0129-5 PMid:19823774   Kimura M (1980). A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J. Mol. Evol. 16: 111-120. http://dx.doi.org/10.1007/BF01731581 PMid:7463489   Kisimoto R (1984). Insect pests of the rice plant in Asia. Prot. Ecol. 7: 83-104.   Mantel N (1967). The detection of disease clustering and a generalized regression approach. Cancer Res. 27: 209-220. PMid:6018555   Miyahara Y (1981). Occurrence of the rice leafroller in Japan. Jpn Agric. Res. Q. 15: 100-105.   Miyahara Y, Wada T and Kobayashi M (1981). Appearance of Cnaphalocrocis medinalis Guenee in early planted rice fields in Chikugo. Jpn. J. Appl. Entomol. Zool. 25: 26-32. http://dx.doi.org/10.1303/jjaez.25.26   Nei M and Feldman MW (1972). Identity of genes by descent within and between populations under mutation and migration pressures. Theor. Popul. Biol. 3: 460-465. http://dx.doi.org/10.1016/0040-5809(72)90017-2   Riley JR, Reynolds DR, Smith AD, Edwards AS, et al. (1995). Observations of the autumn migration of the rice leaf roller Cnaphalocrocis medinalis (Lepidoptera: Pyralidae) and other moths in eastern China. Bull. Entomol. Res. 85: 397-414. http://dx.doi.org/10.1017/S0007485300036130   Saito S, Tamura K and Aotsuka T (2005). Replication origin of mitochondrial DNA in insects. Genetics 171: 1695-1705. http://dx.doi.org/10.1534/genetics.105.046243 PMid:16118189 PMCid:1456096   Shirai J (1998). Laboratory evaluation of flight ability of the Oriental corn borer, Ostrinia furnacalis (Lepidoptera: Pyralidae). Bull. Entomol. Res. 88: 327-333. http://dx.doi.org/10.1017/S0007485300025943   Swofford DL (2002). PAUP*. Phylogenetic Analysis Using Parsimony (*and Other Method). Ver. 4.10. Sinauer Associates, Sunderland. PMid:12504223   Tamura K (1992). Estimation of the number of nucleotide substitutions when there are strong transition-transversion and G+C-content biases. Mol. Biol. Evol. 9: 678-687. PMid:1630306   Tu YG, Wu KM, Xue FS and Lu YH (2010). Laboratory evaluation of flight activity of the common cutworm, Spodoptera litura (Lepidoptera: Noctuidae). Insect Sci. 17: 53-59. http://dx.doi.org/10.1111/j.1744-7917.2009.01281.x   Wada T, Ogawa Y and Nakasuga T (1988). Geographical difference in mated status and autumn migration in the rice leaf roller moth, Cnaphalocrocis medinalis. Entomol. Exp. Appl. 46: 141-148. http://dx.doi.org/10.1111/j.1570-7458.1988.tb01104.x   Yukuhiro K, Sezutsu H, Itoh M, Shimizu K, et al. (2002). Significant levels of sequence divergence and gene rearrangements have occurred between the mitochondrial genomes of the wild mulberry silkmoth, Bombyx mandarina, and its close relative, the domesticated silkmoth, Bombyx mori. Mol. Biol. Evol. 19: 1385-1389. http://dx.doi.org/10.1093/oxfordjournals.molbev.a004200 PMid:12140251   Zhang DX, Szymura JM and Hewitt GM (1995). Evolution and structural conservation of the control region of insect mitochondrial DNA. J. Mol. Evol. 40: 382-391. http://dx.doi.org/10.1007/BF00164024 PMid:7769615   Zhang JF, Kimatu JN, Guo WL and Liu B (2009). Habitat fragmentation causes rapid genetic differentiation and homogenization in natural plant populations - a case study in Leymus chinensis. Afr. J. Biotechnol. 8: 3440-3447.   Zhang XX, Geng JG and Zhou WJ (1981). Studies of the migration patterns of rice leaf roller, Cnaphalocrocis medinalis Guenee in China. J. Nanjing Agric. Coll. 3: 1-12.
2010
T. Ning, Xiao, H., Li, J., Hua, S., and Zhang, Y. P., Adaptive evolution of the mitochondrial ND6 gene in the domestic horse, vol. 9, pp. 144-150, 2010.
Beall CM (2003). High-altitude adaptations. Lancet 362 (Suppl): s14-s15. http://dx.doi.org/10.1016/S0140-6736(03)15058-1   Creevey CJ and McInerney JO (2002). An algorithm for detecting directional and non-directional positive selection, neutrality and negative selection in protein coding DNA sequences. Gene 300: 43-51. http://dx.doi.org/10.1016/S0378-1119(02)01039-9   Excoffier L, Laval G and Schneider S (2005). Arlequin (version 3.0): An integrated software package for population genetics data analysis. Evol. Bioinform (Online) 1: 47-50. PMCid:2658868   Gering EJ, Opazo JC and Storz JF (2009). Molecular evolution of cytochrome b in high- and low-altitude deer mice (genus Peromyscus). Heredity 102: 226-235. http://dx.doi.org/10.1038/hdy.2008.124 PMid:19107138   Hassanin A, Ropiquet A, Couloux A and Cruaud C (2009). Evolution of the mitochondrial genome in mammals living at high altitude: new insights from a study of the tribe Caprini (Bovidae, Antilopinae). J. Mol. Evol. 68: 293-310. http://dx.doi.org/10.1007/s00239-009-9208-7 PMid:19294454   Hudson RR, Slatkin M and Maddison WP (1992). Estimation of levels of gene flow from DNA sequence data. Genetics 132: 583-589. PMid:1427045 PMCid:1205159   Lopez-Barneo J, Pardal R and Ortega-Saenz P (2001). Cellular mechanism of oxygen sensing. Annu. Rev. Physiol. 63: 259-287. http://dx.doi.org/10.1146/annurev.physiol.63.1.259 PMid:11181957   Monge C and Leon-Velarde F (1991). Physiological adaptation to high altitude: oxygen transport in mammals and birds. Physiol. Rev. 71: 1135-1172. PMid:1924550   Nielsen R (2005). Molecular signatures of natural selection. Annu. Rev. Genet. 39: 197-218. http://dx.doi.org/10.1146/annurev.genet.39.073003.112420 PMid:16285858   Outram AK, Stear NA, Bendrey R, Olsen S, et al. (2009). The earliest horse harnessing and milking. Science 323: 1332-1335. http://dx.doi.org/10.1126/science.1168594 PMid:19265018   Rozas J, Sanchez-DelBarrio JC, Messeguer X and Rozas R (2003). DnaSP, DNA polymorphism analyses by the coalescent and other methods. Bioinformatics 19: 2496-2497. http://dx.doi.org/10.1093/bioinformatics/btg359 PMid:14668244   Schmidt-Nielsen K (1997). Effect of High Altitude. In: Animal Physiology: Adaptation and Environment. Cambridge University Press, Cambridge, 209-210.   Tajima F (1989). Statistical method for testing the neutral mutation hypothesis by DNA polymorphism. Genetics 123: 585-595. PMid:2513255 PMCid:1203831   Weber RE (2007). High-altitude adaptations in vertebrate hemoglobins. Respir. Physiol. Neurobiol. 158: 132-142. http://dx.doi.org/10.1016/j.resp.2007.05.001 PMid:17561448   Wickler S and Greene H (2003). The horse and high altitude. Clin. Tech. Equine Pract. 2: 231-237. http://dx.doi.org/10.1053/S1534-7516(03)00066-0   Xu S, Luosang J, Hua S, He J, et al. (2007). High altitude adaptation and phylogenetic analysis of Tibetan horse based on the mitochondrial genome. J. Genet. Genomics 34: 720-729. http://dx.doi.org/10.1016/S1673-8527(07)60081-2   Yang Z (1997). PAML: a program package for phylogenetic analysis by maximum likelihood. Comput. Appl. Biosci. 13: 555-556. PMid:9367129

Pages